JPH03262920A - Contactless displacement sensor - Google Patents

Contactless displacement sensor

Info

Publication number
JPH03262920A
JPH03262920A JP6328390A JP6328390A JPH03262920A JP H03262920 A JPH03262920 A JP H03262920A JP 6328390 A JP6328390 A JP 6328390A JP 6328390 A JP6328390 A JP 6328390A JP H03262920 A JPH03262920 A JP H03262920A
Authority
JP
Japan
Prior art keywords
magnetic field
frequency
magnetic
magnet
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6328390A
Other languages
Japanese (ja)
Inventor
Masanori Ueda
政則 上田
Noboru Wakatsuki
昇 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6328390A priority Critical patent/JPH03262920A/en
Publication of JPH03262920A publication Critical patent/JPH03262920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To detect the quantity of position displacement and the quantity of angular displacement at the same time by one sensor by modulating magnetic fields which are produced by two magnets with different frequencies, and detecting the resistance variation of a magneto-resistance element as voltage variation. CONSTITUTION:The leak generated when pieces of main magnetic flux from a couple of fixed magnets 51 and 52 pass magnetic metal pieces 53 and 54 intersects a sense current is flowing in an MR element 61 at right angles, and its extent is maximum nearby the magnets 51 and 52 and minimum almost in the middle between the magnets 51 and 52. When a sensor part 55 is moved toward the magnet 51, a 1st magnetic field B51 operating on the element 61 increases, so the resistance value of the element 61 varies. Consequently, the quantity of variation in the relative position between a magnetic circuit 50 and the sensor part 55 is detected as variation in resistance value. When a frequency-modulated exciting current is supplied to electromagnets 57 and 58 on the sensor part 55, the electromagnets 57 and 58 are changed in polarity alternately every second and pieces of magnetic flux which change in direction with frequency are produced from those magnetic poles.

Description

【発明の詳細な説明】 〔概要〕 非接触変位センサに関し、 一つのセンサで位置変位量と角度変位量とを同時検出す
ることを目的とし、 離隔して対向配置する二対の第1および第2の磁石と、
前記第1の磁石の極性を第1の周波数で交番反転する第
1の磁界変調手段と、前記第2の磁石の極性を前記第1
の周波数と異なる第2の周波数で交番反転する第2の磁
界変調手段と、前記第1の磁石および第2の磁石から発
生する第1の磁界および第2の磁界内に介在し、これら
の磁界の変化を抵抗値の変化として捕らえる磁気抵抗素
子と、該磁気抵抗素子の抵抗値変化を電気信号に変換す
る変換手段と、該電気信号の中から前記第1の周波数お
よび第2の周波数成分を抽出し、各々を第1の抽出信号
および第2の抽出信号として出力する抽出手段と、を備
えて構成する。
[Detailed Description of the Invention] [Summary] Regarding a non-contact displacement sensor, the purpose is to simultaneously detect the amount of positional displacement and the amount of angular displacement with one sensor. 2 magnets and
a first magnetic field modulating means that alternately inverts the polarity of the first magnet at a first frequency;
a second magnetic field modulating means that alternatingly inverts at a second frequency different from the frequency of the first magnet and the second magnetic field generated from the first magnet and the second magnet; a magnetoresistive element that captures a change in resistance value as a change in resistance value; a conversion means that converts the change in resistance value of the magnetoresistive element into an electrical signal; and extracting means for extracting and outputting each as a first extracted signal and a second extracted signal.

〔産業上の利用分野〕[Industrial application field]

本発明は、非接触変位センサに関し、特に、強磁性金属
抵抗素子(MR素子: magnetoresisti
veeie+5ent)や半導体磁気抵抗素子あるいは
ホール素子などの磁気抵抗素子を用いた非接触変位セン
サに関する。
The present invention relates to a non-contact displacement sensor, and particularly to a ferromagnetic metal resistance element (MR element).
The present invention relates to a non-contact displacement sensor using a magnetoresistive element such as a semiconductor magnetoresistive element or a Hall element.

