JPH03263555A - Multiple refrigerating machine - Google Patents

Multiple refrigerating machine

Info

Publication number
JPH03263555A
JPH03263555A JP6039490A JP6039490A JPH03263555A JP H03263555 A JPH03263555 A JP H03263555A JP 6039490 A JP6039490 A JP 6039490A JP 6039490 A JP6039490 A JP 6039490A JP H03263555 A JPH03263555 A JP H03263555A
Authority
JP
Japan
Prior art keywords
temperature side
low
refrigeration cycle
refrigerant
expansion tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6039490A
Other languages
Japanese (ja)
Inventor
Ikutami Taniguchi
谷口 育民
Kensuke Oka
岡 健助
Eiichi Shimizu
栄一 清水
Kenichi Kagawa
賢一 香川
Hiroshi Arai
新井 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6039490A priority Critical patent/JPH03263555A/en
Publication of JPH03263555A publication Critical patent/JPH03263555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To make an expansion tank on a low pressure pipe of a low temperature side refrigerating cycle small in size by a method wherein a bypass pipe leading to a high pressure side pipe is connected to the expansion tank, and a control valve, which is opened when a compressor is stopped, is provided on the bypass pipe. CONSTITUTION:When cooling operation is stopped, a control valve is opened to make the liquid refrigerant in a condenser 21 flow into an expansion tank 30 and low pressure side pipes of a refrigerating cycle through a bypass pipe 31. That is, the liquid refrigerant flows into the expansion tank 30 and the low pressure side pipes which are low in temperature when operation is stopped, so that vaporizing of the refrigerant is prevented. Thereby, an increase in the refrigerant pressure can be restricted to a minimum, and the expansion tank can be reduced in size.

Description

【発明の詳細な説明】 (り産業上の利用分野 本発明は、高温側冷凍サイクルの蒸発器と低温側冷凍サ
イクルの凝縮器とを熱交換させる多(ニ)元冷凍装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a multi-component refrigeration system that exchanges heat between an evaporator in a high-temperature refrigeration cycle and a condenser in a low-temperature refrigeration cycle.

(口〉従来の技術 二元冷凍装置が示きれたものとして、特公昭51−35
72号公報がある。この公報では高温側冷凍サイクルの
蒸発器と低温側冷凍サイクルの凝縮器とをカスケードコ
ンデンサで熱交換させると共に、この低温側冷凍サイク
ルには膨張タンクを設けるようにしている。
(Note) As a demonstration of the conventional technology dual refrigeration equipment,
There is a publication No. 72. In this publication, heat is exchanged between the evaporator of the high temperature side refrigeration cycle and the condenser of the low temperature side refrigeration cycle using a cascade condenser, and the low temperature side refrigeration cycle is provided with an expansion tank.

このような二元冷凍装置は、その運転停止時に低温側冷
凍サイクルに存在する冷媒がガス化してこの低温側冷凍
サイクルの圧力が上昇するものの、この膨張タンクにガ
ス化された冷媒を導びくことによってその圧力上昇を低
くするようにしている。
In such a binary refrigeration system, when the operation is stopped, the refrigerant present in the low-temperature side refrigeration cycle is gasified and the pressure of this low-temperature side refrigeration cycle increases, but it is difficult to guide the gasified refrigerant to the expansion tank. This is to reduce the pressure rise.

(ハ)発明が解決しようとする課題 このようにガス化された冷媒を膨張タンクに導びいて圧
力上昇を低く抑えるようにしているため、この膨張タン
クの容量は大きくなることがあった。
(c) Problems to be Solved by the Invention Since the gasified refrigerant is guided into the expansion tank in order to keep the pressure rise low, the capacity of the expansion tank sometimes becomes large.

本発明は運転停止時に低温側冷凍サイクルの冷媒をガス
化しに<<シて、膨張タンクの小型化を図ることを目的
としたものである。
The object of the present invention is to reduce the size of the expansion tank by gasifying the refrigerant in the low-temperature side refrigeration cycle when the operation is stopped.

