JPH0326338B2 - - Google Patents

Info

Publication number
JPH0326338B2
JPH0326338B2 JP4892483A JP4892483A JPH0326338B2 JP H0326338 B2 JPH0326338 B2 JP H0326338B2 JP 4892483 A JP4892483 A JP 4892483A JP 4892483 A JP4892483 A JP 4892483A JP H0326338 B2 JPH0326338 B2 JP H0326338B2
Authority
JP
Japan
Prior art keywords
strain
load
hole
columnar
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4892483A
Other languages
Japanese (ja)
Other versions
JPS59174726A (en
Inventor
Koichi Yabe
Keiichiro Mochizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Electronic Instruments Co Ltd
Original Assignee
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Electronic Instruments Co Ltd filed Critical Kyowa Electronic Instruments Co Ltd
Priority to JP4892483A priority Critical patent/JPS59174726A/en
Publication of JPS59174726A publication Critical patent/JPS59174726A/en
Publication of JPH0326338B2 publication Critical patent/JPH0326338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • G01L1/2218Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being of the column type, e.g. cylindric, adapted for measuring a force along a single direction

Description

【発明の詳細な説明】 本発明は、荷重が印加されると弾性変形する柱
状起歪体にひずみゲージを添着し、そのひずみゲ
ージによつて印加荷重に応じた電気信号を得るひ
ずみゲージ式荷重変換器に関するものである。
Detailed Description of the Invention The present invention provides a strain gauge type load system in which a strain gauge is attached to a columnar flexural body that elastically deforms when a load is applied, and the strain gauge obtains an electrical signal according to the applied load. It concerns a converter.

従来のこの種のひずみゲージ式荷重変換器は、
第1図AおよびBに正面中央横断面図および同図
−線矢視方向断面図をもつて示すような円筒
状の起歪体1の上面2に印加された荷重W(単位
面積当りの荷重wの総和)を、円筒状起歪体1の
外周面3および内周面4上に添着したひずみゲー
ジ5および6により該荷重に比例した電気信号と
して検出し得るように構成されている。
This type of conventional strain gauge type load transducer is
A load W (load per unit area) applied to the upper surface 2 of a cylindrical strain-generating body 1 as shown in FIGS. The strain gauges 5 and 6 attached to the outer circumferential surface 3 and inner circumferential surface 4 of the cylindrical strain body 1 can detect the total sum of w as an electric signal proportional to the load.

ひずみゲージ5,6は、等角度間隔ずらせて複
数箇所に添着され、例えば、同図Bに示すよう
に、90゜角間隔をずらせてそれぞれ4箇所に添着
され、これらのひずみゲージ5,6により周知の
ホイートストンブリツジ回路が形成される。尚、
7および8は、ひずみゲージ5および6を、湿気
による感度の変化や外力による損傷から保護する
薄板状の外側カバーおよび内側カバーであり、9
は配線用穴である。
The strain gauges 5 and 6 are attached at multiple locations at equal angular intervals, for example, as shown in FIG. A well-known Wheatstone bridge circuit is formed. still,
7 and 8 are thin plate-like outer and inner covers that protect the strain gauges 5 and 6 from changes in sensitivity due to moisture and damage caused by external forces;
is a hole for wiring.

しかしながら、このように構成された従来の荷
重変換器には、次のような問題点があつた。
However, the conventional load converter configured in this manner has the following problems.

すなわち、第2図は、第1図に示す従来の起歪
体1に垂直に等分布の荷重が印加された場合の受
圧面におけるひずみ分布図を示すものであるが、
この例の場合には外側および内側のひずみゲージ
5および6からは、同じひずみ出力が検出でき、
その出力に基づき正確な荷重測定をすることがで
きる。
That is, FIG. 2 shows a strain distribution diagram on the pressure-receiving surface when a uniformly distributed load is applied perpendicularly to the conventional strain-generating body 1 shown in FIG.
In this example, the same strain output can be detected from the outer and inner strain gauges 5 and 6,
Accurate load measurements can be made based on the output.