近年、情報化社会の発展に伴って産業機器、事務機器、
自動車などの各分野でデータを直接コンピュータに入力
できる各種センサ類の需要が増大している。例えば、磁
気抵抗素子を用いた非接触変位センサは、摩耗や電気的
雑音などの不都合を生じないのでコンピュータとのイン
ターフェース性に優れている。特に、MR素子を用いた
ものは、InSb素子を用いたものに比べて温度特性が
1桁以上も優れ、また、低磁界での磁界感度も高い特徴
があり、さらに、シリコンデバイスと類似の薄膜製造プ
ロセスを採用でき微細化できる利点もある。
In recent years, with the development of the information society, industrial equipment, office equipment,
Demand for various sensors that can input data directly into computers is increasing in various fields such as automobiles. For example, a non-contact displacement sensor using a magnetoresistive element has excellent interfacing with a computer because it does not cause problems such as wear or electrical noise. In particular, devices using MR elements have temperature characteristics that are more than an order of magnitude better than those using InSb elements, and have high magnetic field sensitivity at low magnetic fields. It also has the advantage of being able to adopt a manufacturing process and be miniaturized.

MR素子は、第8図に示すように、一方向電流(センス
電流i〉を流した強磁性体薄膜10に、電流iと交差す
る磁束Bを与えると、強磁性体薄膜10の端子間抵抗値
が変化するいわゆる磁気抵抗効果(magnetore
sistance effect)を利用するもので、
その応用例は以下に示される。
As shown in FIG. 8, in the MR element, when a magnetic flux B crossing the current i is applied to a ferromagnetic thin film 10 through which a unidirectional current (sense current i) is passed, the resistance between the terminals of the ferromagnetic thin film 10 increases. The so-called magnetoresistance effect (magnetoresistance effect) whose value changes
sistance effect).
An example of its application is shown below.

〔従来の技術〕[Conventional technology]

すなわち、第9図は、MR素子16を用いた変位センサ
の従来例であり、位置変位量を検出するものである。こ
のセンサでは、お互いの極性(N、S)を逆向きにした
一対の磁石11.12を対向して配置する。さらに、こ
れらの磁石11.12間を磁性金属13.14で結合し
て磁気回路15を構成し、この磁気回路15の内部にM
R素子16を移動可能に配置する。
That is, FIG. 9 shows a conventional example of a displacement sensor using the MR element 16, which detects the amount of positional displacement. In this sensor, a pair of magnets 11 and 12 with opposite polarities (N, S) are placed facing each other. Furthermore, these magnets 11 and 12 are coupled with magnetic metal 13 and 14 to form a magnetic circuit 15, and an M
The R element 16 is arranged movably.

このような構成において、磁石1112から発生する主
磁束17.18は磁性金属13.14の内部を通過する
が、この際、磁気口1115の閉空間中に漏洩磁界(模
式的に4つの矢印19〜22で表す)が発生し、漏洩磁
界19〜22は磁石11.12の直近で最大、一対の磁
石11.12間で最小となる。今、MR素子I6を移動
させると、MR素子16に働く磁界の強さの変化に伴っ
てMR素子16の抵抗値が変化し、この変化から位置変
位量を検出できる。
In such a configuration, the main magnetic flux 17.18 generated from the magnet 1112 passes through the inside of the magnetic metal 13.14, but at this time, a leakage magnetic field (schematically indicated by four arrows 19) is generated in the closed space of the magnetic opening 1115. ~22) is generated, and the leakage magnetic field 19-22 is maximum in the vicinity of the magnet 11.12 and minimum between the pair of magnets 11.12. Now, when the MR element I6 is moved, the resistance value of the MR element 16 changes as the strength of the magnetic field acting on the MR element 16 changes, and the amount of positional displacement can be detected from this change.

ところで、この構成を応用して角度変位量を検出するこ
とができる。例えば、第10図において、回転軸30と
一体となって回転する第9図と同様な構成の磁気回路3
1の閉空間中に、ケース32に固定したMR素子33を
配置すれば、ケース32と回転軸30との相対回転変位
量(角度変位量)をMR素子33の抵抗値変化として検
出できる。
By the way, the amount of angular displacement can be detected by applying this configuration. For example, in FIG. 10, a magnetic circuit 3 having a configuration similar to that of FIG. 9 rotates integrally with the rotating shaft 30.
If the MR element 33 fixed to the case 32 is placed in the closed space of 1, the relative rotational displacement (angular displacement) between the case 32 and the rotating shaft 30 can be detected as a change in the resistance value of the MR element 33.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、かかる従来の非接触変位センサにあって
は、位置変位量、角度変位量の何れか一方を検出するも
のであったため、用途別に2種類のセンサを準備する必
要があり、例えば二つの変位置を共に検出する場合、コ
スト上の不利を招く、機構が複雑になるといった問題点
がある。
However, since such conventional non-contact displacement sensors detect either the amount of positional displacement or the amount of angular displacement, it is necessary to prepare two types of sensors for each application. If the positions are detected together, there are problems such as a cost disadvantage and a complicated mechanism.