(ニ)課題を解決するための手段 この目的を達成するために、本発明は多元冷凍装置の低
温側冷凍サイクルの低圧側管路に膨張タンクをつなぐと
共に、この膨張タンクにはこの低温側冷凍サイクルの高
圧側管路につながるバイパス管を設け、且つこのバイパ
ス管には運転停止時に開放きれる制御弁を配置するよう
にしたものである。
(d) Means for Solving the Problems In order to achieve this object, the present invention connects an expansion tank to the low-pressure side pipe line of the low-temperature side refrigeration cycle of a multi-component refrigeration system, and also connects the expansion tank to the low-pressure side refrigeration cycle of the multi-component refrigeration system. A bypass pipe connected to the high-pressure side pipe line of the cycle is provided, and a control valve that can be fully opened when the operation is stopped is arranged in this bypass pipe.

(*)作用 運転停止時に制御弁を開放することによって、凝縮器内
の液冷媒は膨張タンクに流れ込む。ここでこの膨張タン
クは低温側冷凍サイクルの低圧側となっているため冷や
されており、この膨張タンクに流れ込んだ液冷媒はガス
化しにくく冷媒の圧力上昇は低く抑えられる。
(*) By opening the control valve when the operation is stopped, the liquid refrigerant in the condenser flows into the expansion tank. Here, this expansion tank is cooled because it is on the low pressure side of the low temperature side refrigeration cycle, and the liquid refrigerant flowing into this expansion tank is difficult to gasify and the pressure increase of the refrigerant can be suppressed to a low level.

(へ)実施例 第1図、第2図において、1は二元冷凍装置で、この装
置は、高温側ユニット2と、低温側ユニット3と、クー
ラユニット4とから構成きれている。そして、これらユ
ニット2,3.4は冷媒管(後述する)でつながれる。
(F) Embodiment In FIGS. 1 and 2, reference numeral 1 denotes a binary refrigeration system, which is composed of a high-temperature side unit 2, a low-temperature side unit 3, and a cooler unit 4. These units 2, 3.4 are connected by a refrigerant pipe (described later).

5は高温側冷凍サイクルで、圧縮機6、マフラ7、凝縮
器8、第1受液器9、ドライヤ10、第1制御弁11、
第1膨張弁(減圧器)12、過冷却器として作用するサ
ブクーラ13、蒸発器14、アキュムレータ15が順次
冷媒管で接続されている。この高温側冷凍サイクル5に
封入されている冷媒はR−22である。16は低圧側配
管に取り付けられた温度センサで、とのセンサ16で検
出した温度に基づいて第1膨張弁120開度が制御され
る。又、第1制御弁11はこの冷凍サイクル5の冷却運
転の停止後に行なわれるポンプダウン運転時に閉じられ
て、蒸発器14内の冷媒をこの冷凍サイクル5の高圧側
管路(凝縮器8等)に回収させるものである。
5 is a high temperature side refrigeration cycle, which includes a compressor 6, a muffler 7, a condenser 8, a first liquid receiver 9, a dryer 10, a first control valve 11,
A first expansion valve (pressure reducer) 12, a subcooler 13 functioning as a subcooler, an evaporator 14, and an accumulator 15 are connected in this order through a refrigerant pipe. The refrigerant sealed in this high temperature side refrigeration cycle 5 is R-22. 16 is a temperature sensor attached to the low pressure side piping, and the opening degree of the first expansion valve 120 is controlled based on the temperature detected by the sensor 16. Further, the first control valve 11 is closed during the pump-down operation performed after the cooling operation of the refrigeration cycle 5 is stopped, and the refrigerant in the evaporator 14 is transferred to the high-pressure side pipes (condenser 8 etc.) of the refrigeration cycle 5. It is to be collected by

17は低温側冷凍サイクルで、圧縮機18、マフラ19
、オイルセパレータ20、凝縮器21、第2の受液器3
4、サブクーラ13、ドライヤ22、第2膨張弁(減圧
器)23、蒸発器24、吸込圧力調整弁25、アキュム
レータ26が順次冷奴管で接続されている。27はオイ
ル戻し管で、オイルセパレータ20に溜められたオイル
を圧縮機18へ戻すものである。そしてこの低温側冷凍
サイクル17の凝縮器21と高温側冷凍サイクル5の蒸
発器14とはカスケードコンデンサ28で一体的に組み
合せられており、この低温側冷凍サイクル17の凝縮器
21と高温側冷凍サイクル5の蒸発器14とが熱交換す
るようになっている。
17 is a low temperature side refrigeration cycle, which includes a compressor 18 and a muffler 19.
, oil separator 20, condenser 21, second liquid receiver 3
4, a subcooler 13, a dryer 22, a second expansion valve (pressure reducer) 23, an evaporator 24, a suction pressure regulating valve 25, and an accumulator 26 are connected in this order through cold tubes. An oil return pipe 27 returns the oil stored in the oil separator 20 to the compressor 18. The condenser 21 of the low temperature side refrigeration cycle 17 and the evaporator 14 of the high temperature side refrigeration cycle 5 are integrally combined by a cascade condenser 28. The evaporator 14 of No. 5 exchanges heat with the evaporator 14 of No. 5.