ところが、第3図Aに示すように、起歪体1の
中央部に加えられた集中荷重が当て板10を介し
て起歪体1に伝達される場合、当て板10が下方
に湾曲するため、第3図Bに示す如く起歪体1の
内側に荷重が集中し、起歪体1の受圧面のひずみ
分布は、内周縁部で最大となり外周縁部に近づく
に従つて減少する。
However, as shown in FIG. 3A, when a concentrated load applied to the center of the strain body 1 is transmitted to the strain body 1 via the patch plate 10, the patch plate 10 curves downward. As shown in FIG. 3B, the load is concentrated on the inside of the strain body 1, and the strain distribution on the pressure-receiving surface of the strain body 1 is maximum at the inner peripheral edge and decreases as it approaches the outer peripheral edge.

またこれとは反対に第4図Aに示すように起歪
体1の外側に加えられた荷重が当て板10を介し
て起歪体1に伝達される場合、当て板10が上方
に湾曲するため、第4図Bに示す如く起歪体1の
外側に荷重が集中し、起歪体1の受圧面のひずみ
分布は、外周縁部で最大となり内周縁部に近づく
に従つて減少する。このように、起歪体1の受圧
面に不等分布荷重あるいは偏荷重が加わると、荷
重とひずみゲージが添着された部分のひずみ量と
の関係が線形を失ない、その結果荷重と測定値と
の関係も線形を失ない、例えば、第3図の場合、
測定値が実荷重より大きく(1.1倍〜1.5倍)表わ
れ、第4図の場合は小さく(1.0倍〜0.7倍)表わ
れる傾向にあり、いずれの場合も正確な荷重を測
定することができない。すなわち、ひずみゲージ
5および6が貼られる面は、曲げの中心軸、つま
り応力の中立線からの距離が異なるため、不等分
布荷重や偏荷重により生ずる曲げひずみの量が異
なり、その結果、測定値が正確でなくなる。
On the contrary, when a load applied to the outside of the strain body 1 is transmitted to the strain body 1 via the patch plate 10 as shown in FIG. 4A, the patch plate 10 curves upward. Therefore, as shown in FIG. 4B, the load is concentrated on the outside of the strain body 1, and the strain distribution on the pressure receiving surface of the strain body 1 is maximum at the outer peripheral edge and decreases as it approaches the inner peripheral edge. In this way, when a non-uniformly distributed load or an uneven load is applied to the pressure receiving surface of the strain body 1, the relationship between the load and the amount of strain in the part to which the strain gauge is attached does not lose linearity, and as a result, the load and the measured value For example, in the case of Figure 3, the relationship with
The measured value tends to appear larger (1.1 to 1.5 times) than the actual load, and in the case of Figure 4 it tends to appear smaller (1.0 to 0.7 times), making it impossible to measure the load accurately in either case. . In other words, the surfaces on which the strain gauges 5 and 6 are pasted are at different distances from the center axis of bending, that is, the neutral line of stress, and therefore the amount of bending strain caused by unevenly distributed loads or uneven loads is different, and as a result, the measurement The value is no longer accurate.

このような欠点を除去すべく、起歪体1の上面
と荷重印加面との間に荷重の伝達を均質化するた
めの相当の高さを有する当り構造物(図示せず)
を介挿するか、板厚が大で剛性の大きい当て金
(図示せず)を介挿し且つ起歪体1の高さを大に
することにによつて、起歪体1内の応力分布が均
質化され、荷重の再現性すなわち測定精度を向上
し得ることが見出された。
In order to eliminate such drawbacks, a contact structure (not shown) having a considerable height is used to homogenize the transmission of load between the upper surface of the strain-generating body 1 and the load application surface.
The stress distribution within the strain body 1 can be improved by inserting a plate with a large thickness and high rigidity (not shown) and increasing the height of the strain body 1. It has been found that the load reproducibility, that is, the measurement accuracy can be improved.

しかしながら、上記のように当り構造物、当て
金および荷重変換器の高さをある程度以上高くす
ると、当り構造物や起歪体に座屈現象が生じ傾斜
荷重に対して影響を受け易くなり荷重検出精度が
かえつて低下するという問題がある。さらにま
た、荷重変換器を力の伝達系中に介挿するような
場合、起歪体の高さを大きくすることができず、
仮に大きくすれば荷重変換器自体が大型化、高重
量化してしまうばかりでなく、その荷重変換器を
用いて荷重測定を行なう必要のある被測定対象物
(例えば、鍛造機械、プレス機械等)に適用でき
る範囲が制限されているという難点があつた。
However, as mentioned above, if the height of the contact structure, pad, and load converter is increased beyond a certain level, buckling phenomenon occurs in the contact structure and the strain-generating body, making it susceptible to tilted loads, making it difficult to detect loads. There is a problem in that the accuracy actually decreases. Furthermore, when a load transducer is inserted into a force transmission system, the height of the strain body cannot be increased.
If it were made larger, not only would the load converter itself become larger and heavier, but it would also be difficult to use the load converter to measure the load on the object being measured (for example, a forging machine, a press machine, etc.). The problem was that the scope of applicability was limited.

