JPH03263014A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH03263014A
JPH03263014A JP6102290A JP6102290A JPH03263014A JP H03263014 A JPH03263014 A JP H03263014A JP 6102290 A JP6102290 A JP 6102290A JP 6102290 A JP6102290 A JP 6102290A JP H03263014 A JPH03263014 A JP H03263014A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
spacer
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6102290A
Other languages
Japanese (ja)
Inventor
Saburo Oikawa
及川 三郎
Yasuhiro Mochizuki
康弘 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6102290A priority Critical patent/JPH03263014A/en
Publication of JPH03263014A publication Critical patent/JPH03263014A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an excellent display quality by using materials having the same refractive index as liquid crystal as spacer materials for gap adjustment. CONSTITUTION:Spacers having almost the same refractive index as liquid crystal enclosed between a pair of liquid crystal display substrates 11 and 12 facing each other are used as spacers 15 for gap adjustment which uniformly set the gap between liquid crystal display substrates with high precision. Consequently, refraction is suppressed as much as possible even when the back light for liquid crystal display is projected to spacers 15 for the gap adjustment in liquid crystal, and the image induced by the light refraction of spacers 15 is not projected on the display face, and the reflection of external light is prevented. Thus, the contrast is improved and the display quality is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示装置の二つの基板間に厚み間隔を精
度良く液晶を封するために構成される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is configured to seal a liquid crystal between two substrates of a liquid crystal display device with high accuracy in thickness interval.

ギャップ制御スペーサの適用による液晶表示装置の構造
に関する。
This invention relates to the structure of a liquid crystal display device by applying gap control spacers.

〔従来の技術〕[Conventional technology]

互に画素電極を有する2枚の基板を対向配置して一対と
し、これら基板間を所定の間隔に保ち基板間に液晶を封
入した液晶表示装置において、この基板間隔が厚すぎた
り、不均一であるとこの液晶表示装置の表示に干渉線が
生じたり1表示応答特性、スイッチング電圧変動等によ
る色調ばらつきが生じ、液晶表示装置として好ましくな
い。従って、液晶表示装置の特性を良好とするために、
液晶表示基板間の間隔を薄く精度良く均一にする必要が
あった。
In a liquid crystal display device in which two substrates each having a pixel electrode are placed facing each other to form a pair, and a predetermined distance is maintained between the substrates and liquid crystal is sealed between the substrates, the distance between the substrates is too thick or uneven. If this occurs, interference lines will occur in the display of the liquid crystal display device, and color tone variations will occur due to single display response characteristics, switching voltage fluctuations, etc., and this is not desirable as a liquid crystal display device. Therefore, in order to improve the characteristics of the liquid crystal display device,
It was necessary to make the spacing between the liquid crystal display substrates thin and uniform with high accuracy.

この目的のために、基板間にプラスチックやガラス等か
らなる直径5〜10μm程度の球状粒子あるいは直径5
〜10μm程度、長さ数10〜数100μm程のファイ
バー状のギャップ用スペーサが用いられている。
For this purpose, spherical particles made of plastic, glass, etc. with a diameter of about 5 to 10 μm or
A fiber-shaped gap spacer with a length of about 10 μm and a length of several tens to several hundreds of μm is used.

この種の装置として関連するものには、特開昭62−1
29819号、特開昭62−129820号、特開昭6
4−91117号等が挙げられる。
Related devices of this type include Japanese Unexamined Patent Publication No. 62-1
No. 29819, JP-A-62-129820, JP-A-6
No. 4-91117 and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術ではギャップ調整には十分対応されていた
が、スペーサの材質選択に配慮がなされておらず画素不
良誘発の問題があった。すなわち、従来技術のみで組立
てた液晶表示装置を実線に光を投光し画像を表示した場
合1画面にギャップ調整用スペーサの影が表映され画質
が見難く、またコントラストも低下する。特に投射型の
液晶表示装置では、スペーサが拡大投影され、非常に目
に付きやすく、好ましくない。
Although the above-mentioned conventional technology sufficiently deals with gap adjustment, no consideration is given to the selection of the material of the spacer, leading to the problem of pixel failure. That is, when a liquid crystal display device assembled using only the conventional technology projects light along a solid line to display an image, the shadow of the gap adjustment spacer is displayed on one screen, making it difficult to see the image quality and lowering the contrast. In particular, in a projection type liquid crystal display device, the spacer is enlarged and projected, making it very noticeable and undesirable.

