JPH03263586A - Bulkhead plate for indirect heating type rotary furnace - Google Patents

Bulkhead plate for indirect heating type rotary furnace

Info

Publication number
JPH03263586A
JPH03263586A JP6223590A JP6223590A JPH03263586A JP H03263586 A JPH03263586 A JP H03263586A JP 6223590 A JP6223590 A JP 6223590A JP 6223590 A JP6223590 A JP 6223590A JP H03263586 A JPH03263586 A JP H03263586A
Authority
JP
Japan
Prior art keywords
reaction chamber
combustion chamber
silicon carbide
partition plate
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6223590A
Other languages
Japanese (ja)
Inventor
Shiro Hayashi
四郎 林
Tadashi Uemura
植村 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIYUUNAN DENKO KK
TOCERA ENG CO Ltd
Resonac Holdings Corp
Original Assignee
SHIYUUNAN DENKO KK
TOCERA ENG CO Ltd
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIYUUNAN DENKO KK, TOCERA ENG CO Ltd, Showa Denko KK filed Critical SHIYUUNAN DENKO KK
Priority to JP6223590A priority Critical patent/JPH03263586A/en
Publication of JPH03263586A publication Critical patent/JPH03263586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

PURPOSE:To prevent damage upon reducing the pellet of chrome ore containing carbon reducing agent and elongate the life of the title furnace by a method wherein bulkhead plates, made of carbon, zirconia or the like, are provided at the side of a reaction chamber while the bulkhead plates, made of silicon carbide or the like, are provided at the side of a combustion chamber. CONSTITUTION:Ceramics bulkheads are arranged in the shape of a hexahedron to constitute a reaction chamber 10 while carbon bulkhead plates 17 are used at the side of the reaction chamber 16 and silicon carbide bulkhead plates 18 are used at the side of a combustion chamber 3. Supporting bricks 14 are arranged at the circumferential ends of respective surfaces of the carbon bulkheads 17 and the silicon carbide bulkheads 18 while steps 20 are provided at the top 19 of the supporting bricks 14 and the circumferential ends of the bulkhead plates 17, 18 are fitted into the steps. The mating surfaces between the bulkhead plates 17, 18 are bonded by silicon carbide mortar and the deterioration of heat transfer is prevented by air gaps between the mating surfaces. According to this constitution, an article 12 to be treated is heated and reduced indirectly under a condition that the article 12 is intercepted from the combustion chamber 3 while being passed through a furnace hearth 16 whereby products, of which the reducing rate of 95% or more of the chrome ore is maintained, can be obtained stably for a long period of time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は間接加熱式回転炉の反応室と燃焼室とを遮断す
る隔壁板の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a partition plate that isolates a reaction chamber and a combustion chamber of an indirectly heated rotary furnace.

〔従来の技術〕[Conventional technology]

一般に回転炉は、粉状あるいは粒状の被処理物を乾燥、
焼結、合成、または還元などの熱処理を行なうために用
いられている。加熱のための熱源は安価な固体、液体あ
るいは気体燃料を使用し、バーナーよりの燃焼ガスによ
り被焼成物を直接あるいは間接的に加熱している。
Generally, rotary furnaces dry powder or granular materials.
It is used to perform heat treatments such as sintering, synthesis, or reduction. An inexpensive solid, liquid, or gaseous fuel is used as a heat source for heating, and the object to be fired is directly or indirectly heated by combustion gas from a burner.

被焼成物を燃焼ガスによって直接加熱する方法を内熱式
と呼び、大気雰囲気下で加熱し成品を得る方法である。
A method in which the object to be fired is directly heated with combustion gas is called an internal heating method, and is a method in which a finished product is obtained by heating in an atmospheric atmosphere.

燃焼エネルギーをそのまま利用するので熱効率は良い。Thermal efficiency is good because combustion energy is used as is.

つぎに被焼成物と燃焼ガスを直接接触させることなく隔
壁を介して間接的に加熱する方法を外熱式と呼び、被焼
成物を燃焼ガス中の酸素、二酸化炭素などと反応させな
いで加熱する方法である。
Next, a method in which the object to be fired and the combustion gas are heated indirectly through a partition wall without direct contact is called the external heating method, which heats the object to be fired without causing it to react with oxygen, carbon dioxide, etc. in the combustion gas. It's a method.

