JPH03263766A - Power generating device of solid electrolyte fuel cell - Google Patents

Power generating device of solid electrolyte fuel cell

Info

Publication number
JPH03263766A
JPH03263766A JP2061679A JP6167990A JPH03263766A JP H03263766 A JPH03263766 A JP H03263766A JP 2061679 A JP2061679 A JP 2061679A JP 6167990 A JP6167990 A JP 6167990A JP H03263766 A JPH03263766 A JP H03263766A
Authority
JP
Japan
Prior art keywords
gas
fuel
fuel gas
solid electrolyte
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2061679A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Irino
光博 入野
Tokumi Satake
徳己 佐竹
Hiroshi Sakai
坂井 廣
Masayuki Funatsu
舟津 正之
Toshio Haneda
羽田 壽夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2061679A priority Critical patent/JPH03263766A/en
Priority to DE69103455T priority patent/DE69103455T2/en
Priority to EP91103538A priority patent/EP0450336B1/en
Priority to AU72792/91A priority patent/AU637203B2/en
Priority to US07/669,019 priority patent/US5198312A/en
Publication of JPH03263766A publication Critical patent/JPH03263766A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a power generating device of solid electrolyte fuel cells which has high power generating efficiency and can be utilized for a power generating plant by arranging multiple flat-plate type solid electrolyte fuel cells in a horizontal fuel gas duct. CONSTITUTION:When air inlet and outlet external manifolds are vertically installed, face pressure can be applied to a high-temperature gasket 33 via a load, and the leak of oxidizer gas can be prevented. When a battery main body is installed in a raw fuel gas duct 51, some leak of fuel gas can be allowed. When an afterburner nozzle 58 is provided, fuel is completely burned, and heat can be recovered in a downstream apparatus. When a current collecting plate 13 is placed in the raw fuel gas duct atmosphere, the oxidation of the current collecting plate 13 made of metal can be prevented. A large- capacity external manifold flat type SOFC flat type power plant can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は固体電解質型燃料電池の発電装置に関し、特に
外部マニホールド平板型固体電解質架燃料電池の発電装
置に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a power generation device using a solid oxide fuel cell, and particularly to a power generation device using an external manifold flat plate type solid oxide suspended fuel cell.

[従来の技術] 第3図、第4図及び第5図は、夫々従来の目立式外部マ
ニホールド型固体電解質燃料電池(外部マニホールド5
OFC)の発電装置を示す(特許’1’ 1−54f1
2Ii号公1&I)。但し、第3図は断商図、第4図は
第3図のA−A矢祖図、第5図は第3図のト]矢祖図で
ある。
[Prior Art] Figs. 3, 4, and 5 show conventional external manifold type solid electrolyte fuel cells (external manifold 5), respectively.
OFC) power generation device (patent '1' 1-54f1
2Ii Publication 1&I). However, FIG. 3 is a cutaway diagram, FIG. 4 is an A-A Yaso diagram of FIG. 3, and FIG. 5 is an A-A Yaso diagram of FIG. 3.

第3図において、1は固体電解質燃料電池で、その−例
を説明のためその烏敢図を第6図、第7図に示した。こ
られらの図かられかるように燃料ガスと酸化剤ガスは直
交し5ている。
In FIG. 3, reference numeral 1 denotes a solid electrolyte fuel cell, and its diagrams are shown in FIGS. 6 and 7 for illustrative purposes. As can be seen from these figures, the fuel gas and the oxidizing gas are perpendicular to each other.

第3図〜第5図において、2a、 2b、 2e、 2
dは上記燃料電池1のガス出入目に設けられた外部マニ
ホ ルドであり、ガスの漏洩がないよう密着して設りら
れている。第3図において、導入される原料燃料ガス3
は、原料燃料導入管4から外部マニホールド2a、燃料
電池1、外部マニホールド2b。
In Figures 3 to 5, 2a, 2b, 2e, 2
Reference numeral d designates an external manifold provided at the gas inlet and outlet of the fuel cell 1, and is installed in close contact with the fuel cell 1 to prevent gas leakage. In Fig. 3, raw material fuel gas 3 introduced
, from the raw fuel inlet pipe 4 to the external manifold 2a, the fuel cell 1, and the external manifold 2b.