本発明は上述した問題点を解決し、ギャップ調整用スペ
ーサの影を目立たなくし、かつコントラストを向上させ
ることにより、優れた表示品質を得ることが8来る液晶
表示装置を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and provide a liquid crystal display device that can obtain excellent display quality by making the shadow of the gap adjustment spacer less noticeable and improving contrast. .

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するためには、液晶゛表示用基板間隔を
精度良く均一に設定するためのギャップ調整用スペーサ
として、その屈折率が、対向配置した一対の液晶表示用
基板間に封入する液晶の屈折率とほぼ同等のスペーサを
用いることにある。
In order to achieve the above objective, the refractive index of the spacer is used as a gap adjustment spacer to accurately and uniformly set the distance between the liquid crystal display substrates. The purpose is to use a spacer whose refractive index is approximately the same.

また、上記目的を達成′するための第2の方法として、
適切な光透過率を有するスペーサを用いることにある。
In addition, as a second method to achieve the above purpose,
The goal is to use a spacer with appropriate light transmittance.

この発明の実施に当ってのスペーサの材質は、液晶に対
して化学的に安定な球状及びファイバ状の無機材料又は
有機材料及びこれらの複合材料を用いることができる。
In carrying out the present invention, the spacer may be made of spherical or fibrous inorganic or organic materials that are chemically stable with respect to liquid crystals, or composite materials thereof.

〔作用〕[Effect]

以上のような構成によれば、液晶表示のためのバックラ
イトの光は液晶内のギャップ調整用スペーサに投光され
ても屈折が極力押えられ表示面にはスペーサにより光の
屈折で誘発される影像が投影されなくなり、また外光の
反射が防止できてコントラストが向上し表示品質が向上
する。
According to the above configuration, even if the light from the backlight for the liquid crystal display is projected onto the gap adjustment spacers in the liquid crystal, refraction is suppressed as much as possible, and the refraction of the light is induced by the spacers on the display surface. No image is projected, and reflection of external light can be prevented, improving contrast and display quality.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。尚、
これらの図はこの発明を理解されやすくするために概略
的に示してあり、各構成成分の形状及び寸法、配置等の
関係は図示例に限定されるものではない。
An embodiment of the present invention will be described below with reference to FIG. still,
These figures are shown schematically to make the present invention easier to understand, and the relationships in shape, size, arrangement, etc. of each component are not limited to the illustrated examples.

第1図は、本発明の液晶表示の構造を説明する断面図で
ある。
FIG. 1 is a sectional view illustrating the structure of a liquid crystal display according to the present invention.

第1図において、11は第一電極基板を示し。In FIG. 1, 11 indicates a first electrode substrate.

12は第一電極板11と対向配置された第二電極基板を
示す。いずれもガラス板上に透明電極膜のパターンが形
成されたものである。13はシール材で、こ二では紫外
線硬化型接着剤を用い、このシール材13によって基板
11及び基板12を所定領域(以下シール部分と称す)
で貼り合せる。
Reference numeral 12 indicates a second electrode substrate disposed opposite to the first electrode plate 11. In both cases, a pattern of a transparent electrode film is formed on a glass plate. Reference numeral 13 denotes a sealing material. Koji uses an ultraviolet curing adhesive, and the sealing material 13 seals the substrate 11 and the substrate 12 in a predetermined area (hereinafter referred to as the sealing part).
Paste it with

14は液晶材料、15は両基板11.12の間隔を均一
に精度よくギャップ調整するための球状のギャップ調整
用スペーサである。このスペーサ15の屈折率を封入す
る液晶14の屈折率に合せた材料を使うことにより本発
明の特徴が実現する。
14 is a liquid crystal material, and 15 is a spherical gap adjustment spacer for adjusting the gap between both substrates 11 and 12 uniformly and accurately. The features of the present invention are realized by using a material whose refractive index matches the refractive index of the spacer 15 to that of the liquid crystal 14 encapsulating it.