たとえば鉱石を加熱還元する場合、鉱石を加熱するため
の高温燃焼ガスから隔離し一酸化炭素ガスなどの還元雰
囲気下で加熱する方法が用いられている。
For example, when reducing ores by heating, a method is used in which the ores are isolated from high-temperature combustion gas for heating and heated in a reducing atmosphere such as carbon monoxide gas.

一般にこのような回転炉は円筒形炉体を水平より僅かに
勾配をつけて横にした状態で、円筒形炉体を連続的に同
一方向へゆっくり回転し、炉内へ被処理物を投入通過さ
せながら加熱して使用されている。
Generally, in such a rotary furnace, the cylindrical furnace body is placed on its side at a slight slope from horizontal, and the cylindrical furnace body is slowly rotated continuously in the same direction, and the material to be processed is passed through the furnace. It is used by heating it while heating it.

外熱式構造の場合、燃焼ガスと被焼成物を隔離する隔壁
は、熱処理温度が約800℃以下の場合には耐熱鋼を使
用することができるため、長尺、長径の一体円筒を得る
ことができ、この耐熱鋼円筒の外側に固定された加熱室
を設け、耐熱鋼円筒炉体のみを回転させながら熱処理す
る構造が多く用いられている。
In the case of an external heating type structure, heat-resistant steel can be used for the partition wall that separates the combustion gas and the object to be fired if the heat treatment temperature is about 800°C or less, so it is possible to obtain a long, long-diameter integral cylinder. A structure in which a heating chamber fixed to the outside of this heat-resistant steel cylinder is provided and heat treatment is performed while only the heat-resistant steel cylindrical furnace body is rotated is often used.

熱処理温度が約800℃以上で耐熱鋼製隔壁が使用でき
ない場合はセラミック製の隔壁を必要とするが、セラミ
ック製の隔壁は長尺、長径の円筒形を単体で得ることは
困難である。このため、約800℃以上の高温での熱処
理を要求される外熱式回転炉は、構造として本発明者は
先にたとえば第2図、第3図のごとき構造を提案した(
特開昭64−63781)。すなわち、円筒形鉄皮1の
内側に、内張耐火物2およびセラミック隔壁11によっ
て構成された燃焼室3を設けた炉体本体4が炉体本体4
の軸線5を基準として、入口6側が出ロア側に対して水
平よりもや〜高くなるように傾斜をつけて駆動装置8と
ともに受ローラ−9上に設置されている。燃焼室3には
バーナーlOがとりつけられており、炉体本体4ととも
にゆっくり回転する。
If the heat treatment temperature is about 800° C. or higher and a heat-resistant steel partition cannot be used, a ceramic partition is required, but it is difficult to obtain a long, long-diameter cylindrical ceramic partition by itself. For this reason, the present inventor previously proposed a structure as shown in Figs. 2 and 3 for an external heating rotary furnace that requires heat treatment at a high temperature of approximately 800°C or higher (
Japanese Patent Publication No. 64-63781). That is, the furnace body 4 is provided with a combustion chamber 3 configured by a lining refractory 2 and a ceramic partition wall 11 inside a cylindrical steel shell 1.
It is installed on a receiving roller 9 together with a drive device 8 with an inclination such that the inlet 6 side is slightly higher than horizontal with respect to the output lower side with respect to the axis 5 of the roller. A burner lO is attached to the combustion chamber 3 and rotates slowly together with the furnace body 4.

バーナー10よりの燃焼ガスは燃焼室3の内張耐火物2
およびセラミック隔壁11を加熱し、被処理物12はセ
ラミック隔壁11を介して間接的に熱処理される。第2
図の例では中心部に反応室を配置し、外周部に燃焼室を
配置しているが反応室と燃焼室を逆に配置したものでも
良い。
The combustion gas from the burner 10 is transferred to the lining refractory 2 of the combustion chamber 3.
Then, the ceramic partition wall 11 is heated, and the object to be treated 12 is indirectly heat-treated via the ceramic partition wall 11 . Second
In the example shown in the figure, the reaction chamber is arranged in the center and the combustion chamber is arranged in the outer periphery, but the reaction chamber and the combustion chamber may be arranged oppositely.