この低温側冷凍サイクル17に封入きれている冷媒はR
−13である。29は低圧側配管に取り付けられた温度
センサで、このセンサ29で検出した温度に基づいて第
2膨張弁23の開度が制御される。30は膨張タンク、
31は一方のバイパス管で、一端が凝縮器21の入口側
すなわち高圧側管路32に、他端が膨張タンク30の上
部に夫々つながれている。33はこの一方のバイパス管
31に設けた第2制御弁で、低温側冷凍サイクル17の
圧縮機18の運転時に閉じて、その運転停止時に開放さ
れる。この第2制御弁33は一般的に1通電開型、と呼
ばれている電磁弁である。35は他方のバイパス管で、
一端が膨張タンク30の下部に、他端が吸込圧力調整弁
25の入口側すなわち低圧側管路に夫々つながれている
。このように第2制御弁33を圧縮機18の運転停止時
に開放するようにしたので、運転停止時に低温側冷凍サ
イクル17の凝縮器21内の液冷媒は高圧側管路32、
一方のバイパス管31を介して膨張タンク30へ導びか
れる。前述の吸込圧力調整弁25はその入口側管路36
内の冷媒圧力が例えば5kg/ cm ”以上であれば
、その弁25の開度を絞って、約5kgハかにその冷媒
圧力を低下させて圧縮機18へ冷媒を戻すようにしたも
のである。これによって、圧縮機1Bに吸込まれる冷媒
圧力が異常に高くなるのを防止して、圧縮機1Bから吐
出される冷媒の(高圧)圧力の異常上昇を防止している
。39は遅延装置(遅延手段)で、高温側冷凍サイクル
5の圧縮機6並びに低温側冷凍サイクル17の圧縮機1
8につながれており、高温側冷凍サイクル5の圧縮機6
の運転開始から60秒後に低温側冷凍サイクル17の圧
縮機18の運転が開始するようにこの圧縮機1Bに信号
が出される。
The refrigerant sealed in this low temperature side refrigeration cycle 17 is R
-13. Reference numeral 29 denotes a temperature sensor attached to the low pressure side piping, and the opening degree of the second expansion valve 23 is controlled based on the temperature detected by this sensor 29. 30 is an expansion tank;
Reference numeral 31 designates one bypass pipe, one end of which is connected to the inlet side of the condenser 21, that is, the high-pressure side pipe line 32, and the other end connected to the upper part of the expansion tank 30. Reference numeral 33 designates a second control valve provided on one of the bypass pipes 31, which is closed when the compressor 18 of the low-temperature side refrigeration cycle 17 is in operation, and opened when the compressor 18 of the low temperature side refrigeration cycle 17 is stopped. This second control valve 33 is a solenoid valve that is generally called a one-current open type. 35 is the other bypass pipe,
One end is connected to the lower part of the expansion tank 30, and the other end is connected to the inlet side of the suction pressure regulating valve 25, that is, the low pressure side pipe line. Since the second control valve 33 is opened when the compressor 18 is stopped, the liquid refrigerant in the condenser 21 of the low temperature side refrigeration cycle 17 is transferred to the high pressure side pipe 32,
It is guided to the expansion tank 30 via one bypass pipe 31. The above-mentioned suction pressure regulating valve 25 has an inlet side pipe line 36.
If the refrigerant pressure in the refrigerant is, for example, 5 kg/cm or more, the opening degree of the valve 25 is reduced to reduce the refrigerant pressure by about 5 kg, and the refrigerant is returned to the compressor 18. This prevents the pressure of the refrigerant sucked into the compressor 1B from becoming abnormally high, thereby preventing the (high) pressure of the refrigerant discharged from the compressor 1B from increasing abnormally. 39 is a delay device. (delay means), the compressor 6 of the high temperature side refrigeration cycle 5 and the compressor 1 of the low temperature side refrigeration cycle 17.
8 and is connected to the compressor 6 of the high temperature side refrigeration cycle 5.
A signal is sent to the compressor 1B so that the compressor 18 of the low temperature side refrigeration cycle 17 starts operating 60 seconds after the start of operation.