本発明は、このような問題点に鑑みてなされたもので、
一つのセンサで位置変位量と角度変位量とを同時検出す
ることを目的としている。
The present invention was made in view of these problems, and
The purpose is to simultaneously detect the amount of positional displacement and the amount of angular displacement with one sensor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するためその原理構成図を第
1図に示すように、離隔して対向配置する二対の第1お
よび第2の磁石40〜43と、前記第1の磁石40.4
1の極性(N、S)を第1の周波数f1で交番反転する
第1の磁界変調手段44と、前記第2の磁石42.43
の極性を前記第1の周波数fと異なる第2の周波数f2
で交番反転する第2の磁界変調手段45と、前記第1の
磁石40.41および第2の磁石42.43から発生す
る第1の磁界B4゜、B41および第2の磁界B4□、
B43内に介在し、これらの磁界の変化を抵抗値の変化
として捕らえる磁気抵抗素子46と、該磁気抵抗素子4
6の抵抗値変化を電気信号已に変換する変換手段47と
、該電気信号Eの中から前記第1の周波数f、および第
2の周波数f2威分を抽出し、各々を第1の抽出信号S
、および第2の抽出信号S2として出力する抽出手段4
9と、を備えて構成する。
In order to achieve the above object, the present invention, as shown in FIG. .4
a first magnetic field modulating means 44 that alternately inverts the polarity (N, S) of 1 at a first frequency f1, and the second magnet 42.43.
a second frequency f2 whose polarity is different from the first frequency f;
a second magnetic field modulating means 45 which is alternately inverted, and a first magnetic field B4°, B41 and a second magnetic field B4□, generated from the first magnet 40.41 and the second magnet 42.43.
A magnetoresistive element 46 that is interposed within B43 and captures changes in these magnetic fields as changes in resistance value, and the magnetoresistive element 4
converting means 47 for converting the change in resistance value of 6 into an electric signal; extracting the first frequency f and the second frequency f2 from the electric signal E; S
, and an extraction means 4 outputting it as a second extraction signal S2.
9.

ここで、第1の磁界B4゜、Boおよび第2の磁界B4
□の変調周波数(f、、rz)は、お互いに異なるもの
であれば良く、例えば、flがxHzであればf2はx
Hz以外のy)lzとなる。x、yは一方がゼロであっ
ても良い。
Here, the first magnetic field B4°, Bo and the second magnetic field B4
The modulation frequencies (f,, rz) of □ may be different from each other. For example, if fl is xHz, f2 is x
y) lz other than Hz. One of x and y may be zero.

〔作用〕[Effect]

第2図は磁気抵抗素子46に働く磁界の様子を示す図で
ある。この図において、磁気抵抗素子46が第1の磁石
40.41のほぼ中間に位置している場合(実線で示す
)、この磁気抵抗素子46に対して第1の磁石40.4
1からの磁界(便宜的に磁束を磁界と表現する)B4い
B41と第2の磁石42.43からの磁界B4□、B、
3とが働いている。磁気抵抗素子46内部のセンス電流
が長手方向に流れていたとすると、この電流に対してB
4゜、B41だけが直交するが、この位置の84゜、B
41はお互いが逆向きで打ち消しあっているので磁気抵
抗素子46の抵抗値は変化しない。
FIG. 2 is a diagram showing the state of the magnetic field acting on the magnetoresistive element 46. In this figure, when the magnetoresistive element 46 is located approximately in the middle of the first magnet 40.41 (as shown by the solid line), the first magnet 40.4
1 (magnetic flux is expressed as a magnetic field for convenience) B4 B41 and the magnetic field from the second magnet 42.43 B4□, B,
3 is working. If the sense current inside the magnetoresistive element 46 flows in the longitudinal direction, B
Only 4°, B41 is orthogonal, but 84°, B at this position
41 are in opposite directions and cancel each other out, so the resistance value of the magnetoresistive element 46 does not change.