つづいて、炉体本体4の内張耐火物2およびセラミック
隔壁11による構造を一例で説明すればつぎのとおりで
ある。すなわち第2図において円筒形鉄皮1の内側に耐
火れんが13を内張すしであるが、耐火れんが13の高
さは一様でなく変化し、適当な間隔をおいて支持耐火れ
んが14が配置されている。支持耐火れんが14は、セ
ラミック隔壁板15を支えるためのものである。このよ
うに構成することにより、セラミック隔壁板15と支持
耐火れんがI4とで囲まれた多面体からなる反応室1G
が構成され、その外周には耐火れんが13と支持耐火れ
んが14およびセラミック隔壁板15とで囲まれた複数
個所の燃焼室3が構成される。
Next, the structure of the refractory lining 2 and the ceramic partition wall 11 of the furnace main body 4 will be described by way of example. In other words, in Fig. 2, the inside of the cylindrical steel shell 1 is lined with refractory bricks 13, but the height of the refractory bricks 13 is not uniform and varies, and supporting refractory bricks 14 are placed at appropriate intervals. has been done. The supporting refractory bricks 14 are for supporting the ceramic partition plate 15. With this configuration, the reaction chamber 1G is made up of a polyhedron surrounded by the ceramic partition plate 15 and the supporting refractory bricks I4.
A plurality of combustion chambers 3 surrounded by refractory bricks 13, supporting refractory bricks 14, and ceramic partition plates 15 are constructed on the outer periphery.

このような構造とすることにより、反応室16と燃焼室
3およびバーナー10とが一体となって回転しながら反
応室16を通過する被処理物12を間接的に熱処理する
With this structure, the reaction chamber 16, the combustion chamber 3, and the burner 10 rotate together to indirectly heat-treat the object 12 passing through the reaction chamber 16.

[発明が解決しようとする課題〕 第3図に示すごとき構造の800℃以上の高温に耐える
外熱式回転炉においては、従来、セラミック隔壁板15
は主として熱伝導率および熱間強度が大である材質、す
なわち炭火けい素(sjc)質が板状で使用されていた
。しかし、炭素質環元剤を含むクロム鉱石ベレットの還
元に使用した場合に、炭火けい素質のセラミック隔壁板
15は約1450℃の反応室16のバーナーIO近くの
最高温皮部附近においてクロム鉱石やクロム鉱石の還元
により生成したメタルなどと還元反応を起こして徐々に
消耗するために長期間の運転が困難であった。
[Problems to be Solved by the Invention] Conventionally, in an externally heated rotary furnace having a structure as shown in FIG.
A material with high thermal conductivity and high hot strength, ie, charcoal-silicon (SJC) material, was mainly used in the form of a plate. However, when used for the reduction of chromium ore pellets containing a carbonaceous ring agent, the charcoal-silicon ceramic partition plate 15 will reduce the chromium ore in the vicinity of the hottest skin near the burner IO of the reaction chamber 16 at about 1450°C. It was difficult to operate for a long period of time because it gradually wore out due to a reduction reaction with metals produced by reducing chromium ore.

セラミック隔壁板15が破損した場合には反応室16へ
燃焼ガスが流入し、還元雰囲気の維持が不可能となり、
外熱式回転炉の機能は停止する。また炉体構造が複雑で
あるため、炉修期間、費用ともに内熱式回転炉に比較し
て大となる。
If the ceramic partition plate 15 is damaged, combustion gas will flow into the reaction chamber 16, making it impossible to maintain a reducing atmosphere.
The external heating rotary furnace will stop functioning. In addition, since the furnace body structure is complicated, the furnace repair period and cost are both longer than that of an internal heating rotary furnace.

このためセラミック隔壁板15の破損防止による寿命延
長対策が強く望まれている。なおバーナーIO近くの最
高温皮部以外は破損することは希で比較的安定している
For this reason, there is a strong desire for measures to extend the life of the ceramic partition plate 15 by preventing damage to it. It should be noted that parts other than the hottest skin near the burner IO are rarely damaged and are relatively stable.

〔課題を解決するための手段〕 この発明は800℃以上で使用される外熱式回転炉の反
応室16と燃焼室3とを遮断するセラミック隔壁板15
の形状と材質を改良して、炭素質還元剤を含むクロム鉱
石ベレットの還元時の損傷を防止し、寿命を延長させる
ものである。
[Means for Solving the Problems] The present invention provides a ceramic partition plate 15 that isolates a reaction chamber 16 and a combustion chamber 3 of an externally heated rotary furnace used at temperatures of 800° C. or higher.
The shape and material of the chromium ore pellets are improved to prevent damage during reduction of chromium ore pellets containing a carbonaceous reducing agent and extend the life of the chromium ore pellets.