例えば両基板間内に封入する液晶の屈折率が、1.59
〜1,61であればこれに合せて、スペーサ材料の屈折
率も1.58〜1.62にすることで本発明の特徴が実
現する。
For example, the refractive index of the liquid crystal sealed between both substrates is 1.59.
˜1.61, the features of the present invention can be realized by setting the refractive index of the spacer material to 1.58 to 1.62 accordingly.

以下、この発明の組立工程を決めるため投射型の液晶表
示装置の製造方法の一例につき詳細に説明する。
Hereinafter, an example of a method for manufacturing a projection type liquid crystal display device will be described in detail in order to determine the assembly process of the present invention.

まず第一電極基板11は次の工程により製作する。厚さ
1.1mのガラス基板上に、染色材料を塗布し、ホトリ
ソプロセス工程をへて色別にパタニングする。次いで、
保護膜形成後、画素電極を成膜し、さらにホトリソによ
りパターニングする。
First, the first electrode substrate 11 is manufactured by the following steps. A dyeing material is applied onto a glass substrate with a thickness of 1.1 m, and patterned according to color through a photolithography process. Then,
After forming the protective film, a pixel electrode is formed and further patterned by photolithography.

画素電極としてはITO(酸化インジュム瞑の透明電極
)を用いた。次いで、このガラス基板上にスピンコード
によって配向膜(ポリイミドワニス系)を厚さ約1oO
nmになるように塗布し、乾燥後ラビングにより配向性
をもたせた。
ITO (indium oxide transparent electrode) was used as the pixel electrode. Next, an alignment film (polyimide varnish type) was formed on this glass substrate to a thickness of about 1oO by using a spin code.
It was coated so as to have an orientation of 100 nm, and after drying, it was rubbed to give it orientation.

一方第二電極基板12の製作は、通常の半導体製造プロ
セス特に薄膜トランジスタ(TPT)の製作プロセスを
へて製作した。第二電極基板12は第−電極基板同様厚
さ1.1閣のガラス基板上に薄膜トランジスタが基板面
内にマトリックス状に形成されている。さらに、第一電
極板11の配向膜形成と同じプロセスで第二電極基板表
面も処理し最終的に第二電極基板12を製作した。
On the other hand, the second electrode substrate 12 was manufactured through a normal semiconductor manufacturing process, particularly a thin film transistor (TPT) manufacturing process. Like the first electrode substrate, the second electrode substrate 12 is a glass substrate having a thickness of 1.1 mm, and thin film transistors are formed in a matrix in the plane of the substrate. Furthermore, the surface of the second electrode substrate was also treated in the same process as for forming the alignment film of the first electrode plate 11, and finally the second electrode substrate 12 was manufactured.

第−及び第二の電極基板を一対とし、一体とする液晶表
示装置の作製は以下の工程による。
A liquid crystal display device in which a pair of first and second electrode substrates are integrated is manufactured by the following steps.

まず、第一電極基板11(一部間口部として残す)の配
向膜を形成した面の基板周辺部(シール部)に紫外線硬
化接着剤を主成分としたシール材13を印刷法で形成す
る。一方第二電極基板側にも第一電極基板側に形成した
シール材13を対向するように同様にシール材を形成す
る。さて、本発明の特徴の構成は以下のプロセスで実現
する。
First, a sealing material 13 containing an ultraviolet curing adhesive as a main component is formed by a printing method on the substrate peripheral area (sealing area) of the surface on which the alignment film is formed of the first electrode substrate 11 (a portion of which is left as a frontage area). On the other hand, a sealing material is similarly formed on the second electrode substrate side so as to face the sealing material 13 formed on the first electrode substrate side. Now, the configuration of the features of the present invention is realized by the following process.