残71燃料ガス排出管5、残7j燃料ガス排出調整弁6
と流れ、残り燃料ガス7として系外に排出する。
Remaining 71 fuel gas discharge pipes 5, remaining 7j fuel gas discharge adjustment valves 6
The remaining fuel gas 7 is discharged outside the system.

一方、原料酸化剤ガス8(第4図図示)も、同様に原料
酸化剤ガス導入管9から外部マニホールド2c、燃料電
池1、外部マニホールド2d、残71燃料ガス排出管1
0、残7f、燃料ガス排田調整弁11ε流れ、残存酸化
剤ガス12.!: して系外に排出する。
On the other hand, the raw material oxidizing gas 8 (shown in FIG. 4) is similarly supplied from the raw material oxidizing gas inlet pipe 9 to the external manifold 2c, the fuel cell 1, the external manifold 2d, and the remaining 71 fuel gas discharge pipes 1.
0, remaining 7f, fuel gas discharge adjustment valve 11ε flow, residual oxidizing gas 12. ! : and discharge it out of the system.

燃料電池1で発生し、た電流は、燃11電池1の止rに
接着した電流集合板13a 、 13bからリード線1
4a 、 14bを経て外部へ取り出す。
The current generated in the fuel cell 1 is passed from the current collecting plates 13a and 13b attached to the stopper of the fuel cell 1 to the lead wire 1.
4a and 14b to take it out to the outside.

燃ネ1電池1を設置した非酸化性雰囲気室15は、非酸
化性ガス(窒素等の本活性ガス又は原料燃料ガスのよう
な遠見性ガス)を導入(lffa) L、拮−出(18
b)することで、金層(Ni、Co)や金層とセラミッ
クスの混含物で作られた電流集合板13a 。
The non-oxidizing atmosphere chamber 15 in which the fuel cell 1 is installed is filled with a non-oxidizing gas (an active gas such as nitrogen or a far-sighted gas such as raw material fuel gas).
b) A current collecting plate 13a made of a gold layer (Ni, Co) or a mixture of a gold layer and ceramics.

13bやリード[14a、 、 F4bの高温酸化をF
A +lする。
13b and lead [14a, , F4b high temperature oxidation
A +l.

また、従来の技術では、非酸化性雰囲気室15と隔壁1
7に゛C分離した燃焼室18を設けている。この燃焼室
+8には、第3図及び第5図に示すように、原料燃料ガ
ス導入管4と残存酸化剤ガス排出前5表原料酸化剤ガス
導入着9ε残存酸化剤ガス彷出管10が配置きれている
。更に、第5図の如く原料燃料ガス導入管4.!:原料
酸化剤ガス導入管9が配置されている燃焼室+8の左下
方0)空間は、ポーラスな輻射促進体19を充填り1両
原料ガスの予熱(室温〜1000℃)を引IJ能にLで
いる。発電装置がl]立運転するために絶対必要となる
原料ガス予熱は、発電に使用後の残7を燃料排ガス7と
残17酸化剤ガス12の夫々の一部を燃焼させ、その燃
焼熱を輻射促進体19の働きで有効に各原料ガスに同板
することで行−5n 第3図、第5図に示すように、残7T燃利Joltガス
II′lf5ε残7を酸化剤排ガスWIOには、各残7
rガスの一部20.21を燃焼室18内に゛C燃焼さず
たぬにノズル22.23を設け、燃焼の強きは各残存ガ
スの排出側や弁6.11を調整することで行・)。前記
、ノズル22、23から燃焼室18に注入された各残7
j′!ガスは、青火燃焼後、Am燃焼ガス24となり、
ポーラス輻射促進体19と名、導入%”4 +  9及
び導入ガス3,8を加熱し、熱を失って燃焼排ガス25
色な・ン゛c糸外に排出される。
Furthermore, in the conventional technology, the non-oxidizing atmosphere chamber 15 and the partition wall 1
7 is provided with a combustion chamber 18 separated by C. As shown in FIGS. 3 and 5, this combustion chamber +8 includes a raw material fuel gas introduction pipe 4 and a residual oxidant gas introduction pipe 10 before residual oxidant gas discharge. It's all arranged. Furthermore, as shown in FIG. 5, the raw material fuel gas introduction pipe 4. ! : The lower left space of the combustion chamber +8 where the raw material oxidizing gas inlet pipe 9 is arranged is filled with a porous radiation promoter 19 to preheat the raw material gas (room temperature to 1000°C) and achieve IJ performance. I'm L. Preheating of the raw material gas, which is absolutely necessary for the power generation device to operate in a normal state, involves burning a portion of each of the fuel exhaust gas 7 and the remaining oxidizing gas 12 after using it for power generation, and converting the heat of combustion into As shown in Figures 3 and 5, the remaining 7T fuel Jolt gas II'lf5ε is transferred to the oxidizer exhaust gas WIO by effectively distributing it to each raw material gas through the action of the radiation promoter 19. is each remaining 7
A part of the r gas 20.21 is combusted in the combustion chamber 18 by providing a nozzle 22.23, and the intensity of combustion can be adjusted by adjusting the discharge side of each residual gas or the valve 6.11.・). Each residue 7 injected into the combustion chamber 18 from the nozzles 22 and 23
j′! After the gas burns with blue flame, it becomes Am combustion gas 24,
It is called a porous radiation promoter 19, heats the introduced %"4 + 9 and the introduced gases 3 and 8, loses heat, and becomes a combustion exhaust gas 25.
The colored yarn is discharged outside.