今、磁気抵抗素子46がΔlだけ移動したとすると、移
動方向の84゜が大きくなる結果、f1威分を持つB4
゜に対応した変化が抵抗値に現れる。また、磁気抵抗素
子46がΔθだけ回転したとすると、センス電流がB4
□、BI3と僅かに交差する結果、rztc分を持つB
、2、BI3に対応した変化が抵抗値に現れる。
Now, if the magnetoresistive element 46 moves by Δl, 84° in the moving direction increases, and as a result, B4, which has f1 strength,
A change corresponding to ° appears in the resistance value. Further, if the magnetoresistive element 46 rotates by Δθ, the sense current becomes B4
□, B with rztc as a result of slightly intersecting with BI3
, 2, a change corresponding to BI3 appears in the resistance value.

一方、これらの移動変位および回転変位が複合して生じ
た場合を考えると、f、>f、ならば、磁気抵抗素子4
6の抵抗値がf、成分を持つB。とf2構成を持つB4
□、BI3とに対応して変化し、f。
On the other hand, considering the case where these moving displacements and rotational displacements occur in combination, if f,>f, then the magnetoresistive element 4
6 resistance value has f, component B. and B4 with f2 configuration
□, changes corresponding to BI3, and f.

=0、fl=zlzとすると、Boは周波数f2で変化
し、84!、BI3は2倍のfz(2zHz)で変化す
る。したがって、磁気抵抗素子46の抵抗値変化を電気
信号に変換後、二つの周波数成分子、、f2を分離抽出
すれば、位置変位量および角度変位量が同時に検出され
る。
=0, fl=zlz, Bo changes with frequency f2, 84! , BI3 changes by twice fz (2zHz). Therefore, by converting the change in the resistance value of the magnetoresistive element 46 into an electrical signal and then separating and extracting the two frequency components, f2, the amount of positional displacement and the amount of angular displacement can be detected simultaneously.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第3〜7図は本発明に係る非接触変位センサの一実施例
を示す図であり、磁気抵抗素子にMR素子(magne
toresistive eiement)を用いた例
である。
3 to 7 are diagrams showing an embodiment of the non-contact displacement sensor according to the present invention, in which an MR element (magnetic resistance element) is attached to a magnetoresistive element.
This is an example using a torsistive eiement.

構成を説明すると、第3図において、50は磁気回路で
ある。磁気回路50は、極性(N、S)を逆向きにして
離隔配置した一対の固定磁石(第1の磁石、第1の磁界
変調手段)51.52と、一対の固定磁石51.52を
結合する磁性金属53.54とを備え、その閉空間内部
にセンサ部55を収納すると共にセンサ部55を矢印A
で示す方向に移動可能に保持する。
To explain the configuration, in FIG. 3, 50 is a magnetic circuit. The magnetic circuit 50 combines a pair of fixed magnets (first magnet, first magnetic field modulating means) 51.52 that are spaced apart with opposite polarities (N, S) and a pair of fixed magnets 51.52. The sensor part 55 is housed inside the closed space, and the sensor part 55 is shown in the direction of arrow A.
Hold it so that it can be moved in the direction shown.

センサ部55は、第4図にも示すように、移動のみを許
容された第一基板56上に一対の電磁石(第2の磁石)
57.58を載置すると共に、この第一基板56と一体
となって移動し回転も許容されたシャフト59、および
シャフト59に取り付けられた第二基板60を有し、第
二基板60上にMR素子(磁気抵抗素子) 61を載置
して構成する。一対の電磁石57.58は互いの極性を
同向きにして離隔配置され、励磁電流iz (後述)の
周波数に応してその極性が交番的に反転変化するように
なっている。なお、極性N、Sの後の()付きN、Sは
交番変化を表している。
As shown in FIG. 4, the sensor unit 55 includes a pair of electromagnets (second magnets) on a first substrate 56 that is only allowed to move.
57 and 58, a shaft 59 that moves and is allowed to rotate integrally with the first substrate 56, and a second substrate 60 attached to the shaft 59. It is configured by placing an MR element (magnetoresistive element) 61 thereon. A pair of electromagnets 57 and 58 are spaced apart with their polarities facing the same direction, and their polarities are alternately reversed in accordance with the frequency of an excitation current iz (described later). Note that N and S in parentheses after the polarities N and S represent alternating changes.

第4図において、62はMR素子61にセンス電流is
を供給する第一の電流源、63は一対の電磁石57.5
8に所定の周波数fo(但し、f o>0Hz)で変調
された励磁電流izを供給する第二の電流源(第2の磁
界変調手段)、64はMR素子61の抵抗値変化を電圧
変化として検出する検出回路(変換手段)、65は検出
された電気信号EiO中から周波数foの成分(Sa)
およびf’o以外の成分(Sb)を抽出するフィルター
回路(抽出手段)である。
In FIG. 4, 62 indicates a sense current is applied to the MR element 61.
A first current source 63 supplies a pair of electromagnets 57.5
8 is a second current source (second magnetic field modulation means) that supplies an excitation current iz modulated at a predetermined frequency fo (however, fo > 0 Hz); A detection circuit (conversion means) 65 detects a component (Sa) of frequency fo from the detected electrical signal EiO.
and a filter circuit (extraction means) for extracting components (Sb) other than f'o.