すなわち、シール材13を形成した第二電極基板のシー
ル材を形成していない内側領域の表面に、ギャップ調整
用スペーサ15としてのビーズを散布する。この散布方
法はビーズを純水に分散させスプレー法により散布する
。この時のビーズの選択が本発明の特徴のポイントであ
るが、あらかじめ測定しである封入用液晶の屈折率と同
等の屈折率を有するビーズを散布することにある。本実
施例では液晶の屈折率1.60 に対して、ビーズの屈
折率1.58 を散布した。ビーズの組成は、5iOz
を主成分としたA 42 z○3.zHO,Mg0tC
ab、Bed、ZnO及び5isNaを添加物としたも
ので、無アルカリのガラスピーズである。
That is, beads as gap adjustment spacers 15 are scattered on the surface of the inner region on which the sealant is not formed, of the second electrode substrate on which the sealant 13 is formed. In this scattering method, beads are dispersed in pure water and dispersed by a spray method. The selection of beads at this time is a key feature of the present invention, and it lies in scattering beads having a refractive index equivalent to the refractive index of the encapsulating liquid crystal, which has been measured in advance. In this example, beads with a refractive index of 1.58 were dispersed while the liquid crystal had a refractive index of 1.60. The composition of the beads is 5iOz
A 42 z○3. zHO, Mg0tC
It contains ab, Bed, ZnO and 5isNa as additives, and is alkali-free glass beads.

添加物の量を調節することで屈折率は1.44〜2.2
5 まで、光透過率は2.1〜78%制御できる。ビー
ズの球径は5.5μmで散布量は約200ケ/程度とし
た。
By adjusting the amount of additives, the refractive index can be adjusted from 1.44 to 2.2.
5, the light transmittance can be controlled from 2.1 to 78%. The spherical diameter of the beads was 5.5 μm, and the amount of spraying was about 200 beads/approximately.

このように構成した第一電極基板11及び第二電極基板
12を互いに配向膜及びシール剤13側が対向するよう
に配置する。この様な状態で加熱圧着しシール材13の
仮接着を行ない一体とする。
The first electrode substrate 11 and the second electrode substrate 12 configured in this manner are arranged so that the alignment film and sealant 13 sides face each other. In this state, heat and pressure bonding is performed to temporarily bond the sealing material 13 to form an integral piece.

その後、封入する(ボート状のカップに入れた)液晶と
一所にこの一体形成した液晶表示用基体を真空装置内に
入れ同時に減圧する。減圧は約1O−3Torr程度と
した。この時、基板間は真空に引かれ基板同志が密着し
ようとする。しかし、基板間には散布したビーズ15が
あるので密着はさまたげられすなわち、第一電極基板1
1と第二電極基板12のギャップはビーズの直径5.5
μm程度に調整される。さらに、液晶封入は、真空でギ
ャップ調整した基体のシールを形成していない開口部を
、同時に真空装置内に設置しである液晶に潰す。
Thereafter, the liquid crystal to be sealed (in a boat-shaped cup) and the liquid crystal display substrate formed integrally with each other are placed in a vacuum device and the pressure is reduced at the same time. The reduced pressure was about 10-3 Torr. At this time, a vacuum is drawn between the substrates and the substrates try to come into close contact with each other. However, since there are beads 15 scattered between the substrates, the adhesion is hindered, that is, the first electrode substrate 1
The gap between 1 and the second electrode substrate 12 is the bead diameter 5.5.
It is adjusted to about μm. Furthermore, liquid crystal encapsulation is performed by simultaneously placing an opening in a vacuum gap-adjusted substrate that does not form a seal into a liquid crystal.

その直後に真空装置内真空度を徐々にリークすることに
より、基体のシール剤開口部より基板間に流入する。基
板間に液晶が充填したら直ちに開口部にシール材13と
同じ材質の接着剤を塗布し基体全体を紫外線照射装置に
よりシール部全体を照射し最終接着と同じに、基板間に
液晶を封入して本発明の液晶表示装置を得る。
Immediately after that, by gradually leaking the vacuum inside the vacuum device, the sealant flows between the substrates through the opening of the base. Immediately after the liquid crystal is filled between the substrates, apply adhesive of the same material as the sealing material 13 to the opening, irradiate the entire seal part with an ultraviolet irradiation device, and seal the liquid crystal between the substrates in the same manner as the final bonding. A liquid crystal display device of the present invention is obtained.