輻射促進体19は、高温燃焼ガス24の熱J。ネルギを
輻射にて各導入責4,9にh゛効に転える働きをする。
The radiation promoter 19 absorbs the heat J of the high temperature combustion gas 24. It works to effectively transfer the energy to each introduction responsibility 4 and 9 by radiation.

次に、第6図を説明する。Next, FIG. 6 will be explained.

図中の31は、YSZ (イツトリア支足かジルコニア
)で構成きれた固体電解質の薄膜(膜厚50〜200p
m)であり、YSZ0ファイバ(直径3〜6μm、長き
1〜2 as) 32をI O=90!11%混入した
スラリーよりドクターブレド法やフールドブレス法にて
緻密に成型するここにより得られる。33は、酸素側電
極膜(LaMnO* LaMgCr0+LaCaCr0
.) 、34は燃す1側電極膜(Nip)で各々ポーラ
スな膜(1ソ゛さI[lO〜2[10B rn )を固
体電解iε同様ドクターブレード法やコールドプレス法
で威梨する。ポーラスな膜は、各々の材質のスラリーに
焼成時消滅する物質(ナフタリンなど)を10〜50重
量%混入することにより行う。35はインタコネクター
であり、L a M g Cr Os、LaCaCr0
.のスラリーに同一材料(LaMgCrO,、LaCa
Cr0*)、あるいはYS Z、AfI20i等のイン
クコネクタ強化ファイバー3B(直径3〜6 μm 、
長さ1〜21111)を10〜70重n%混入11、上
記固体電解質、、1;同一の製法で緻密に成型する。イ
ンクコネクタ〜351:は、酸化ガス(02あるいは空
気)通路37色燃料ガス(H,、CD)通路38を設け
、全厚さ2〜10mai、、j度とする。
31 in the figure is a solid electrolyte thin film (thickness 50 to 200p) composed of YSZ (yttoria or zirconia).
m), which is obtained by compactly molding YSZ0 fibers (diameter 3 to 6 μm, length 1 to 2 as) from a slurry containing IO=90 to 11% by a doctor blade method or a fold breath method. 33 is an oxygen side electrode film (LaMnO*LaMgCr0+LaCaCr0
.. ), 34 is the first electrode film (Nip) to be burnt, and each porous film (1 solenoid I[lO to 2[10 Brn]) is heated by the doctor blade method or cold press method like the solid electrolyte iε. A porous film is formed by mixing 10 to 50% by weight of a substance that disappears during firing (naphthalene, etc.) into the slurry of each material. 35 is an interconnector, LaMgCrOs, LaCaCr0
.. The same materials (LaMgCrO, LaCa
Cr0*), or ink connector reinforced fiber 3B (3 to 6 μm in diameter,
10 to 70 wt. The ink connector 351 has an oxidizing gas (02 or air) passage 37 and a color fuel gas (H, CD) passage 38, and has a total thickness of 2 to 10 ma.