また、従来の起歪体1には、第1図Aに示すよ
うに、ひずみゲージ5,6の保護のためにカバー
7,8を溶接等の手段で起歪体1に固着してある
が、このカバー7,8は、感度に影響を与えない
ように薄い板により形成されているため、他物が
当つたとき簡単に穴が開いたり、ひずみゲージ
5,6を損傷したりする事故が発生しがちであつ
た。
Further, as shown in FIG. 1A, the conventional strain body 1 has covers 7 and 8 fixed to the strain body 1 by means such as welding in order to protect the strain gauges 5 and 6. Since the covers 7 and 8 are made of thin plates so as not to affect the sensitivity, they can easily be punctured when hit by other objects or damage the strain gauges 5 and 6. It tended to occur.

本発明は、上述した従来のひずみゲージ式荷重
変換器の欠点を解消すべくなされたもので、その
目的とするところは、小型、軽量で、座屈を生ず
る虞れがなく荷重印加条件が変化しても感度変化
がなく一定の定格出力が得られ、従来の保護カバ
ーを不用化してひずみゲージを有効に保護するこ
とができ、測定精度を大幅に高め得るひずみゲー
ジ式荷重変換器を提供することにある。
The present invention was made in order to eliminate the drawbacks of the conventional strain gauge type load transducer described above.The purpose of the present invention is to make it small and lightweight, and to be able to change load application conditions without causing buckling. To provide a strain gauge type load transducer that can obtain a constant rated output without sensitivity change even when the load is applied, can effectively protect a strain gauge by eliminating the need for a conventional protective cover, and can greatly improve measurement accuracy. There is a particular thing.

本発明は、上記の目的を達成するために、荷重
が印加されると弾性変形する円形柱状、中空円形
柱状、角形柱状または中空角形柱状を呈する柱状
起歪体にひずみゲージを添着してなる荷重変換器
において、前記柱状起歪体の一方の端面側より他
方の端面側に向けて該柱状起歪体の応力の中立線
を軸中心とした所定の深さの穴または貫通孔を前
記柱状起歪体の中心軸に関し等角度間隔に複数個
穿設し、前記各穴または前記各貫通孔の側周面で
あつて該各穴または該各貫通孔の軸中心に関して
対称な部位に相対向して少なくとも2枚のひずみ
ゲージをそれぞれ添着し、前記ひずみゲージによ
りホイートストンブリツジ回路を形成し、前記ホ
イートストンブリツジ回路より印加荷重に応じた
電気信号を得るように構成したことを特徴とした
ものである。
In order to achieve the above-mentioned object, the present invention provides a load formed by attaching a strain gauge to a columnar flexural body having a circular columnar shape, a hollow circular columnar shape, a square columnar shape, or a hollow prismatic columnar shape that elastically deforms when a load is applied. In the converter, a hole or a through hole of a predetermined depth is formed in the columnar flexure body from one end surface side of the columnar flexure body toward the other end surface side with the axis centering on the neutral line of stress of the columnar flexure body. A plurality of holes are formed at equal angular intervals with respect to the central axis of the distorted body, and are opposed to each other in a side circumferential surface of each hole or each through hole that is symmetrical with respect to the axial center of each hole or each through hole. At least two strain gauges are attached to each of the strain gauges, the strain gauges form a Wheatstone bridge circuit, and an electric signal corresponding to the applied load is obtained from the Wheatstone bridge circuit. be.

以下、本発明の実施例を図面をもとに説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第5図AおよびBは、本発明の一実施例の構成
を示す正面中央横断面図および同図−線矢視
方向断面図である。
FIGS. 5A and 5B are a front center cross-sectional view and a cross-sectional view taken in the direction of the line arrow in FIG. 5, showing the configuration of an embodiment of the present invention.