このような構成の二元冷凍装置を特に高温側ユニット2
と、低温側ユニット3と、クーラユニット4とに分離し
、高温側ユニット2には高温側冷凍サイクル5の圧縮機
6と凝縮器8とを内蔵させ、低温側ユニット3にはカス
ケードコンデンサ28と低温側冷凍サイクル17の圧縮
機1Bとを内蔵妨せ、クーラユニット4には低温側冷凍
サイクル17の蒸発器24を内蔵させている。このよう
にしたことにより、クーラユニット4を備えた冷凍室(
図示せず)の近くに、低温側ユニット3と高温側ユニッ
ト2との両方を置くスペースがない場合は、低温側ユニ
ット3のみをこの冷凍室の近くに置き、他の場所に高温
側ユニット2を置くこともできる。ここで、低温側ユニ
ット3とクーラユニット4とをつなぐ低温側のユニット
間配管37の温度(この低温側のユニット間配管37内
を流れる冷媒の温度)は、高温側ユニット2と低温側ユ
ニット3とをつなぐ高温側のユニット間配管38の温度
(このユニット間配管38内を流れる冷媒の温度)より
も低いが、この低温側のユニット間配管37の長さを短
かく抑えることができ(低温側ユニット3とクーラユニ
ット4との距離が短かいので)、このユニット間配管3
7による熱ロスを小さくすることができる。又、冷凍室
の近くにスペースがある場合は第2図に示すよう高温側
ユニット2と低温側ユニット3とを並べて配置しても良
い。更にこの低温側ユニット3とクーラユニット4とを
一体的に組み合せ、高温側ユニット2のみを分離しても
良イ。
A binary refrigeration system with such a configuration is particularly suitable for the high temperature side unit 2.
The high temperature side unit 2 has a built-in compressor 6 and condenser 8 of the high temperature side refrigeration cycle 5, and the low temperature side unit 3 has a cascade condenser 28 and a cooler unit 4. The compressor 1B of the low temperature side refrigeration cycle 17 is built in, and the evaporator 24 of the low temperature side refrigeration cycle 17 is built in the cooler unit 4. By doing this, the freezer compartment equipped with the cooler unit 4 (
(not shown), if there is no space to place both the low-temperature side unit 3 and the high-temperature side unit 2, place only the low-temperature side unit 3 near this freezer compartment, and place the high-temperature side unit 2 in another location. You can also put Here, the temperature of the low-temperature side inter-unit piping 37 that connects the low-temperature side unit 3 and the cooler unit 4 (the temperature of the refrigerant flowing inside the low-temperature side inter-unit piping 37) is the same as that between the high-temperature side unit 2 and the low-temperature side unit Although the temperature of the inter-unit piping 38 on the high-temperature side connecting the Since the distance between side unit 3 and cooler unit 4 is short), this inter-unit piping 3
7 can be reduced. Further, if there is space near the freezer compartment, the high temperature side unit 2 and the low temperature side unit 3 may be arranged side by side as shown in FIG. Furthermore, the low temperature side unit 3 and the cooler unit 4 may be combined integrally, and only the high temperature side unit 2 may be separated.

次に、この二元冷凍装置1の運転状態について説明する
。運転開始時は、まず高温側冷凍サイクル5の圧縮機6
を運転させ、第1制御弁11を開放して、冷媒を第1図
の実線矢印のように流す。
Next, the operating state of this binary refrigeration system 1 will be explained. At the start of operation, first the compressor 6 of the high temperature side refrigeration cycle 5 is
is operated, the first control valve 11 is opened, and the refrigerant is allowed to flow as indicated by the solid line arrow in FIG.