次に、第7図を説明する。同図はインクコネクタ 部を
史に軽量と15だ例であり、本例ではインクコネクタ3
5を酸素ガス通路を形成する部分35aと燃11ガス通
路を形成する部分35c1および両ガスを完全に分離す
るための緻密部35bの′3枚の薄膜・薄板が!4′、
乾燥状態(グリーンシード状態)にある時に一体に積淡
し、一体構造にて本乾燥9焼成することで完成する。
Next, FIG. 7 will be explained. The same figure shows an example of an ink connector part that is 15 times lighter in weight, and in this example, the ink connector part is 3.
5, a portion 35a forming an oxygen gas passage, a portion 35c1 forming a combustion gas passage, and a dense portion 35b for completely separating both gases. 4′,
When it is in a dry state (green seed state), it is laminated in one piece, and the integrated structure is completed by main drying and firing for 9 times.

[発明が解決しようとする課題] しかしながら、従来技術において、固体電解質燃料電池
(SOFC)は全ての材料がセラミックス製であるため
、大型の電池の製作が困難となる。
[Problems to be Solved by the Invention] However, in the conventional technology, all materials in solid electrolyte fuel cells (SOFCs) are made of ceramics, making it difficult to manufacture large-sized batteries.

従って、大容量発電所を建設する場合、従来の発電装置
では、第3図に示す装置を多数台並べる必要があるが、
各々の5OFCに燃料ガスを供給する必鰐がある従来装
置では、配管が複雑化し、価格的にも高価となり、大容
量化の実用化は困難である。
Therefore, when constructing a large-capacity power plant, with conventional power generation equipment, it is necessary to line up a large number of equipment as shown in Figure 3.
In the conventional device, which has to supply fuel gas to each 5OFC, the piping is complicated and the price is high, making it difficult to put it into practical use with a large capacity.

また、従来の発電装置では、5OFCの長さ(15X 
15X 15es(711)”1法で約1kW/個程度
)が本十分なため、燃料ガスの利用中が十分でなく、発
電効率を^くできがたい。
In addition, in conventional power generation equipment, the length of 5OFC (15X
15X 15es (711)" (approximately 1 kW/unit) is sufficient, so the amount of fuel gas used is not sufficient and it is difficult to increase power generation efficiency.

本発明はL記°1f情を考慮しでなされたもので、構造
が簡単で大容量化を実現できるεともに、発電効率が尚
い固体電解質燃料電池の発電装置を堤供するこLを目的
2二する。
The present invention was made in consideration of the following circumstances, and aims to provide a solid electrolyte fuel cell power generation device that has a simple structure and a large capacity, and has low power generation efficiency. Two.

[課題をH決するための手段] 本発明は、水平な燃料ガスダクト内に複数ty> Oi
板梨型固体電解質燃料電池配置し2、原料燃料ガスは前
記電池内に水平にかつ原料酸化剤ガスは前記電池の上部
より下部に電池内に乗直に流下させ、原料酸化剤ガス側
の入[」と出口に外部マニホールドとガスケットシール
を設け、萌記各電池に対し残存燃料ガスの再循環を行な
わせる再循環ブロアとIN循環ガスダクトを設け、残7
F酸化剤ダクト内に残存酸化剤ガスと燃料排ガスを燃焼
するアフターバーナを設け、電流取出し部を燃料ガス中
に設jjたことを特徴とする固体電解質燃料電池の発電
装置゛(・ある。
[Means for resolving the problem] The present invention provides a plurality of ty > Oi in a horizontal fuel gas duct.
The Itanashi-type solid electrolyte fuel cell is arranged 2, and the raw material fuel gas flows horizontally into the cell, and the raw material oxidizing gas flows vertically into the cell from the upper part to the lower part of the cell, and the raw material oxidizing gas side is An external manifold and gasket seal are installed at the outlet, and a recirculation blower and IN circulation gas duct are installed to recirculate the remaining fuel gas to each Moeki battery.
A power generation device using a solid electrolyte fuel cell, characterized in that an afterburner for burning residual oxidant gas and fuel exhaust gas is provided in an F oxidizer duct, and a current extraction section is provided in the fuel gas.

[作用] 本発明によれば、 ■複数の燃料ガス配管等を01−の燃料ガスダクトに置
換すること、及び空気出口配管を空気祷ガス外に置換す
ることにより、装置を単純化、大容量化することができ
る。
[Function] According to the present invention, the device can be simplified and increased in capacity by replacing multiple fuel gas pipes with 01- fuel gas ducts and replacing air outlet pipes with air other than gas. can do.

■残り燃料ガスを再循環きせることにより、燃料利用中
を高めるεともに、電池の冷却を行うことができる。
(2) By recirculating the remaining fuel gas, it is possible to increase fuel utilization and to cool the battery.

