【考案の詳細な説明】[Detailed explanation of the idea]
〔産業上の利用分野〕
本考案は、外部の駆動装置により弁開度を変更
して流量を調節する高粘度流体用調節弁に関する
ものである。
〔従来の技術〕
従来、調節弁には種々のものが採用されてお
り、その代表的なものとしては第4図に示すよう
なものがある。これを同図に基づいて説明する
と、同図において、符号1で示すものは段状の上
方開口部1aを有する弁本体で、内部には隔壁2
によつて上下に画成された2つの隔室3,4が形
成されており、これら両隔室3,4は各々供給口
6と吐出口7によつて側方に開口されている。ま
た、この弁本体1の隔壁2には、前記両隔室3,
4に開放しシートリング8が螺合するねじ孔9が
形成されている。10は後述する弁プラグのステ
ム11が進退自在に挿通するボンネツトで、前記
弁本体1に前記上方開口部1aを閉塞するように
固定されている。12はその上端部にフランジ1
2aを有する円筒状のガイド部材で、前記弁本体
1の内部に収納され、かつ前記ボンネツト10に
よつて前記上方開口部1a内に固定されており、
そのフランジ側にはプラグ移動時に前記ボンネツ
ト10と前記ガイド部材12によつて囲繞された
空間部の体積変化を吸収する流体逃がし用の孔1
3が設けられている。14は先端部に流量調節部
14aを有する弁プラグで、前記ガイド部材12
の内部に摺動自在に配設され、かつ前記ステム1
1の先端部に固定されており、外周面には前記シ
ートリング8に着座可能な着座部14bが設けら
れている。また、15および16はボンネツト1
0とガイド部材12間、弁本体1とガイド部材1
2間に介装されたガスケツトである。
このように構成された調節弁においては、プロ
セス流体が弁プラグ14の上昇によつて第4図に
矢印aで示すように供給口6から隔室3、シート
リング8内、隔室4を通つて吐出口7へと導かれ
る。このとき、殆どのプロセス流体は流体逃がし
用の孔13を流過するが、その一部はガイド部材
12と弁プラグ14との間隙gに入り込む。
なお、ガイド部材12と弁プラグ14間に入り
込んだプロセス流体や、或る開度でコントロール
状態にあるプロセス流体は殆ど流動することがな
い。
〔考案が解決しようとする問題点〕
ところで、この種の調節弁においては、弁プラ
グ14が安定した動作を得るために弁プラグ14
とガイド部材12との間隙gができるだけ小さい
寸法に設定されており、このためプロセス流体が
高粘度流体である場合に間隙gに入り込んだプロ
セス流体によつて弁プラグ14の摺動抵抗が大き
くなり(高粘度流体の中には間隙gに滞留した高
粘度流体が重合反応して固化するものもある。)、
円滑なプラグ昇降動作を得ることができないとい
う問題があつた。
そこで、実開昭48−32926号公報(第5図)に
開示された弁のように断面円形状のバルブガイド
と断面多角形状のバルブ心棒を組み合わせた構造
を採用することが考えられるが、バルブがオン・
オフ作動する逆止弁に対して有効であるものの、
弁開度が変化する調節弁に対してはグランド部分
から流体が漏洩し弁として機能しなくなるばかり
か、バルブ心棒が激しく振動してバルブステムが
折損するという不都合があつた。
すなわち、このような弁においては、バルブガ
イドとバルブ心棒とが線接触する構造であるた
め、長期間使用によつてバルブガイドとバルブ心
棒の摺動部分が損傷したり摩耗したりすると、バ
ルブガイドとバルブ心棒間のクリアランスが大き
くなり、それだけ流体によるバルブ心棒の振動が
大きくなるからである。
本考案はこのような事情に鑑みなされたもの
で、プロセス流体が高粘度流体である場合にも円
滑なプラグ昇降動作を得ることができると共に、
長期に亘り調節弁として機能させることができ、
かつバルブステムの折損を防止することができる
高粘度流体用調節弁を提供するものである。
〔問題点を解決するための手段〕
本考案に係る高粘度流体用調節弁は、ガイド部
材と弁プラグとの間の摺動周面に、軸線方向に延
在する3個以上の切欠きを周方向に等間隔を隔て
て形成し、これら切欠き間の円弧部を全周の略1/
2〜1/3の寸法に設定したものである。
〔作用〕
本考案においては、ガイド部材と弁プラグとの
間隙に入り込んだプロセス流体を流動状態に保つ
ことができる。
〔実施例〕
第1図aおよびbは本考案に係る高粘度流体用
調節弁の弁プラグを示す斜視図で、同図以下にお
いて第4図と同一の部材については同一の符号を
付し、詳細な説明は省略する。同図において、符
号21で示すものは軸線方向に延在する3個の切
欠きで、前記弁プラグ14の周面すなわち摺動周
面に周方向に等間隔を隔てて形成されており、こ
れら切欠き21間の円弧部が全周の略1/2〜1/3の
寸法に設定されている。これにより、前記弁プラ
グ14の周面は、円弧状に形成された曲面14c
と、偏平に形成された切欠き面14dとによつて
構成されている。
このように構成された高粘度流体用調節弁にお
いては、ガイド部材12と弁プラグ14との間隙
gに入り込んだプロセス流体を切欠き21によつ
て流動状態に保つことができる。
したがつて、本考案においては、弁プラグ14
とガイド部材12との間に生じる動摩擦係数を小
さくすることができると共に、プロセス流体の重
合反応を抑制することができるから、プロセス流
体が高粘度流体である場合に弁プラグ14の摺動
抵抗を小さくすることができ、また間隙gにプロ
セス流体が滞留することはない。この場合、切欠
き21間の円弧部が全周の略1/2〜1/3の寸法に設
定した場合に最適であることが、数多くの実験に
よつて立証されている。
ここで、次表は、種々の横断面形状をもつ弁プ
ラグA〜C(第2図a,bおよびcに示す)と使
用プロセス流体の適用性を示す表である。
[Industrial Application Field] The present invention relates to a high-viscosity fluid control valve that adjusts the flow rate by changing the valve opening degree using an external drive device. [Prior Art] Various types of control valves have been used in the past, and a typical one is shown in FIG. 4. This will be explained based on the figure. In the figure, what is indicated by the reference numeral 1 is a valve body having a stepped upper opening 1a, and a partition wall 2 inside.
Two compartments 3, 4 are formed which are defined vertically by these compartments, and both compartments 3, 4 are laterally opened by a supply port 6 and a discharge port 7, respectively. Further, the partition wall 2 of the valve body 1 includes both the partition chambers 3,
4 is formed with a screw hole 9 into which the seat ring 8 is screwed. Reference numeral 10 denotes a bonnet into which a stem 11 of a valve plug, which will be described later, is inserted so that it can move forward and backward, and is fixed to the valve body 1 so as to close the upper opening 1a. 12 has a flange 1 at its upper end.