第3図に示す従来の炭化けい素質のセラミック隔壁板1
5の損傷は破損物の状態より、反応室16側の面で著し
く損耗が進み、燃焼室3側の面での損耗は極めて少ない
。反応室16側と燃焼室3側との使用条件を比較すると
表1に示す通りである。
Conventional silicon carbide ceramic partition plate 1 shown in Fig. 3
Regarding the damage to No. 5, the wear on the surface on the reaction chamber 16 side is significantly greater than the state of the damaged object, and the wear on the surface on the combustion chamber 3 side is extremely small. Table 1 shows a comparison of the usage conditions between the reaction chamber 16 side and the combustion chamber 3 side.

表 すなわち、セラミック隔壁板15は反応室16側と燃焼
質3側とでは使用条件が異なっている。炭化けい素質の
セラミック隔壁板15は反応室lB側では、炭素質還元
剤とクロム鉱石ベレットおよび還元生成したメタル等の
被処理物12の存在する高温−酸化炭素雰囲気下で複合
カーバイドの生成が起こり表面の強度が低下し同時に被
処理物12の炉体の回転に伴う移動によって磨耗して損
傷する。燃焼室3側では高温の酸化性燃焼ガス雰囲気下
において表面に酸化皮膜を生成し、これが内部を保護す
るため強度低下を防止し安定している。
In other words, the usage conditions of the ceramic partition plate 15 are different between the reaction chamber 16 side and the combustion material 3 side. On the side of the reaction chamber 1B, the ceramic partition plate 15 made of silicon carbide undergoes the formation of composite carbide in a high-temperature carbon oxide atmosphere in the presence of a carbonaceous reducing agent, a chromium ore pellet, and objects 12 to be treated such as metals produced by reduction. The strength of the surface decreases, and at the same time, the object 12 to be treated is worn and damaged due to movement as the furnace body rotates. On the side of the combustion chamber 3, an oxide film is formed on the surface under a high temperature oxidizing combustion gas atmosphere, and this protects the inside, thereby preventing a decrease in strength and making it stable.

この発明は第1図に示すごとく、反応室16側と燃焼室
3側とで隔壁板の材質を夫々の使用条件に適合させるよ
うにした。すなわち表1に示す使用条件に対して反応室
16側と燃焼室3側に共通して要求される品質特性は1
550℃以上での耐熱性、構造上から耐熱間強度および
熱処理効率から高熱伝導性があげられる。これに加えて
反応室I6側では耐還元雰囲気性と耐磨耗性が、一方、
燃焼室3側では対酸化性、耐急熱急冷抵抗性が要求され
る。
In this invention, as shown in FIG. 1, the materials of the partition plates on the reaction chamber 16 side and on the combustion chamber 3 side are adapted to suit the respective usage conditions. In other words, the quality characteristics commonly required for the reaction chamber 16 side and the combustion chamber 3 side under the usage conditions shown in Table 1 are 1.
It has heat resistance at temperatures above 550°C, structural strength during heat resistance, and high thermal conductivity due to heat treatment efficiency. In addition, on the reaction chamber I6 side, reducing atmosphere resistance and abrasion resistance are
On the combustion chamber 3 side, resistance to oxidation and resistance to rapid heating and rapid cooling are required.

このため隔壁板を2層形状とした。その材質は反応室l
B側は高温還元雰囲気に安全で熱間強度、熱伝導率が高
く、磨耗強度もあるカーボン質ジルコニア質、電融アル
ミナ質等の材質の隔壁板17とした。つぎに燃焼室3側
には従来と同材質の高温燃焼ガス雰囲気に安定で熱間強
度、熱伝導率の高い炭化けい素質又は電融アルミナ質の
隔壁板18とした。
For this reason, the partition plate was made into a two-layered shape. The material is the reaction chamber l
On the B side, the partition plate 17 is made of a material such as carbonaceous zirconia or fused alumina, which is safe in a high-temperature reducing atmosphere, has high hot strength, high thermal conductivity, and has high abrasion resistance. Next, on the combustion chamber 3 side, a partition plate 18 made of silicon carbide or fused alumina, which is stable in a high-temperature combustion gas atmosphere and has high hot strength and thermal conductivity, is made of the same material as the conventional one.