■空気人口、出目用外部マニホールドを組直方向に設置
することにより、荷重によって高温ガスケットに面圧を
掛1ノるこ表ができ、もっ゛C品温空気(酸化剤ガス)
の漏洩を肋止することができる。
■ By installing the external manifold for air population and appearance in the vertical direction, surface pressure is applied to the high temperature gasket by the load, making it possible to create a single loop, increasing
can prevent leakage.

■燃料ガスダクト内に電池本体を設置するここにより、
燃t1ガスの多少の漏洩を許容(厳重な燃料ガスシール
は不要)できる+g=にできる。
■By installing the battery body inside the fuel gas duct,
It is possible to set +g= to allow some leakage of the fuel t1 gas (no need for a strict fuel gas seal).

■アフターパーーー)を設けることにより、燃料を完全
に燃焼させ、後胤機器において熱回収できる。
■ By providing an after-sales system, the fuel can be completely combusted and heat can be recovered in the downstream equipment.

[実施例] 以下、本発明の−・実施例を第1図及び第2図を参照し
て説明する。なお、従来色間部材は同ね号をf−1シて
説明を省略する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2. It should be noted that the conventional color intercolor members are designated by the same number f-1 and the explanation thereof will be omitted.

図中の51は原木、1燃料ガスダクトを示り1、このガ
スダクト51内に既述した複数の甲板型固体電解質燃料
電池1が設置されている。前記原料燃料ガスダクト51
には、残在燃料ガス再循環ブロア52が連通きれCいる
。この1」循環ブロア52には、414循環ガスダクト
53が連通きれ、前記再循環ブロア52からの再循環ガ
ス54が再循環ガスダクト53を経て燃料電池1の上流
側の吹出孔より再循環吹田がス55とし、て吹込まれる
ようになっている。前記ガスダクト51の下部には、原
料酸化剤ガス8が流れる残存酸化剤ガスダクト56が設
けられている。なお、図中の57は高温ガスケット、5
8は残在酸化剤ダクト5G内に設けられて残存酸化剤ガ
ス12と燃料排ガス25を燃焼させるアフタバーナノズ
ルである。
Reference numeral 51 in the figure indicates log wood and 1 fuel gas duct 1, in which the plurality of deck-type solid electrolyte fuel cells 1 described above are installed. The raw material fuel gas duct 51
The residual fuel gas recirculation blower 52 is disconnected. A 414 circulation gas duct 53 is communicated with this 1'' circulation blower 52, and the recirculation gas 54 from the recirculation blower 52 passes through the recirculation gas duct 53 and is sent to the recirculation Suita from the blow-off hole on the upstream side of the fuel cell 1. 55, and is designed to be injected. A residual oxidizing gas duct 56 through which the raw material oxidizing gas 8 flows is provided below the gas duct 51 . In addition, 57 in the figure is a high temperature gasket, 5
Reference numeral 8 denotes an afterburner nozzle that is provided in the residual oxidant duct 5G and burns the residual oxidant gas 12 and the fuel exhaust gas 25.

次に、第1図及び第2図図示の発電装置の作用について
説明する。
Next, the operation of the power generator shown in FIGS. 1 and 2 will be explained.

■導入された原料燃料ガス3は、再循環吹出ガス55と
混含1−た後、原料燃料ガスダクト51内に設置された
燃料電池1内に順次流入する。−7j、原料酸化剤ガス
8は、原料酸化剤ガス導入管9、空気入n側外部マニホ
ールド2a、燃料電池1、空気出口側外部マニホールF
2b、残イf:酸化剤ガスダク)5Gと流れ、燃料電池
1にて発電が行なわれ、電流は原料燃料ガスダクト雰囲
気(還元性雰囲気)に設けられた電流集合板13により
取出される。
(2) The introduced raw material fuel gas 3 is mixed with the recirculated blown gas 55 and then sequentially flows into the fuel cell 1 installed in the raw material fuel gas duct 51. -7j, raw material oxidant gas 8 is supplied to raw material oxidant gas inlet pipe 9, air inlet n-side external manifold 2a, fuel cell 1, air outlet side external manifold F
2b and the remainder f: oxidizing agent gas duct) 5G, power is generated in the fuel cell 1, and the current is taken out by the current collecting plate 13 provided in the raw material fuel gas duct atmosphere (reducing atmosphere).