ここで、MR素子61は、表面を酸化したシリコンウェ
ハ基板上にパーマロイの磁性層、密着層、導電層および
保護膜を積層して一つの単素子を形威し、第5図に示す
ように4つの単素子61a〜61dをブリンジ状に接続
して構成する。図中黒く塗りつぶした対向一対の単素子
61a、61Cは磁界に対して正の出力特性を持ち、残
りの二つの単素子61b、61dは負の出力特性を持つ
。こうすると、単素子1個で構成するMR素子に比べて
磁界感度をおよそ4倍向上できる。なお、ブリッジ要素
である各単素子の抵抗値のバラツキによる不平衡電圧は
、レーザーによるパターントリミングで調整するとよい
Here, the MR element 61 is formed into a single element by laminating a permalloy magnetic layer, an adhesion layer, a conductive layer, and a protective film on a silicon wafer substrate whose surface is oxidized, as shown in FIG. It is constructed by connecting four single elements 61a to 61d in a bridge shape. A pair of opposing single elements 61a and 61C, which are blacked out in the figure, have positive output characteristics with respect to the magnetic field, and the remaining two single elements 61b and 61d have negative output characteristics. In this way, magnetic field sensitivity can be improved approximately four times as compared to an MR element composed of one single element. Note that unbalanced voltage due to variations in resistance values of each single element that is a bridge element may be adjusted by pattern trimming using a laser.

次に、作用を説明する。Next, the effect will be explained.

一対の固定磁石5L 52からの主磁束が磁性金属53
.54内を通過する際に発生する漏洩磁束(以下、第1
の磁界と呼称しB、いBStで表す)はMR素子61内
を流れるセンス電流isに直交すると共に、その大きさ
が固定磁石51.52の直近で最大、固定磁石51.5
2のほぼ中間で最小になる。
The main magnetic flux from a pair of fixed magnets 5L 52 is a magnetic metal 53
.. 54 (hereinafter referred to as the first
The magnetic field (B, expressed as BSt) is perpendicular to the sense current is flowing in the MR element 61, and its magnitude is maximum near the fixed magnet 51.52, and the magnitude is maximum near the fixed magnet 51.5.
The minimum value is approximately halfway between 2 and 2.

今、センサ部55を一方の固定磁石51に接近するよう
に移動させると、MR素子61に働く第1の磁界BS+
が増大方向に変化するので、この変化に伴ってMR素子
61の抵抗値が変化する。これにより、磁気回路50と
センサ部55との相対位置の変位量が抵抗値の変化とし
て検出される。
Now, when the sensor unit 55 is moved closer to one of the fixed magnets 51, the first magnetic field BS+ acting on the MR element 61
changes in the increasing direction, and the resistance value of the MR element 61 changes with this change. Thereby, the amount of displacement in the relative position between the magnetic circuit 50 and the sensor section 55 is detected as a change in resistance value.

ここで、センサ部55上の電磁石57.58に周波数f
oで変調した励磁電流izを与えると、電磁石57.5
8の極性が毎秒re回の速度で交番反転し、この磁極か
らは周波数fOでその向きが変わる磁束(以下、第2の
磁界と呼称しBSt、Bseで表す)が発生する。
Here, the frequency f is applied to the electromagnets 57 and 58 on the sensor section 55.
When an excitation current iz modulated by o is given, the electromagnet 57.5
8 is alternately reversed at a rate of re times per second, and a magnetic flux (hereinafter referred to as a second magnetic field and expressed as BSt and Bse) whose direction changes at a frequency fO is generated from this magnetic pole.

第6図はMR素子61に働く第1の磁界および第2の磁
界Els+、8%g、BSt、B、llの様子を示す図
である。この図において、一対の固定磁石51.52か
らの第1の磁界BSI、B5□はセンス電流isと直交
し、また、一対の電磁石57.58からの第2の磁界B
S?、13saはセンス電流isと平行している。
FIG. 6 is a diagram showing the state of the first magnetic field and the second magnetic field Els+, 8%g, BSt, B, ll acting on the MR element 61. In this figure, a first magnetic field BSI, B5□ from a pair of fixed magnets 51.52 is orthogonal to the sense current is, and a second magnetic field BSI, B5 from a pair of electromagnets 57.58
S? , 13sa are parallel to the sense current is.