2a, which is housed inside the valve body 1 and fixed within the upper opening 1a by the bonnet 10;
On the flange side thereof, a hole 1 for fluid escape is provided to absorb a change in volume of the space surrounded by the bonnet 10 and the guide member 12 when the plug is moved.
3 is provided. Reference numeral 14 denotes a valve plug having a flow rate adjusting part 14a at its tip, which is connected to the guide member 12.
The stem 1 is slidably disposed inside the stem 1.
1, and a seating portion 14b on the outer peripheral surface of which the seat ring 8 can be seated is provided. Also, 15 and 16 are bonnet 1
0 and the guide member 12, between the valve body 1 and the guide member 1
This is a gasket inserted between the two. In the control valve configured in this manner, the process fluid flows from the supply port 6 through the compartment 3, the seat ring 8, and the compartment 4 as shown by arrow a in FIG. 4 as the valve plug 14 rises. Then, it is guided to the discharge port 7. At this time, most of the process fluid flows through the fluid escape hole 13, but a portion of it enters the gap g between the guide member 12 and the valve plug 14. Note that the process fluid that has entered between the guide member 12 and the valve plug 14 or the process fluid that is in a controlled state at a certain opening degree hardly flows. [Problems to be solved by the invention] By the way, in this type of control valve, in order for the valve plug 14 to operate stably, the valve plug 14 is
The gap g between the guide member 12 and the guide member 12 is set to be as small as possible, and therefore, when the process fluid is a high viscosity fluid, the sliding resistance of the valve plug 14 increases due to the process fluid that has entered the gap g. (Some high-viscosity fluids remain in the gap g and solidify through a polymerization reaction.)
There was a problem in that the plug could not be moved up and down smoothly. Therefore, it is conceivable to adopt a structure that combines a valve guide with a circular cross section and a valve stem with a polygonal cross section, as in the valve disclosed in Japanese Utility Model Application Publication No. 48-32926 (Fig. 5). is on/
Although it is effective for check valves that operate off,
For control valves whose opening degree changes, fluid leaks from the gland and the valve does not function, and the valve stem vibrates violently, causing the valve stem to break. In other words, in such valves, the valve guide and valve stem are in line contact, so if the sliding parts of the valve guide and valve stem become damaged or worn out after long-term use, the valve guide may This is because the clearance between the valve stem and the valve stem increases, and the vibration of the valve stem due to the fluid increases accordingly. The present invention was developed in view of these circumstances, and it is possible to obtain smooth plug lifting and lowering operation even when the process fluid is a high viscosity fluid, and
It can function as a control valve for a long period of time,
The present invention also provides a high viscosity fluid control valve that can prevent breakage of the valve stem. [Means for solving the problem] The high viscosity fluid control valve according to the present invention has three or more notches extending in the axial direction on the sliding surface between the guide member and the valve plug. They are formed at equal intervals in the circumferential direction, and the circular arc portion between these notches is approximately 1/1/2 of the entire circumference.