■燃料電池1を通過した後の残り燃料ガス7の大部分は
、アフターバーナノズル58より残存酸化剤ガスダクb
5Bに吹き込まれ、残荷:未利用燃料を燃焼することで
高温燃焼ガス24を発生後流機器へ流れ、熱回収(図示
せず)が行なわれる。
■Most of the remaining fuel gas 7 after passing through the fuel cell 1 is transferred from the afterburner nozzle 58 to the residual oxidant gas duct b.
5B, the residual cargo: unused fuel is combusted to generate high-temperature combustion gas 24, which flows to downstream equipment, where heat recovery (not shown) is performed.

■一方、残存燃焼ガス7の一部は、再循環ブロア52に
て加圧後間循環ガスダクト53を通って各燃料電池1の
蒸留側に設ifられた吹出孔より再循環吹出ガス55.
!:L’U吹込まれ、燃料改質(メタ〉−水素・\改質
)とで燃料電池1の冷却(電池を通過するガス員が原料
ガス4の量と再循環ガス54の和となるlb1燃料電池
の発熱に伴・う温庶」、界鉋を低く押さえるこεが可能
2−なる。〕1を什う。
(2) On the other hand, a part of the remaining combustion gas 7 is pressurized by the recirculation blower 52, passes through the intercirculation gas duct 53, and is then passed through the recirculation blowout gas 55.
! :L'U is injected and the fuel cell 1 is cooled by fuel reforming (meta>-hydrogen/reforming) (the gas volume passing through the cell is the sum of the amount of raw material gas 4 and the recirculation gas 54 lb1) It is possible to keep the temperature low due to the heat generated by the fuel cell.

しかして、上記実施例に係る発電装置によれば、以下に
述べる効果4白゛する。即ち、 (+)複数の燃料ガス配管等を単〜の燃料ガスダクト5
1に置換するこL、及び空気11目配管を空気排ガス外
に置換するこたにより、装置を単純化、大容量化するこ
とができる。
According to the power generating apparatus according to the above embodiment, the following four effects can be achieved. That is, (+) multiple fuel gas pipes, etc. are connected to a single fuel gas duct 5
1 and replacing the 11th air pipe with the air exhaust gas, it is possible to simplify the device and increase its capacity.

り2)残7r燃利ガスを再循環きセるこεにより、燃料
利用率を高めるとたしに、燃料電池の玲11を行うここ
ができる。
2) By recirculating the remaining 7r fuel gas, it is possible to improve the fuel utilization rate and improve the efficiency of the fuel cell.

(3)空気入n、+157用外部マニホールドを@直方
向に設置することにより、荷重によって高温ガスケ゛ソ
ト33に由1)土を8)けることができ、も−、て品温
空気(酸化剤ガス)の漏洩を防止することができる。
(3) By installing the external manifold for the air inlet n, +157 in the @ vertical direction, it is possible to remove the high temperature gas (1) soil due to the high temperature gas ) can be prevented from leaking.

(4〉原料燃料ガスデク1−51内に電池本体を設置す
ることにより、燃料)Iス巾多少σ)漏洩を’:;J:
 g(厳密な燃料ガスシールは不要)できる横這にでき
る。
(4> By installing the battery body in the raw material fuel gas deck 1-51, the fuel) I width (σ) can be prevented from leaking to some extent ':;J:
g (no strict fuel gas seal required).

(5)アフターバーナノズル58を設(:!るごとによ
り、燃料を完全に燃焼さ14゛、後流機器において熱回
収できる。
(5) By installing an afterburner nozzle 58, the fuel can be completely burned and heat can be recovered in downstream equipment.

(6)電流34!、A板13を原料燃利ガスダクト雰囲
気(還元性雰囲気)におくことにより、金層製電流集合
板の酸化を防止できる。従って、大8足外部マニホール
ド平板型5OFC平板型発屯所の製作が一1i1能にな
った。
(6) Current 34! By placing the A plate 13 in a raw material fuel gas duct atmosphere (reducing atmosphere), oxidation of the gold-layer current collecting plate can be prevented. Therefore, the production of a large 8-leg external manifold flat plate type 5OFC flat plate type station became 11i1 possible.