このようにして作製した液晶表示装置の第−電極基体及
び第二電極基体間のギャップ寸法は封止面内61mmX
46mmの範囲で5 、3−0.015μmであった。
The gap size between the first electrode base and the second electrode base of the liquid crystal display device manufactured in this way was 61 mm in the sealing plane.
It was 5.3-0.015 μm in the range of 46 mm.

以上のように本発明の方法で製作した液晶表示装置効果
を以下のようにして評価した。
The effects of the liquid crystal display device manufactured by the method of the present invention as described above were evaluated as follows.

第2図は本発明の効果を評価するための投射型投映シス
テムの概略を示している。図中左より順次光源2.光学
系32本実施例で製作した投射型液晶表示基体1.投射
レンズ4.映像スクリーン5で構成されている。これに
より、投射型液晶表示基体1の表示面積61mX46■
は、スクリーン5上で約110csX83a++に引き
伸されて投映される。従来の基体では、引き伸されて投
映されたスクリーン上の映像に、画素では表示しない影
が無数に映し出され画質不良の一つとなっている。
FIG. 2 schematically shows a projection type projection system for evaluating the effects of the present invention. From the left in the figure, light sources 2. Optical system 32 Projection type liquid crystal display substrate manufactured in this example 1. Projection lens 4. It consists of a video screen 5. As a result, the display area of the projection type liquid crystal display substrate 1 is 61 m x 46 cm.
is enlarged to approximately 110cs x 83a++ and projected on the screen 5. With conventional substrates, countless shadows that are not displayed by pixels are projected on the enlarged and projected image on the screen, which is one of the causes of poor image quality.

これはすでに述べてきたように、ギャップ調整用のスペ
ーサの影である。これに対して1本発明の実施ダで述べ
た構造の投射型液晶表示基体ではこの影像がほとんど見
られなく、スクリーン上での映像画質が極めて良好にで
きた。
As already mentioned, this is the shadow of the spacer for gap adjustment. On the other hand, in the projection type liquid crystal display substrate having the structure described in Embodiment 1 of the present invention, this image was hardly seen, and the image quality on the screen was extremely good.

第3図はスペーサと液晶の屈折率の比とスクリーン上に
おけるスペーサ、特にスペーサの輪郭部分を透過してき
た光強度ロクとスペーサがなく液を示す。光強度比は、
赤、緑、青のそれぞれの色毎に測定したものである。そ
の結果、スペーサの屈折率が液晶のそれの0.97〜1
.12の範囲の場合に光強度比が太きく (I’ /I
o>70%)かつそのバラツキが小さく、即ちむらが少
ないことが判った。
FIG. 3 shows the ratio of the refractive index of the spacer and the liquid crystal, the intensity of light transmitted through the spacer on the screen, especially the outline of the spacer, and the liquid without the spacer. The light intensity ratio is
Measurements were taken for each of the colors red, green, and blue. As a result, the refractive index of the spacer is 0.97 to 1 of that of the liquid crystal.
.. In the range of 12, the light intensity ratio becomes thicker (I'/I
o > 70%) and the variation was small, that is, there was little unevenness.

第4図はスペーサの光透過率とスクリーン上におけるス
ペーサ部分とスペーサがなく液晶のみの部分の光強度比
を示す。バックライト照射1051uxを用い、液晶を
100%ONにした状態及び中間調表示のため一〇Nに
した状態の光強度比を示す。この結果、100%ONの
状態即ち投射光強度が強い場合は、スペーサの光透過率
4%以上でバラツキが少なくなり、−力投射光強度が弱
い場合は、スペーサの光透過率が41%以下でバラツキ
が少なく、スペーサの影が目立たなくなる。
FIG. 4 shows the light transmittance of the spacer and the light intensity ratio between the spacer part and the part without the spacer and only liquid crystal on the screen. Using backlight illumination of 1051 ux, the light intensity ratio is shown when the liquid crystal is turned on 100% and when it is turned on to 10 N for halftone display. As a result, in the 100% ON state, that is, when the intensity of the projected light is strong, the spacer's light transmittance is 4% or more with less variation, and when the projected light intensity is weak, the spacer's light transmittance is 41% or less. There is less variation, and the shadow of the spacer becomes less noticeable.