ここで、この運転開始前すなわち前回の運転終了前に第
1制御弁11を閉じてポンプダウン運転を行なって、蒸
発器14内の冷媒は凝縮器8等の高圧側管路に回収され
ている。従って、この蒸発器14内には冷媒がない状態
で運転を開始するため、開始後に流れ込む冷奴によって
この蒸発器14は早く冷却される。そして、遅延装置3
9によって高温側冷凍サイクル5の圧縮機6の運転開始
から60秒(所定時間)経過後に、低温側冷凍サイクル
17の圧縮機18の運転が開始される。
Here, before the start of this operation, that is, before the end of the previous operation, the first control valve 11 is closed to perform a pump-down operation, and the refrigerant in the evaporator 14 is recovered to the high-pressure side pipe of the condenser 8, etc. . Therefore, since the operation starts with no refrigerant in the evaporator 14, the evaporator 14 is quickly cooled by the cold coke that flows after the start. And delay device 3
9, the compressor 18 of the low temperature side refrigeration cycle 17 starts operating after 60 seconds (predetermined time) has elapsed from the start of operation of the compressor 6 of the high temperature side refrigeration cycle 5.

このように、遅延装置39によって低温側冷凍サイクル
17の圧縮機18の運転開始を、高温側冷凍サイクル5
の圧縮機6の運転開始から遅らせたのは、まず高温側冷
凍サイクル5の蒸発器14の温度をある程度下げてから
、低温側冷凍サイクル17の凝縮器21へ冷媒を流し込
むようにしたかったからである。これによって低温側冷
凍サイクル17の立ち上り時間が短かくなる。又、高温
側冷凍サイクル5の蒸発器14の温度はこの所定時間に
よっである程度一定に低下させることができ、これによ
ってカスケードコンデンサ28の熱交換能力を一定に保
つことができる。この所定時間は二元冷凍装置の犬き啓
によって可変される。
In this way, the delay device 39 delays the start of operation of the compressor 18 of the low temperature side refrigeration cycle 17 and the start of operation of the compressor 18 of the low temperature side refrigeration cycle 17.
The reason why the start of operation of the compressor 6 was delayed was because we wanted to first lower the temperature of the evaporator 14 of the high-temperature side refrigeration cycle 5 to a certain extent before flowing the refrigerant into the condenser 21 of the low-temperature side refrigeration cycle 17. . This shortens the start-up time of the low temperature side refrigeration cycle 17. Moreover, the temperature of the evaporator 14 of the high-temperature side refrigeration cycle 5 can be lowered to a certain degree by this predetermined time, and thereby the heat exchange capacity of the cascade condenser 28 can be kept constant. This predetermined time can be varied depending on the length of the dual refrigeration system.

上述した遅延装置39の代りに高温側冷凍サイクル5の
蒸発器14の出口配管に温度センサを取り付け、このセ
ンサで検出する温度が一定値以下になったら低温側冷凍
サイクル17の圧縮機18を運転させることも考えた。
Instead of the delay device 39 described above, a temperature sensor is attached to the outlet pipe of the evaporator 14 of the high temperature side refrigeration cycle 5, and when the temperature detected by this sensor falls below a certain value, the compressor 18 of the low temperature side refrigeration cycle 17 is operated. I also thought about letting him do it.

しかしながら、前述したようにポンプダウン運転によっ
て、運転開始直後には蒸発器14内に冷媒がない状態か
ら一気に冷媒が流れ込むため、この蒸発器14の出口管
の温度低下が急激に行なわれる(数秒間で30°Cから
0°Cへ変化する)。このような急激の変化に温度セン
サがついてゆけず、低温側冷凍サイクル17の圧縮機1
8の運転開始の指示を的確に行なえないおそれが考えら
れる。
However, as described above, due to the pump-down operation, refrigerant flows into the evaporator 14 from a state where there is no refrigerant immediately after the start of operation, so the temperature of the outlet pipe of the evaporator 14 rapidly decreases (for several seconds). (changes from 30°C to 0°C). The temperature sensor could not keep up with such sudden changes, and the compressor 1 of the low temperature side refrigeration cycle 17
There is a possibility that the instruction to start operation in step 8 may not be given accurately.