同図において、円筒状起歪体11には、一方の
端面(この場合下端面)側より他方の端面(この
場合上端面)側に向けて、円筒状起歪体11の応
力の中立線12を軸中心とした所定の深さ(上端
面まで貫通しない深さ)の穴13,13……が円
筒状起歪体11の中心軸を中心として等角度間隔
に複数個(この場合4個)穿設されている。各穴
13には、その中心軸を狭んで内方側と外方側の
対称位置にそれぞれひずみゲージ14および15
が接着、等の手段により添着されている。ここ
で、起歪体11の応力の中立線12とは、この場
合、起歪体の横断面において該起歪体11の外形
線(外側輪郭線)と相似形をなす線であつて、そ
の断面積を内方側と外方側に2分する線をいう。
In the figure, the cylindrical strain body 11 has a stress neutral line 12 extending from one end surface (lower end surface in this case) to the other end surface (upper end surface in this case). A plurality of holes 13, 13, . It is perforated. In each hole 13, strain gauges 14 and 15 are installed at symmetrical positions on the inner and outer sides of the center axis.
is attached by adhesive or other means. Here, the stress neutral line 12 of the flexure body 11 is a line that is similar to the outer contour line (outer contour line) of the flexure body 11 in the cross section of the flexure body 11; A line that divides the cross-sectional area into two parts: inner and outer.

このように構成された上記実施例の作用につき
第6図A〜Cを参照しつつ説明する。
The operation of the above-described embodiment configured in this manner will be explained with reference to FIGS. 6A to 6C.

円筒状起歪体11に、その中心軸方向に沿つて
圧縮荷重が印加されると、該起歪体11は中心軸
方向に沿う方向には圧縮ひずみを生じ、圧縮ひず
み検出用ひずみゲージ14A(特に図示せず)の
抵抗値は減少し、中心軸と直交する方向には引張
ひずみを生じ引張ひずみ検出用ひずみゲージ14
D(特に図示せず)の抵抗値は増加する。而して
これらのひずみゲージにより、図示は省略した
が、周知のように一重または二重のホイートスト
ンブリツジ回路を形成してあるため、そのホイー
トストンブリツジ回路の出力端からは、印加荷重
に相応した電気信号を取り出すことができる。
When a compressive load is applied to the cylindrical strain body 11 along its central axis direction, the strain body 11 generates compressive strain in the direction along the central axis direction, and the compressive strain detection strain gauge 14A ( (not particularly shown) decreases, and tensile strain occurs in the direction perpendicular to the central axis of the tensile strain detection strain gauge 14.
The resistance value of D (not specifically shown) increases. Although not shown, these strain gauges form a single or double Wheatstone bridge circuit as is well known, so that the output terminal of the Wheatstone bridge circuit receives a signal corresponding to the applied load. The electrical signal can be extracted.

すなわち、第6図Aに示すように起歪体11の
受圧面に垂直に等分布の荷重が印加した場合に
は、ひずみ分布は一様となり、起歪体11の外周
面16、内周面17および穴13の内周面のひず
みは等しくなる。従つて、この場合は明らかにひ
ずみゲージ14,15によつて形成されるホイー
トストンブリツジ回路からは印加荷重に正確に対
応する電気信号(検出出力)が得られる。
That is, when a uniformly distributed load is applied perpendicularly to the pressure-receiving surface of the strain body 11 as shown in FIG. The strains on the inner peripheral surfaces of hole 17 and hole 13 are equal. Therefore, in this case it is clear that the Wheatstone bridge circuit formed by the strain gauges 14, 15 provides an electrical signal (detection output) that exactly corresponds to the applied load.