反応側の材質選択は処理する物質によって適宜選択すれ
ば良い。燃焼室側は炭火ケイ素、電融アルミナが燃焼ガ
スに対して強い抵抗力を有するが、炭化ケイ素の方がよ
り優れている。電融アルミナは反応室側用としても燃焼
室側としてもある程度の抵抗力を有する。
The material on the reaction side may be selected as appropriate depending on the substance to be treated. On the combustion chamber side, charcoal-fired silicon and fused alumina have strong resistance against combustion gas, but silicon carbide is better. Fused alumina has a certain degree of resistance both on the reaction chamber side and on the combustion chamber side.

〔作  用〕[For production]

以上説明したごとく、従来炭化けい素質の一層板であっ
たセラミック隔壁板15を、反応室IBにおいて高温下
で被処理物12によって生ずる還元雰囲気および燃焼室
3においては燃料の燃焼によって生ずる高温燃焼ガス雰
囲気に耐える材質のセラミック隔壁板、すなわちカーボ
ン質隔壁板17と炭化けい素質隔壁板18の二層隔壁板
として夫々の使用条件に対応させることが可能となり、
隔壁板の寿命を従来よりも延長させるものである。
As explained above, the ceramic partition plate 15, which has conventionally been a single-layer plate made of silicon carbide, is exposed to the reducing atmosphere generated by the workpiece 12 at high temperature in the reaction chamber IB and the high-temperature combustion gas generated by combustion of fuel in the combustion chamber 3. As a ceramic partition plate made of a material that can withstand the atmosphere, that is, a two-layer partition plate consisting of a carbon partition plate 17 and a silicon carbide partition plate 18, it is possible to correspond to the respective usage conditions,
This extends the life of the partition plate compared to the conventional one.

〔実、施 例〕〔Example〕

外径2 、5 m s全長10mの炉体に燃焼室6を備
えた燃処理温度1450℃の外熱式回転炉の反応室1B
の熱処理物出ロア位置より入口6へ向っての約2m部分
、すなわち、最高温度部分で従来のセラミック隔壁板1
5が破損しやすい範囲に、この発明を実施し、好結果を
得ることができた。この部分より入口6方向への残り約
8m範囲については従来の材質、構造のままとした。
Reaction chamber 1B of an external heating rotary furnace with a combustion treatment temperature of 1450°C, which is equipped with a combustion chamber 6 in a furnace body with an outer diameter of 2.5 ms and a total length of 10 m.
The conventional ceramic partition plate 1 is located in the approximately 2 m section from the lower position of the heat-treated material outlet toward the inlet 6, that is, in the highest temperature section.
The present invention was applied to a range where 5 is easily damaged, and good results were obtained. The remaining approximately 8m area from this part in the 6 directions of the entrance remained the same as the conventional materials and structure.

この発明を実施した構造は第1図に示すごとく反応室1
6を構成するためのセラミック隔壁は六面体とし、反応
室16側にカーボン質隔壁板17および燃焼室3側に炭
火けい素質隔壁板18を使用した。その形状は板状で長
さ寸法的500mm、幅寸法約500關、厚さ寸法はカ
ーボン質40mm、炭化けい素質60II11とした。
The structure in which this invention is implemented is shown in FIG.
The ceramic partition wall 6 was made into a hexahedron, and a carbonaceous partition plate 17 was used on the reaction chamber 16 side, and a carbonaceous silicon partition plate 18 was used on the combustion chamber 3 side. The shape was a plate, and the length was 500 mm, the width was about 500 mm, and the thickness was made of carbon material of 40 mm and silicon carbide material of 60 II 11.