このようにして、2つの圧縮機6,18が共に運転を開
始して、低温側冷凍サイクル17の蒸発器24が収納さ
れた冷凍室を冷却する。ここで低温側冷凍サイクル17
において、圧縮機18から吐出された冷媒はそのほとん
どがカスケードコンデンサ28内の凝縮器21で凝縮液
化きれるものの、一部のものは液化されずに凝縮器21
から流出されることがある。このような場合のガス冷媒
は第2の受液器34内の上部に貯められる。そして、こ
の受液器34から流出した液冷媒はサブクーラ13に流
れ込む、このサブクーラ13で液冷媒は過冷却状態にま
で冷却きれ、その後第2膨張弁23で減圧作用を受ける
。このように、凝縮器21から出た液冷媒を、−旦第2
の受液器34に貯溜し、サブクーラ13で過冷却状態に
して第2膨張弁23へ流すようにしたので、この第2膨
張弁23にフラッシュガスが流れ込んで、第2膨張弁2
3の作動(弁開度)状態を不安定にするおそれはない、
従って第2膨張弁23の作動状態を良好にして安定した
冷凍能力を得ることができる。又、低温側冷凍サイクル
17の冷媒(R−13)の沸点は高温側冷凍サイクルの
冷媒(R−22)の沸点よりも高いので、ガス化しやす
いが、このサブクーラ13によって冷媒を過冷却状態に
したことによりこのガス化を未然に助士して、膨張タン
ク30を小型化することもできる。
In this way, both compressors 6 and 18 start operating to cool the freezer compartment in which the evaporator 24 of the low-temperature side refrigeration cycle 17 is housed. Here, the low temperature side refrigeration cycle 17
Although most of the refrigerant discharged from the compressor 18 is condensed and liquefied in the condenser 21 in the cascade condenser 28, some of the refrigerant is not liquefied and remains in the condenser 21.
It may be leaked from. The gas refrigerant in such a case is stored in the upper part of the second liquid receiver 34. The liquid refrigerant flowing out from the liquid receiver 34 flows into the subcooler 13. The liquid refrigerant is completely cooled to a supercooled state in the subcooler 13, and is then subjected to a pressure reducing action by the second expansion valve 23. In this way, the liquid refrigerant discharged from the condenser 21 is transferred to the second
The liquid is stored in the liquid receiver 34, supercooled by the subcooler 13, and then flowed to the second expansion valve 23, so that the flash gas flows into the second expansion valve 23, and the second expansion valve 2
There is no risk of destabilizing the operation (valve opening) of item 3.
Therefore, it is possible to improve the operating condition of the second expansion valve 23 and obtain stable refrigerating capacity. Also, since the boiling point of the refrigerant (R-13) in the low-temperature side refrigeration cycle 17 is higher than that of the refrigerant (R-22) in the high-temperature side refrigeration cycle, it is easily gasified, but the subcooler 13 brings the refrigerant into a supercooled state. By doing so, this gasification can be assisted in advance and the expansion tank 30 can be downsized.

低温側冷凍サイクル17の圧縮機18の吸込管には吸込
圧力調整弁25を設けたので、この調整弁25の設定値
を例えば5kg/cm”と設定すれば、この調整弁によ
って蒸発器24付近の冷媒圧力が5 kg / cm 
”以上あったとしても、圧縮機18に吸込まれる冷媒の
圧力は5kg/cm’に保たれる。このように圧縮機1
8に吸込まれる冷媒の圧力をこの調整弁25で所定値以
上にならないようにしたので、これによって低温側冷凍
サイクル17の高低圧圧力差を速く一定に保つことがで
きる。尚、このような吸込圧力調整弁25を設けないと
、高低圧圧力差を一定に保つまでに多くの時間がかかる
。そして、安定した冷凍能力を速やかに発揮できないお
それがあった。
Since a suction pressure regulating valve 25 is provided in the suction pipe of the compressor 18 of the low-temperature side refrigeration cycle 17, if the setting value of this regulating valve 25 is set to, for example, 5 kg/cm, the pressure near the evaporator 24 is set by this regulating valve. Refrigerant pressure of 5 kg/cm
``Even if the pressure of the refrigerant drawn into the compressor 18 is maintained at 5 kg/cm''
Since the pressure of the refrigerant sucked into the refrigerant 8 is prevented from exceeding a predetermined value by the regulating valve 25, the pressure difference between high and low pressures in the low-temperature side refrigeration cycle 17 can be quickly kept constant. Incidentally, if such a suction pressure regulating valve 25 is not provided, it will take a long time to maintain a constant pressure difference between high and low pressures. In addition, there was a risk that stable refrigeration capacity could not be exerted promptly.