また、外光の反射が小さくなりコントラストが大きくな
る。スペーサの光透過率の制御はガラスピーズの表面を
コーテイング材で被覆してもよい。
In addition, reflection of external light is reduced and contrast is increased. The light transmittance of the spacer may be controlled by coating the surface of the glass beads with a coating material.

この場合、減圧CVD法でガラスピーズを撹拌しながら
アモルファスSi膜を75〜220人の厚さに堆積させ
たものである。
In this case, an amorphous Si film is deposited to a thickness of 75 to 220 nm while stirring glass beads using a low pressure CVD method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スペーサによる影を目立たなくできる
ので、画質のよい表示装置が得られる。
According to the present invention, since the shadow caused by the spacer can be made less noticeable, a display device with good image quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の液晶表示装置の概略断面図、第2図
は本発明の液晶表示装置を評価するための投映システム
の構成図、第3図及び第4図は本発明のスペーサの屈折
率及び光透過率と投射像のバラツキを示す線図である。 1・・・液晶表示基体、2・・・光源、3・・・光学系
、4・・・投射レンズ、訃・・映像スクリーン、11・
・・第一電極基板、12・・・第二電極基板、13・・
・シール材、14・・・液晶材料、15・・・ギャップ
調整用スペーサ。
FIG. 1 is a schematic sectional view of the liquid crystal display device of the present invention, FIG. 2 is a configuration diagram of a projection system for evaluating the liquid crystal display device of the present invention, and FIGS. 3 and 4 are refraction of the spacer of the present invention. FIG. 3 is a diagram illustrating variations in ratio, light transmittance, and projected image. DESCRIPTION OF SYMBOLS 1...Liquid crystal display base, 2...Light source, 3...Optical system, 4...Projection lens, and...Video screen, 11...
...First electrode substrate, 12...Second electrode substrate, 13...
- Sealing material, 14... Liquid crystal material, 15... Spacer for gap adjustment.

Claims (1)

【特許請求の範囲】 1、対向配置する一対の基板のギャップを調整するスペ
ーサを介し、該基板間に液晶を封入し、シール材で貼り
合せてなる液晶表示装置において、該ギャップ調整用ス
ペーサ材料としてその屈折率が該液晶の屈折率と同等の
材質を用いたことを特徴とする液晶表示装置。 2、ギャップ調整スペーサの屈折率が液晶の屈折率の0
.97〜1.12倍の範囲である無機材料及び有機材料
からなることを特徴とする請求項第1項記載の液晶表示
装置。 3、対向配置する一対の基板のギャップを調整するスペ
ーサを介し、該基板間に液晶を封入し、シール材で貼合
せて成る液晶表示装置において、該ギャップ調整用スペ
ーサの光透過率は4〜41%とすることを特徴とする液
晶表示装置。 4、請求項第1項又は第3項記載の液晶表示装置におい
て、基材の表面に適当な屈折率及び/又は光透過率を有
する膜をコーティングして成るスペーサを用いたことを
特徴とする液晶表示装置。 5、請求項第1項又は第3項記載の液晶表示装置におい
て、光透過方式又は光反射方式の投射型として拡大され
た映像を用いることを特徴とする液晶表示装置。
[Claims] 1. In a liquid crystal display device in which liquid crystal is sealed between a pair of substrates disposed facing each other via a spacer for adjusting the gap between the substrates and the substrates are bonded together with a sealing material, the spacer material for adjusting the gap is provided. A liquid crystal display device characterized in that a material having a refractive index equivalent to that of the liquid crystal is used as the material. 2. The refractive index of the gap adjustment spacer is 0 of the refractive index of the liquid crystal.
.. 2. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is made of an inorganic material and an organic material in a range of 97 to 1.12 times. 3. In a liquid crystal display device in which liquid crystal is sealed between a pair of substrates disposed facing each other via a spacer for adjusting the gap between the substrates and the substrates are bonded together with a sealing material, the light transmittance of the spacer for adjusting the gap is 4 to 4. 41%. 4. The liquid crystal display device according to claim 1 or 3, characterized in that a spacer is used, which is formed by coating the surface of the base material with a film having an appropriate refractive index and/or light transmittance. LCD display device. 5. The liquid crystal display device according to claim 1 or 3, wherein the liquid crystal display device uses an enlarged image as a projection type of a light transmission type or a light reflection type.
JP6102290A 1990-03-14 1990-03-14 Liquid crystal display device Pending JPH03263014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6102290A JPH03263014A (en) 1990-03-14 1990-03-14 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6102290A JPH03263014A (en) 1990-03-14 1990-03-14 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH03263014A true JPH03263014A (en) 1991-11-22