このカーボン質隔壁板17、炭化けい素質隔壁板18(
以下この頃では隔壁板17.18とする)各面の円周方
向端部に支持れんが14を配置し、支持れんが14の頂
部19に段差20を設け、隔壁板17.18の円周方向
端部をはめ込む。この構造は隔壁板17.18の円周方
向端部の傾斜によって、転勤しても隔壁板17.18が
外れることはない。この組立に際して支持れんが14の
段差20部にはセラミックファイバー製薄板を入れて隔
壁板17. isの円周方向への熱膨張を吸収するよう
にした。また隔壁板17.18の重ね合せ面は炭化けい
素質モルタルで接着し、合せ面の空隙による熱伝達の低
下を防止した。さらに軸線方向においては隔壁板17゜
18の連接目地が同位置とならないように配置し、燃焼
室3より燃焼ガスが炉芯室16へ漏洩することを防止し
た。
These carbon partition plates 17, silicon carbide partition plates 18 (
Support bricks 14 are arranged at the circumferential ends of each surface (hereinafter referred to as partition plates 17 and 18), and a step 20 is provided at the top 19 of the support bricks 14, and the circumferential ends of the partition plates 17 and 18 are Insert. Due to the slope of the circumferential ends of the partition plates 17.18, this structure does not allow the partition plates 17.18 to come off even if transferred. During this assembly, ceramic fiber thin plates are inserted into the 20 steps of the support bricks 14 to form the partition wall plate 17. It is designed to absorb the thermal expansion of is in the circumferential direction. Additionally, the overlapping surfaces of the partition plates 17 and 18 were adhered with silicon carbide mortar to prevent a decrease in heat transfer due to voids between the joining surfaces. Further, in the axial direction, the connecting joints of the partition plates 17 and 18 are arranged so as not to be in the same position, thereby preventing combustion gas from leaking from the combustion chamber 3 to the core chamber 16.

この発明を実施したことによって、被処理物12は炉芯
室1B内を通過しながら燃焼室3と遮断された状態で間
接的に加熱還元され、クロム鉱石の還元率95%以上を
維持した成品を長期間安定して得ることができるように
なった。すなわち、従来約3ケ月の稼動でバーナーlO
に近い最高温度部位置で隔壁板15が破損していたが、
この発明を採用した結果6ケ月間以上の寿命とすること
ができた。
By carrying out this invention, the object to be treated 12 is indirectly heated and reduced while passing through the furnace core chamber 1B while being isolated from the combustion chamber 3, resulting in a product that maintains a reduction rate of 95% or more of chromium ore. can now be obtained stably over a long period of time. In other words, conventional burner lO after approximately 3 months of operation.
The partition plate 15 was damaged at the highest temperature point near the
As a result of adopting this invention, it was possible to increase the lifespan to more than 6 months.

またこれに伴ない復旧工事回数も減少し、工事費を節約
することができるとともに生産量を約15%以上増加す
ることができた。
As a result, the number of restoration works was also reduced, making it possible to save on construction costs and increase production by more than 15%.

この発明の実施例では反応室16と燃焼室3を遮断する
ために、カーボン質隔壁板17と炭化けい素質隔壁板1
8を炭化けい素質モルタルで接着するようにしたが、夫
々の隔壁板の表面に耐還元性あるいは耐酸化性の強い材
料を溶射などの方法によってコーチングするか、または
不定形耐火物をライニングするなどの方法で一体物とし
ても良い。また反応室16は六面体以外の多面体として
も良い。
In the embodiment of the present invention, in order to isolate the reaction chamber 16 and the combustion chamber 3, a carbonaceous partition plate 17 and a silicon carbide partition plate 1 are used.
8 was bonded with silicon carbide mortar, but the surface of each partition plate may be coated with a highly reduction-resistant or oxidation-resistant material by thermal spraying, or lined with a monolithic refractory. It is also possible to make it into a single piece using the method described below. Further, the reaction chamber 16 may be a polyhedron other than a hexahedron.

つづいてこの発明の説明では反応室16側にはカーボン
質隔壁板17を使用したが、他に耐還元雰囲気その他に
強いたとえばアルミナ質やジルコン質などの電鋳耐大物
としても使用することもできる。
Next, in the description of this invention, the carbonaceous partition plate 17 was used on the reaction chamber 16 side, but it may also be used as an electroformed bulky material such as alumina or zircon, which is resistant to reducing atmospheres and other conditions. .

また、この発明ではバーナー前より所定の範囲にこの発
明を採用したが炉芯室全長にわたって採用することによ
り、さらに寿命の延長が期待できる。
Further, in this invention, the present invention is applied to a predetermined range from before the burner, but by applying the invention to the entire length of the furnace core chamber, further extension of the life can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による隔壁板構造の一例を示す回転軸
に直角な断面図、 第2図は外熱式回転炉の従来の構造の一例を示す回転軸
に平行な断面図、 第3図は従来の隔壁板構造の一例を示す回転軸に直角な
断面図である。
Fig. 1 is a sectional view perpendicular to the rotation axis showing an example of the partition plate structure according to the present invention, Fig. 2 is a sectional view parallel to the rotation axis showing an example of the conventional structure of an external heating rotary furnace, and Fig. 3 is a cross-sectional view perpendicular to the rotation axis, showing an example of a conventional partition plate structure.