次に冷却運転を停止すると、第2制御弁33は開放され
(冷却運転中は閉鎖されている)、凝縮器21内の液冷
媒はバイパス管31を介して膨張タンク30へ導びかれ
る。このようにして冷却運転の停止時には低温側冷凍サ
イクル17の凝縮器21内の液冷媒を膨張タンク30や
この冷凍サイクルの低圧側配管に流し込むようにしてい
る。すなわち、運転停止時に低温となっている膨張タン
ク30や低圧側配管に液冷媒を流し込んで、この液冷媒
の気化を極力抑えるようにしている。これによって運転
停止時の冷媒の圧力上昇は小さく抑えられ、膨張タンク
30の小型化を図ることができる。
Next, when the cooling operation is stopped, the second control valve 33 is opened (it is closed during the cooling operation), and the liquid refrigerant in the condenser 21 is guided to the expansion tank 30 via the bypass pipe 31. In this way, when the cooling operation is stopped, the liquid refrigerant in the condenser 21 of the low temperature side refrigeration cycle 17 is flowed into the expansion tank 30 and the low pressure side piping of this refrigeration cycle. That is, the liquid refrigerant is poured into the expansion tank 30 and the low-pressure side piping, which are at a low temperature when the operation is stopped, to suppress vaporization of the liquid refrigerant as much as possible. As a result, the pressure increase of the refrigerant at the time of shutdown is suppressed to a small level, and the expansion tank 30 can be made smaller.

又、冷却運転終了後は低温側冷凍サイクル17の圧縮機
18を止めると共に、高温側冷凍サイクル5の圧縮機6
の運転を続け、第1制御弁11を閉じてポンプダウン運
転を行なう。このポンプダウン運転によってサブクーラ
13や蒸発器14内の冷媒は凝縮器8等の高圧側管路に
回収きれ、蒸発器14には冷媒がない状態となる。従っ
て、冷却運転を再開する(高温側冷凍サイクル5の圧縮
機6の運転を再開する)と、再開と同時に蒸発器14へ
流れ込んだ冷媒によって速やかに蒸発器14が冷却され
る。これによって低温側冷凍サイクル17の圧縮機18
の運転を再開して、この圧縮機18から吐出された冷媒
は凝縮器21で速やかに冷却きれる。
Furthermore, after the cooling operation is finished, the compressor 18 of the low-temperature side refrigeration cycle 17 is stopped, and the compressor 6 of the high-temperature side refrigeration cycle 5 is stopped.
The operation continues, and the first control valve 11 is closed to perform pump-down operation. By this pump-down operation, the refrigerant in the subcooler 13 and the evaporator 14 is completely recovered to the high-pressure side pipe line of the condenser 8, etc., and the evaporator 14 becomes free of refrigerant. Therefore, when the cooling operation is restarted (the operation of the compressor 6 of the high temperature side refrigeration cycle 5 is restarted), the evaporator 14 is quickly cooled by the refrigerant flowing into the evaporator 14 at the same time as the restart. As a result, the compressor 18 of the low temperature side refrigeration cycle 17
When the operation of the compressor 18 is restarted, the refrigerant discharged from the compressor 18 is quickly cooled down in the condenser 21.

(ト)発明の効果 以上述べたように、本発明は多元冷凍装置の低温側冷凍
サイクルの低圧側管路へ設けた膨張タンクにこの低温側
冷凍サイクルの高圧側管路につながるバイパス管を設け
、且つこのバイパス管に運転停止時に開放される制御弁
を配置したので、この運転停止時に凝縮器内の液冷媒は
冷やされている膨張タンクに流れ込み、液冷媒のガス化
を抑えている。これによって冷媒の圧力上昇は低く抑え
られ膨張タンクの小型化を図ることができる。
(G) Effects of the Invention As described above, the present invention provides a bypass pipe connected to the high pressure side pipe of the low temperature side refrigeration cycle in the expansion tank provided to the low pressure side pipe of the low temperature side refrigeration cycle of a multi-component refrigeration system. Moreover, since a control valve that is opened when the operation is stopped is arranged in this bypass pipe, the liquid refrigerant in the condenser flows into the cooling expansion tank when the operation is stopped, thereby suppressing gasification of the liquid refrigerant. As a result, the pressure increase of the refrigerant is suppressed to a low level, and the expansion tank can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は二元冷凍装置の
冷媒回路図、第2図はこの装置の高温側ユニットと低温
側ユニットとを並べた状態を示す斜視図である。 5・・・高温側冷凍サイクル、  14・・・蒸発器、
17・・・低温側冷凍サイクル、 21・・・凝縮器、
30・・・膨張タンク、 31・・・バイパス管、 3
3・・・制御弁。
The drawings show an embodiment of the present invention, and FIG. 1 is a refrigerant circuit diagram of a binary refrigeration system, and FIG. 2 is a perspective view showing a state in which a high temperature side unit and a low temperature side unit of this system are arranged. 5... High temperature side refrigeration cycle, 14... Evaporator,
17... Low temperature side refrigeration cycle, 21... Condenser,
30... Expansion tank, 31... Bypass pipe, 3
3...Control valve.