第6図Bに示すように起歪体11の内側に荷重
が集中して印加された場合には、受圧面における
ひずみ分布は、起歪体11の内周縁部で最大とな
り外周縁部に近づくにつれて減少しているが、穴
13の部分は応力的に中立な点であるため、当該
穴13の内周壁面に添着したひずみゲージ14,
15が検出するひずみゲージに差はなく、偏荷重
が印加された場合でも中立点に穿設された穴13
の両側面(180゜対向する周側面同士)は対称であ
り、そこに添着されたひずみゲージの絶対値は同
じであるから、ホイートストンブリツジを形成す
ることにより、偏荷重による差分は完全にキヤン
セルされる。従つて、この場合も、ひずみゲージ
14,15によつて形成されるホイートストンブ
リツジ回路から印加荷重に対応する電気信号を得
ることができる。
As shown in FIG. 6B, when a load is concentrated and applied to the inside of the strain body 11, the strain distribution on the pressure-receiving surface becomes maximum at the inner peripheral edge of the strain body 11 and approaches the outer peripheral edge. However, since the hole 13 is a stress-neutral point, the strain gauge 14 attached to the inner circumferential wall of the hole 13,
There is no difference in the strain gauge detected by 15, and even when an unbalanced load is applied, the hole 13 drilled at the neutral point
Both sides (circumferential sides facing each other at 180°) are symmetrical, and the absolute values of the strain gauges attached thereto are the same, so by forming a Wheatstone bridge, the difference due to unbalanced loads can be completely canceled. be done. Therefore, in this case as well, an electrical signal corresponding to the applied load can be obtained from the Wheatstone bridge circuit formed by the strain gauges 14 and 15.

更にまた、第6図Cに示すように起歪体11の
外側に荷重が集中して印加された場合にも、上述
と同様の理由により偏荷重は、ホイートストンブ
リツジ回路内でキヤンセルされて、印加荷重に対
応する電気信号を得ることができる。
Furthermore, even when a load is applied in a concentrated manner to the outside of the strain-generating body 11 as shown in FIG. An electrical signal corresponding to the applied load can be obtained.

尚、応力の中立線は、この場合起歪体11の横
断面において、該起歪体11の外形線(外側輪郭
線)と相似形であつて、その断面積を内方と外方
に2等分する線になることは、実験的に確かめら
れている。この中立線上では、荷重印加条件が変
つてもそこに発生するひずみは、公称ひずみ(理
論ひずみともいう)、すなわち起歪体の断面積、
ヤング率および荷重から計算で得られるひずみに
近く、偏荷重を受けても同一定格出力が得られ
る。従つて、上述した実施例のように、応力の中
立線上に穴を穿設し、その内面の対称位置にひず
みゲージ14,15を添着することにより、発生
ひずみの絶対値が同じとなるため、偏荷重による
差分は、ホイートストンブリツジ回路によりキヤ
ンセルされ、一定の定格出力を得ることができ
る。
In this case, the neutral line of stress is similar to the outer contour line (outer contour line) of the strain body 11 in the cross section of the strain body 11, and its cross-sectional area is divided into two directions inwardly and outwardly. It has been experimentally confirmed that the line divides into equal parts. On this neutral line, even if the load application conditions change, the strain that occurs there is the nominal strain (also called the theoretical strain), that is, the cross-sectional area of the strain body,
The strain is close to that calculated from Young's modulus and load, and the same rated output can be obtained even under uneven load. Therefore, as in the embodiment described above, by drilling a hole on the neutral line of stress and attaching strain gauges 14 and 15 at symmetrical positions on the inner surface, the absolute values of the generated strain will be the same. The difference due to unbalanced load is canceled by the Wheatstone bridge circuit, and a constant rated output can be obtained.

また、上記実施例のようにひずみゲージ14,
15は、起歪体11の内部、すなわち起歪体11
の下端部から穿設された穴13の内周面に添着さ
れているため、外部から物が当つても頑丈な起歪
体11自体が保護カバーの機能を果すこととなり
ひずみゲージは完全に保護される。このことは同
時に、従来必要であつたカバーが不要化され、そ
の結果起歪体11の形状が簡単、小型、軽量とな
るばかりでなく、応力計算において起歪体11の
みの形状を考慮すればよいから計算が簡単にな
り、安全設計が容易となる利点が得られる。
In addition, as in the above embodiment, the strain gauge 14,
15 is the inside of the strain body 11, that is, the strain body 11
Since it is attached to the inner circumferential surface of the hole 13 drilled from the lower end, the strain gauge is completely protected even if it is hit by an object from the outside, as the sturdy strain element 11 itself functions as a protective cover. be done. At the same time, this eliminates the need for a conventionally necessary cover, and as a result, the shape of the strain-generating body 11 is not only simple, compact, and lightweight, but also when considering only the shape of the strain-generating body 11 in stress calculations. This has the advantage of simplifying calculations and facilitating safe design.

さらに、起歪体11の高さを低くしても正確な
荷重検出ができるので、座屈を生ずる虞れは全く
なく、薄形化が可能であるが故に適用範囲を大幅
に拡張することができる。
Furthermore, since accurate load detection can be performed even if the height of the strain-generating body 11 is reduced, there is no risk of buckling, and since it can be made thinner, the range of application can be greatly expanded. can.