「発明C〕効果] 以上詳述した如(本発明によれば、横這が筒中で大容量
化を実現できるとともに、発電動帯が晶く、発電プラン
ト等に利用できる固体電解質燃料電池の発電装置を提供
できる。
[Invention C] Effect] As detailed above (according to the present invention, it is possible to realize a large capacity in a horizontal cylinder, and the power generation band is crystallized, so that the solid electrolyte fuel cell can be used for power generation plants, etc.). equipment can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の−・実施例に係る固体電解質燃隼1電
池の発電装置の説明図、第2図は第1図の平面図、恥3
図は従来の外部マニホールド平板型固体電解質燃料電池
の発電装置の断面図、第4図は第3図のA−A矢視図、
第5図は第3図のB−B矢視図、第6図は従来の直交流
型固体電解質燃料電池の鳥敢図、第7図は従来のその他
の直交流型固体電解質燃料電池の鳥敢図である。 〕・・・固固体電解質燃料電池2a、 2b、 2C,
2d・・・外部マニホールド、3・・・原料燃料ガス、
4・−・IJ:1料燃料ガス導入管、5・・・残存燃料
ガス排出前、6・・・残存燃料ガス排出調整弁、7・・
・残存燃料ガス、8・・・原料酸化剤ガス、0・・・原
料酸化剤ガス導入着、IO・・・残存酸化剤ガス排出前
、目・・・残存酸化剤ガス紡出調整弁、12・・・残存
酸化剤ガス、13・・・電流集会板、14・・・リー 
ド線、15・・・非酸化性雰囲気を、16a 、 f6
b・・・7r醗化性ガス、17・・・隔壁、18・・・
燃焼室、19・・・ポーラスな輻射促進体、20・・・
燃焼用残4i燃料ガス、21・・・燃焼残(l酸化剤ガ
ス、22・・・燃焼ノズル、23・・・酸化剤ノズル、
24・・・尚温燃焼ガス、25・・・燃焼排ガス、26
・・・断熱材、51・・・原料燃料ガスダクト、52・
・・残作燃料ガス再循環ブロア、53・・・再循環ガス
ダクト、54・・・+ii循環ガス、55・・・再循環
吹出ガス、5C・・・残7f酸化剤ガスダクI・、57
・・・高温ガスゲット、58・・・アフターバーナノズ
ル。
Fig. 1 is an explanatory diagram of a power generation device of a solid electrolyte fuel 1 battery according to an embodiment of the present invention, and Fig. 2 is a plan view of Fig. 1, and Embodiment 3.
The figure is a cross-sectional view of a conventional external manifold flat plate solid electrolyte fuel cell power generation device, and Figure 4 is a view taken along the line A-A in Figure 3.
Figure 5 is a view taken along the line B-B in Figure 3, Figure 6 is a diagram of a conventional cross-flow solid oxide fuel cell, and Figure 7 is a diagram of another conventional cross-flow solid oxide fuel cell. This is a bold plan. ]...Solid solid electrolyte fuel cells 2a, 2b, 2C,
2d...external manifold, 3...raw material fuel gas,
4... IJ: 1 fuel gas introduction pipe, 5... before remaining fuel gas discharge, 6... remaining fuel gas discharge adjustment valve, 7...
-Residual fuel gas, 8... Raw material oxidizing gas, 0... Raw material oxidizing gas introduction, IO... Before residual oxidizing gas discharge, Item... Residual oxidizing gas output adjustment valve, 12 ...Residual oxidant gas, 13...Current gathering board, 14...Lee
wire, 15...non-oxidizing atmosphere, 16a, f6
b...7r oxidizing gas, 17...partition wall, 18...
Combustion chamber, 19... Porous radiation promoter, 20...
Combustion residue 4i fuel gas, 21... combustion residue (l oxidant gas, 22... combustion nozzle, 23... oxidizer nozzle,
24...Still temperature combustion gas, 25...Combustion exhaust gas, 26
... Insulation material, 51 ... Raw material fuel gas duct, 52.
... Remaining fuel gas recirculation blower, 53 ... Recirculation gas duct, 54 ... +ii circulation gas, 55 ... Recirculation blowing gas, 5C ... Remaining 7f oxidizer gas duct I, 57
...High temperature gas get, 58...Afterburner nozzle.