Claims (1)

【特許請求の範囲】[Claims] 1)高温側冷凍サイクルの蒸発器と、低温側冷凍サイク
ルの凝縮器とを熱交換させ、この低温側冷凍サイクルの
低圧側管路に膨張タンクを設けた多元冷凍装置において
、この膨張タンクには前記低温側冷凍サイクルの高圧側
管路につながるバイパス管を接続し、且つこのバイパス
管にはこの低温側冷凍サイクルの圧縮機の停止時に開放
される制御弁を配置したことを特徴とする多元冷凍装置
1) In a multicomponent refrigeration system in which the evaporator of the high-temperature side refrigeration cycle and the condenser of the low-temperature side refrigeration cycle are exchanged heat, and an expansion tank is provided in the low-pressure side pipe line of the low-temperature side refrigeration cycle, this expansion tank is A multi-component refrigeration system, characterized in that a bypass pipe is connected to the high-pressure side pipe line of the low-temperature side refrigeration cycle, and a control valve that is opened when the compressor of the low-temperature side refrigeration cycle is stopped is arranged in the bypass pipe. Device.
JP6039490A 1990-03-12 1990-03-12 Multiple refrigerating machine Pending JPH03263555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6039490A JPH03263555A (en) 1990-03-12 1990-03-12 Multiple refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6039490A JPH03263555A (en) 1990-03-12 1990-03-12 Multiple refrigerating machine

Publications (1)

Publication Number Publication Date
JPH03263555A true JPH03263555A (en) 1991-11-25

Family

ID=13140896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6039490A Pending JPH03263555A (en) 1990-03-12 1990-03-12 Multiple refrigerating machine

Country Status (1)

Country Link
JP (1) JPH03263555A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293051A (en) * 1986-06-12 1987-12-19 三菱電機株式会社 Method of controlling start of two-dimensional refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293051A (en) * 1986-06-12 1987-12-19 三菱電機株式会社 Method of controlling start of two-dimensional refrigerator

Similar Documents

Publication Publication Date Title
US4854130A (en) Refrigerating apparatus
JP3965717B2 (en) Refrigeration equipment and refrigerator
JP5881282B2 (en) Turbo refrigeration apparatus, control apparatus and control method thereof
JP3152454B2 (en) Two-stage compression refrigeration system
JPH0796973B2 (en) Refrigerating apparatus with economizer and operation control method thereof
JP3228892B2 (en) Refrigeration equipment
JPH03263556A (en) Multiple refrigerating machine
WO2023273495A1 (en) Refrigerating system and refrigerator
JPH03263551A (en) Multiple refrigerating machine
JPH03263555A (en) Multiple refrigerating machine
CN110195949B (en) Refrigeration system and method
JPH03105155A (en) Freezer with economizer
JPH03263554A (en) Multiple refrigerating machine
JPH03263552A (en) Multiple refrigerating machine
JPH03263553A (en) Multiple refrigerating machine
JP2003194427A (en) Cooling device
JP2008020089A (en) Cooling device
JP2757689B2 (en) Refrigeration equipment
JPH0420752A (en) Double-element type freezer device
JPS59208353A (en) Refrigerator
JP2004279005A (en) Heat storage type air-conditioner
JPH07139854A (en) Refrigerator
JP2003194426A (en) Cooling device
JPH10115475A (en) Cooling water device
JPH08271092A (en) Refrigerator