尚、本発明は、上述し且つ実施例に示したもの
に何ら限定されるものではなく、本発明の要旨を
逸脱しない範囲で種々の変形実態が可能である。
Note that the present invention is not limited to what has been described above and shown in the examples, and various modifications can be made without departing from the gist of the present invention.

例えば、柱状起歪体11として、実施例におい
ては円筒状、換言すれば中空円形柱状のものにつ
いて説明したが、円形(無空の)柱状、中空角形
柱状、または角形(無空の)柱状等を呈する柱状
起歪体であつても適用可能である。
For example, in the embodiment, the columnar strain-generating body 11 is cylindrical, in other words, a hollow circular column. It is also applicable to columnar flexure bodies exhibiting

また、ひずみゲージ14,15を添着する穴1
3は、4〜8個が適当であるが、容量、形状、等
に応じて適宜増減し得ることは勿論可能である。
そして、ひずみゲージ14,15の添着方向は、
起歪体11の中心線(穴13の中心線でもよい)
に沿う方向のみであつてもよいが、これに直交す
る方向、すなわち穴13の円周方向にも添着すれ
ば、感度が高くなり有利である。
In addition, holes 1 to which strain gauges 14 and 15 are attached
3 is suitably 4 to 8, but it is of course possible to increase or decrease the number as appropriate depending on the capacity, shape, etc.
The direction in which the strain gauges 14 and 15 are attached is as follows.
Center line of strain body 11 (may be center line of hole 13)
Although it may be attached only in the direction along this, it is advantageous to attach it also in the direction perpendicular to this, that is, in the circumferential direction of the hole 13, since the sensitivity will be increased.

さらにまた、上記実施例の場合、各穴13は、
起歪体11の下端面から所定の深さのものとして
示したが、該起歪体11の上端面に至る貫通孔と
してもよい。その場合、各穴13または孔の開口
端は、ひずみゲージ14,15の吸湿による劣化
を防止するため、シーリング手段により密閉して
おくことが望ましい。
Furthermore, in the case of the above embodiment, each hole 13 is
Although shown as having a predetermined depth from the lower end surface of the strain generating body 11, it may also be a through hole reaching the upper end surface of the strain generating body 11. In that case, each hole 13 or the opening end of the hole is desirably sealed by a sealing means to prevent deterioration of the strain gauges 14 and 15 due to moisture absorption.

以上詳述したように本発明によれば、小型、軽
量で座屈を生ずる虞れが全くなく、荷重印加条件
が変化しても感度変化がなく一定の定格出力が得
られ、従来欠くことができなかつたひずみゲージ
保護用カバーを不要化してひずみゲージを有効に
保護することができ、印加荷重の測定精度を大幅
に高め得るひずみゲージ式荷重変換器を提供する
ことができる。
As detailed above, according to the present invention, it is small and lightweight, there is no risk of buckling, and even if the load application conditions change, a constant rated output can be obtained without any change in sensitivity. It is possible to provide a strain gauge type load transducer that can effectively protect the strain gauge by eliminating the need for a cover for protecting the strain gauge, and can significantly improve the measurement accuracy of applied loads.

【図面の簡単な説明】[Brief explanation of drawings]

第1図AおよびBは従来のひずみゲージ式荷重
変換器の円筒状起歪体の正面中央横断面図および
同図−線矢視方向断面図、第2図、第3図
A,B、第4図A,Bは、それぞれ第1図示実施
例の作用を説明するための図、第5図AおよびB
は、本発明の一実施例の構成をそれぞれ示す正面
中央断面図および同図−線矢視方向断面図、
第6図A,B,Cは第5図示の実施例の作用を説
明するための図である。 11……円筒状起歪体、12……応力の中立
線、13……穴、14,15……ひずみゲージ、
16……外周面、17……内周面。
1A and 1B are front center cross-sectional views of the cylindrical strain body of a conventional strain gauge type load transducer, and sectional views taken in the direction of the line arrows in the same figure; 4A and 4B are diagrams for explaining the operation of the first illustrated embodiment, and FIGS. 5A and B are respectively diagrams for explaining the operation of the first illustrated embodiment.
are a front center cross-sectional view and a cross-sectional view taken in the direction of the arrow in the same figure, respectively, showing the configuration of an embodiment of the present invention;
6A, B, and C are diagrams for explaining the operation of the embodiment shown in FIG. 5. FIG. 11... Cylindrical strain body, 12... Neutral line of stress, 13... Hole, 14, 15... Strain gauge,
16...Outer peripheral surface, 17...Inner peripheral surface.