Claims (1)

【特許請求の範囲】[Claims] 水平な燃料ガスダクト内に複数の平板型固体電解質燃料
電池を配置し、原料燃料ガスは前記電池内に水平にかつ
原料酸化剤ガスは前記電池の上部より下部に電池内に垂
直に流下させ、原料酸化剤ガス気側の入口と出口に外部
マニーホルドとガスケットシールを設け、前記各電池に
対し残存燃料ガスの再循環を行なわせる再循環ブロアと
再循環ガスダクトを設け、残存酸化剤ダクト内に残存酸
化剤ガスと燃料排ガスを燃焼するアフターバーナを設け
、電流取出し部を燃料ガス中に設けたことを特徴とする
固体電解質燃料電池の発電装置。
A plurality of flat solid electrolyte fuel cells are arranged in a horizontal fuel gas duct, and the raw material fuel gas flows horizontally into the cells, and the raw material oxidizing gas flows vertically into the cells from the top to the bottom of the cells. External manifolds and gasket seals are provided at the inlet and outlet of the oxidant gas side, and a recirculation blower and a recirculation gas duct are provided to recirculate the remaining fuel gas to each of the cells, and the remaining oxidizer is removed from the remaining oxidizer duct. A power generation device using a solid electrolyte fuel cell, characterized in that an afterburner is provided to burn a chemical gas and a fuel exhaust gas, and a current extraction portion is provided in the fuel gas.
JP2061679A 1990-03-13 1990-03-13 Power generating device of solid electrolyte fuel cell Pending JPH03263766A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2061679A JPH03263766A (en) 1990-03-13 1990-03-13 Power generating device of solid electrolyte fuel cell
DE69103455T DE69103455T2 (en) 1990-03-13 1991-03-08 Energy generation system with flat fuel cells made of solid electrolytes.
EP91103538A EP0450336B1 (en) 1990-03-13 1991-03-08 Power generation system with flat fuel cells of solid electrolyte
AU72792/91A AU637203B2 (en) 1990-03-13 1991-03-08 Power generation system with flat fuel cells of solid electrolyte
US07/669,019 US5198312A (en) 1990-03-13 1991-03-13 Power generation system with flat fuel cells of solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2061679A JPH03263766A (en) 1990-03-13 1990-03-13 Power generating device of solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH03263766A true JPH03263766A (en) 1991-11-25

Family

ID=13178190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2061679A Pending JPH03263766A (en) 1990-03-13 1990-03-13 Power generating device of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH03263766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006072652A2 (en) * 2005-01-03 2006-07-13 Wärtsilä Finland Oy Arrangement and method in a fuel cell apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006072652A2 (en) * 2005-01-03 2006-07-13 Wärtsilä Finland Oy Arrangement and method in a fuel cell apparatus
WO2006072652A3 (en) * 2005-01-03 2007-03-29 Waertsilae Finland Oy Arrangement and method in a fuel cell apparatus

Similar Documents

Publication Publication Date Title
US7410713B2 (en) Integrated fuel cell hybrid power plant with re-circulated air and fuel flow
JP2528987B2 (en) Solid oxide fuel cell
WO1997028573A1 (en) Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant
TWI438957B (en) Combustion reformer for fuel cell power generating system
CA2165085C (en) High-temperature fuel cell system
JPS6014768A (en) Solid electrolyte fuel battery generating apparatus
JP5871945B2 (en) Solid oxide fuel cell system and solid oxide fuel cell system operating method
CN109964351B (en) Integrated fuel cell block with modified fuel cell cycle for integrated reforming fuel cell
KR20190077051A (en) Improved fuel cell cycle for block-fuel-cell reforming
CN114709447B (en) Tubular solid oxide fuel cell reaction hot zone
KR102154577B1 (en) Fuel cell systems with in-block reforming
JPH03263766A (en) Power generating device of solid electrolyte fuel cell
TW201539854A (en) Apparatus of power generation using dense solid oxide fuel cells
JPH1167258A (en) Fuel cell
GB2616589A (en) Fuel cell systems and method
DE112021001332T5 (en) Fuel cell system and method for starting the same
JP2000243423A (en) Fuel cell purging method
JP2528986B2 (en) Solid oxide fuel cell
JPS59149664A (en) Fuel-cell system
KR20190046706A (en) Fuel cell systems with in-block reforming
US10333160B2 (en) Integrated fuel cell block with a revised fuel cell cycle for in block reforming fuel cells
JPH0635373Y2 (en) Fuel cell device
JPH02234362A (en) Electricity generating apparatus of solid electrolyte fuel cell
JP2882019B2 (en) Fuel cell
CN115224318A (en) SOFC power generation system