Family

ID=13159269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6102290A Pending JPH03263014A (en) 1990-03-14 1990-03-14 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH03263014A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202340A (en) * 1998-01-13 1999-07-30 Mitsubishi Electric Corp Liquid crystal display device
JP2006235398A (en) * 2005-02-25 2006-09-07 Kyocera Corp Liquid crystal display device and display body
US20090256977A1 (en) * 2008-04-11 2009-10-15 Pixeloptics Inc. Electro-active diffractive lens and method for making the same
US9019459B2 (en) 2010-02-26 2015-04-28 Sharp Kabushiki Kaisha Liquid crystal display panel
US9588396B2 (en) 2012-02-07 2017-03-07 Mitsui Chemicals, Inc. Laser patterning of conductive films for electro-active lenses

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202340A (en) * 1998-01-13 1999-07-30 Mitsubishi Electric Corp Liquid crystal display device
JP2006235398A (en) * 2005-02-25 2006-09-07 Kyocera Corp Liquid crystal display device and display body
JP4594132B2 (en) * 2005-02-25 2010-12-08 京セラ株式会社 Liquid crystal display device and display body
US20090256977A1 (en) * 2008-04-11 2009-10-15 Pixeloptics Inc. Electro-active diffractive lens and method for making the same
US8523354B2 (en) * 2008-04-11 2013-09-03 Pixeloptics Inc. Electro-active diffractive lens and method for making the same
US8830408B2 (en) 2008-04-11 2014-09-09 Hpo Assets Llc Electro-active diffractive lens and method for making the same
US9019459B2 (en) 2010-02-26 2015-04-28 Sharp Kabushiki Kaisha Liquid crystal display panel
US9588396B2 (en) 2012-02-07 2017-03-07 Mitsui Chemicals, Inc. Laser patterning of conductive films for electro-active lenses

Similar Documents

Publication Publication Date Title
JPS63128315A (en) Liquid crystal display element
JPH10213792A (en) Liquid crystal display device
JPH08146422A (en) Liquid crystal display device and production
CN106019723A (en) Display substrate and preparation method thereof and display device
JPH03263014A (en) Liquid crystal display device
CN108594512A (en) The production method of color membrane substrates
JPS62239126A (en) Liquid crystal display panel and its production
WO2020019469A1 (en) Liquid crystal display panel and manufacturing method therefor
JPH01265231A (en) Liquid crystal display device
JP2004069957A (en) Liquid crystal display element
JPS63113424A (en) Liquid crystal display element
JP3896191B2 (en) Color filter and color liquid crystal display device
JPH08328023A (en) Production of liquid crystal display device
JPS59109029A (en) Liquid crystal display device for full color display
JPH04178622A (en) Liquid crystal display device and production thereof
JPH0363628A (en) Spacer and formation thereof
JPH04151122A (en) Liquid crystal display unit
JPH11202313A (en) Liquid crystal display element
KR100255593B1 (en) Liquid crystal display
JP2002131759A (en) Liquid crystal display device
JPH112822A (en) Liquid crystal display device and its manufacture
JPH0414021A (en) Liquid crystal display panel and its manufacture
JPH10161136A (en) Liquid crystal display device and its production
KR20050015026A (en) High aperture ratio color liquid crystal display
JPH09329786A (en) Liquid crystal display element and its manufacture