Claims (1)

【特許請求の範囲】[Claims] 1 荷重が印加されると弾性変形する円形柱状、
中空円形柱状、角形柱状または中空角形柱状を呈
する柱状起歪体にひずみゲージを添着してなる荷
重変換器において、前記柱状起歪体の一方の端面
側より他方の端面側に向けて該柱状起歪体の応力
の中立線を軸中心とした所定の深さの穴または貫
通孔を前記柱状起歪体の中心軸に関し等角度間隔
に複数個穿設し、前記各穴または前記各貫通孔の
側周面であつて該各穴または該貫通孔の軸中心に
関して対称な部位に相対向して少なくとも2枚の
ひずみゲージをそれぞれ添着し、前記ひずみゲー
ジによりホイートストンブリツジ回路を形成し、
前記ホイートストンブリツジ回路より印加荷重に
応じた電気信号を得るように構成したことを特徴
とするひずみゲージ式荷重変換器。
1. A circular column that deforms elastically when a load is applied.
In a load transducer in which a strain gauge is attached to a columnar flexural body having a hollow circular column shape, a prismatic column shape, or a hollow prismatic column shape, the columnar flexure body A plurality of holes or through holes having a predetermined depth centered on the neutral line of stress of the strain body are bored at equal angular intervals with respect to the central axis of the columnar strain body, and each of the holes or through holes is At least two strain gauges are attached oppositely to each other on the side circumferential surface of each hole or at a symmetrical portion with respect to the axial center of the through hole, and the strain gauges form a Wheatstone bridge circuit;
A strain gauge type load transducer characterized in that the Wheatstone bridge circuit is configured to obtain an electrical signal according to an applied load.
JP4892483A 1983-03-25 1983-03-25 Strain gage type load converter Granted JPS59174726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4892483A JPS59174726A (en) 1983-03-25 1983-03-25 Strain gage type load converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4892483A JPS59174726A (en) 1983-03-25 1983-03-25 Strain gage type load converter

Publications (2)

Publication Number Publication Date
JPS59174726A JPS59174726A (en) 1984-10-03
JPH0326338B2 true JPH0326338B2 (en) 1991-04-10

Family

ID=12816799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4892483A Granted JPS59174726A (en) 1983-03-25 1983-03-25 Strain gage type load converter

Country Status (1)

Country Link
JP (1) JPS59174726A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814329B1 (en) * 1991-03-19 2004-05-26 Japan Electronics Industry, Ltd. Device for measuring vehicle wheel forces

Also Published As

Publication number Publication date
JPS59174726A (en) 1984-10-03

Similar Documents

Publication Publication Date Title
US10996121B2 (en) Axial force pressure transducer
JP4397629B2 (en) Torque sensor for calibrating screw fasteners
US4738140A (en) Apparatus for performing pressure, normal force and bending measurements on pipelines
US9395256B2 (en) Low profile multi-axis load cell
US3180139A (en) Force transducers
US5505092A (en) Non-invasive fluid condition sensing transducer
US9791332B2 (en) Rod-shaped force transducer with improved deformation behavior
US4423793A (en) Load cell of integral unitary construction containing a solid disc-shaped measuring section
US20060107761A1 (en) Multi-axis load cell body
JP2515645B2 (en) Load cell and its processing method
US4453422A (en) Strain gage load cell having improved sensitivity
US3196676A (en) Shear strain type force measuring device
US3088083A (en) Transducer
US3866157A (en) Load cell
JPH0326338B2 (en)
GB2050624A (en) Strain transducers
JP6696026B1 (en) Load cell
US4148219A (en) Strain gage load cell
JP2527551B2 (en) Thin load cell
JPH0194234A (en) Load converter
JPH02641Y2 (en)
JP6364637B2 (en) Load transducer
JPH06207867A (en) Strain gage type load converter
JPH0743626Y2 (en) Structure of the cylindrical load cell body
JPS6225697Y2 (en)