The dimensions are set to 2 to 1/3. [Operation] In the present invention, the process fluid that has entered the gap between the guide member and the valve plug can be kept in a fluid state. [Example] Figures 1a and 1b are perspective views showing a valve plug of a high-viscosity fluid control valve according to the present invention, and in the following figures, the same members as in Figure 4 are designated by the same reference numerals. Detailed explanation will be omitted. In the same figure, three notches indicated by the reference numeral 21 extend in the axial direction, and are formed on the circumferential surface of the valve plug 14, that is, the sliding circumferential surface, at equal intervals in the circumferential direction. The arc portion between the notches 21 is set to approximately 1/2 to 1/3 of the entire circumference. Thereby, the circumferential surface of the valve plug 14 has a curved surface 14c formed in an arc shape.
and a flat notch surface 14d. In the high viscosity fluid control valve configured as described above, the process fluid that has entered the gap g between the guide member 12 and the valve plug 14 can be kept in a flowing state by the notch 21. Therefore, in the present invention, the valve plug 14
Since it is possible to reduce the coefficient of dynamic friction occurring between the guide member 12 and the guide member 12, and to suppress the polymerization reaction of the process fluid, the sliding resistance of the valve plug 14 can be reduced when the process fluid is a high viscosity fluid. The gap g can be made smaller, and the process fluid will not remain in the gap g. In this case, it has been proven through numerous experiments that it is optimal if the arcuate portion between the notches 21 is set to approximately 1/2 to 1/3 of the entire circumference. Here, the following table shows the applicability of valve plugs A to C (shown in FIGS. 2a, b and c) with various cross-sectional shapes and the process fluids used.
〔考案の効果〕[Effect of idea]
以上説明したように本考案によれば、ガイド部
材と弁プラグとの間の摺動周面に、軸線方向に延
在する3個以上の切欠きを周方向に等間隔を隔て
て形成し、これら切欠き間の円弧部を全周の略1/
2〜1/3の寸法に設定したので、ガイド部材と弁プ
ラグとの間隙に入り込んだ流体を流動状態に保つ
ことができる。したがつて、弁プラグとガイド部
材との間に生じる動摩擦係数を小さくすることが
できると共に、プロセス流体の重合反応を抑制す
ることができるから、弁プラグの摺動抵抗を小さ
くすることができ、プロセス流体が高粘度流体で
ある場合にも円滑なプラグ昇降動作を得ることが
できる。また、弁プラグとガイド部材の摺動部分
が面接触する構造であるため、その摺動部分が損
傷したり摩耗したりしても、ガイド部材と弁プラ
グ間のクリアランスの増加分が線接触構造の場合
と比較して小さくなり、それだけ弁プラグの振動
を抑制することができ、長期に亘り調節弁として
機能させることができると共に、バルブステムの
折損を防止することができる。
As explained above, according to the present invention, three or more notches extending in the axial direction are formed at equal intervals in the circumferential direction on the sliding peripheral surface between the guide member and the valve plug, The arc between these notches is approximately 1/1/2 of the entire circumference.
Since the size is set to 2 to 1/3, the fluid that has entered the gap between the guide member and the valve plug can be kept in a flowing state. Therefore, the coefficient of dynamic friction occurring between the valve plug and the guide member can be reduced, and the polymerization reaction of the process fluid can be suppressed, so the sliding resistance of the valve plug can be reduced. Even when the process fluid is a high viscosity fluid, smooth plug lifting and lowering operations can be obtained. In addition, since the sliding part of the valve plug and the guide member have a surface contact structure, even if the sliding part is damaged or worn out, the increased clearance between the guide member and the valve plug will result in a linear contact structure. This makes it possible to suppress the vibration of the valve plug, allowing it to function as a control valve for a long period of time, and preventing breakage of the valve stem.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図aおよびbは本考案に係る高粘度流体用
調節弁の弁プラグを示す斜視図、第2図a,bお
よびcは本考案の高粘度流体用調節弁における弁
プラグと他の弁における弁プラグの摺動部分を示
す横断面図、第3図aおよびbは他の実施例を示
す斜視図、第4図は従来の調節弁を示す断面図で
ある。
1……弁本体、12……ガイド部材、14……
弁プラグ、21……切欠き。
Figures 1 a and b are perspective views showing a valve plug of a high viscosity fluid control valve according to the present invention, and Figures 2 a, b and c are perspective views of the valve plug and other valves in the high viscosity fluid control valve of the present invention. 3A and 3B are perspective views showing another embodiment, and FIG. 4 is a sectional view showing a conventional control valve. 1... Valve body, 12... Guide member, 14...
Valve plug, 21...notch.