Claims (1)

【特許請求の範囲】 1)互いに遮蔽された反応室と燃焼室とを有する間接加
熱式回転炉において使用する隔壁板であって、反応室側
が耐還元性セラミック質で燃焼室側が耐酸化性セラミッ
ク質である異質セラミックの2層構造からなることを特
徴とする隔壁板。 2)耐還元性セラミックがカーボン、ジルコニア、電融
アルミナのうちの1種であり、酸化性セラミックが炭化
ケイ素であることを特徴とする請求項第1項記載の隔壁
板。 3)耐還元性セラミックがカーボンまたはジルコニアで
あり、耐酸化性セラミックが電融アルミナであることを
特徴とする請求項第1項記載の隔壁板。
[Claims] 1) A partition plate used in an indirect heating rotary furnace having a reaction chamber and a combustion chamber that are shielded from each other, wherein the reaction chamber side is made of reduction-resistant ceramic and the combustion chamber side is made of oxidation-resistant ceramic. A partition plate characterized by having a two-layer structure of a different quality ceramic. 2) The partition plate according to claim 1, wherein the reduction-resistant ceramic is one of carbon, zirconia, and fused alumina, and the oxidizing ceramic is silicon carbide. 3) The partition plate according to claim 1, wherein the reduction-resistant ceramic is carbon or zirconia, and the oxidation-resistant ceramic is fused alumina.
JP6223590A 1990-03-12 1990-03-12 Bulkhead plate for indirect heating type rotary furnace Pending JPH03263586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6223590A JPH03263586A (en) 1990-03-12 1990-03-12 Bulkhead plate for indirect heating type rotary furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6223590A JPH03263586A (en) 1990-03-12 1990-03-12 Bulkhead plate for indirect heating type rotary furnace

Publications (1)

Publication Number Publication Date
JPH03263586A true JPH03263586A (en) 1991-11-25

Family

ID=13194295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6223590A Pending JPH03263586A (en) 1990-03-12 1990-03-12 Bulkhead plate for indirect heating type rotary furnace

Country Status (1)

Country Link
JP (1) JPH03263586A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079284A1 (en) * 2003-03-05 2004-09-16 Refratechnik Holding Gmbh Refractory wall and refractory bricks for building said wall
WO2005001359A1 (en) * 2003-06-30 2005-01-06 Refratechnik Holding Gmbh Fire-resistant brickwork and fire-resistant bricks for producing the brickwork

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079284A1 (en) * 2003-03-05 2004-09-16 Refratechnik Holding Gmbh Refractory wall and refractory bricks for building said wall
WO2005001359A1 (en) * 2003-06-30 2005-01-06 Refratechnik Holding Gmbh Fire-resistant brickwork and fire-resistant bricks for producing the brickwork

Similar Documents

Publication Publication Date Title
JPS6316035B2 (en)
JP3813413B2 (en) Externally heated rotary kiln
JPH03263586A (en) Bulkhead plate for indirect heating type rotary furnace
KR930004795B1 (en) External heating rotary furnace
JP3059713B1 (en) Externally heated rotary kiln
KR102600007B1 (en) Extended constraint assembly and related methods
KR100758993B1 (en) A rotary kiln furnace
JP2881537B2 (en) Rotary kiln
JPH06345555A (en) High-temperature heat exchanger and production thereof
JP3049242B1 (en) Externally heated rotary kiln
JP2001138417A (en) Metal honeycomb body, heat accumulator for heat exchanger, heat accumulation type burner and metal carrier
SU649936A1 (en) Shaft furnace for roasing carbonate raw material
JPH01234529A (en) High-reduction thereof chromium ore powder and its production
SU1229537A1 (en) Continuous roller metal heating furnace
JPH0238907Y2 (en)
SU1158833A1 (en) Rotary furnace
JPS5918318Y2 (en) Rotary kiln for firing powder raw materials
JPH0354390Y2 (en)
JPH01285703A (en) Radiant tube burner
JP3512628B2 (en) Roller for roller heart kiln
JPS635665B2 (en)
SU1245833A1 (en) Tubular rotary furnace for heat treatment
JPH0379984A (en) High heat resistant rotary kiln
JP2024090840A (en) Rotary kiln bottom board assembly
JPH0222632Y2 (en)