固定磁石51.52のほぼ中間(図示の位置)にMR素
子61を位置させた場合には、第1の磁界BSI、BS
Zがお互いに打ち消されるから、また、第2の磁界BS
?、E3ssがセンス電流isと平行しているから、M
R素子61に抵抗値の変化は生しない。
When the MR element 61 is located approximately in the middle of the fixed magnets 51 and 52 (the position shown in the figure), the first magnetic fields BSI, BS
Since Z cancel each other, the second magnetic field BS
? , E3ss is parallel to the sense current is, so M
No change in resistance value occurs in the R element 61.

今、MR素子61を移動して例えば一方の固定磁石51
に接近させると、センス電流isと直交する第1の磁界
のうちBStが強くなるから、MR素子61は自己の移
動量に応じてその抵抗値を変化する。
Now, move the MR element 61 and, for example, move the MR element 61 to one fixed magnet 51.
When the MR element 61 approaches , BSt of the first magnetic field perpendicular to the sense current is becomes stronger, so that the MR element 61 changes its resistance value according to its own movement amount.

あるいは、MR素子61を回転させると、第2の磁界B
S’l、E3saがセンス電流isと交差関係になるか
ら、MR素子61は自己の回転変位量に応じてその抵抗
値を変化する。
Alternatively, when the MR element 61 is rotated, the second magnetic field B
Since S'l and E3sa have a cross relationship with the sense current is, the MR element 61 changes its resistance value according to its own rotational displacement amount.

ここで、第1の磁界B、いBsgはその磁束の向きが常
に一方向(すなわち周波数ゼロ変調)であるのに対し、
第2の磁界BS?、BS8はその磁束の向きが周波数f
Oで交互に反転(すなわち周波数fO変調〉しており、
これにより、MR素子61の内部磁化方向も周波数fO
で反転変化している。
Here, while the direction of the magnetic flux of the first magnetic field B, Bsg is always in one direction (that is, zero frequency modulation),
Second magnetic field BS? , BS8, the direction of the magnetic flux is at the frequency f
It is alternately inverted at O (that is, frequency fO modulation),
As a result, the internal magnetization direction of the MR element 61 also changes to the frequency fO.
The change is reversed.

したがって、位置変位に伴う抵抗値変化が周波数fOで
変化する一方、角度変位に伴う抵抗値変化が周波数2r
Oで変化することになる。
Therefore, while the resistance value change due to positional displacement changes at frequency fO, the resistance value change due to angular displacement changes at frequency 2r.
It will change at O.

このため、MR素子61の抵抗値変化を検出回路64で
電気信号Eiに変換し、フィルター回路65で電気信号
EiO中から周波数fO酸成分よび周波数2fO成分を
分離・抽出すれば、それぞれの周波数成分の大きさから
位置変位量および角度変位量が同時に検出できる。
Therefore, if the resistance change of the MR element 61 is converted into an electrical signal Ei by the detection circuit 64, and the frequency fO acid component and the frequency 2fO component are separated and extracted from the electrical signal EiO by the filter circuit 65, each frequency component The amount of positional displacement and the amount of angular displacement can be detected simultaneously from the magnitude of .

以上のように、本実施例では、固定磁石51.52およ
び電磁石57.53から各々発生する第1の磁界13s
+、BSZ、第2の磁界BS?、13sa中に、位置変
位および角度変位を可能にしたMR素子61を配置する
と共に、電磁石57.58の励磁電流izを周波数fo
で変調し、磁界の変化に応して変化するMR素子61の
抵抗値を電気信号Eiに変換してこの電気信号EiO中
から周波#!1.fO戒分および成分数2fO戒分を分
離−抽出したので、第1の磁界BS+、E3szで位置
変位を検出でき、第2の磁界BS?、Elseで角度変
位を検出できる。したがって、各磁界の変調周波数に対
応した抽出結果から、各二つの変位情報を同時に再生す
ることができる効果が得られる。
As described above, in this embodiment, the first magnetic field 13s generated from the fixed magnet 51.52 and the electromagnet 57.53, respectively.
+, BSZ, second magnetic field BS? , 13sa, an MR element 61 that enables positional displacement and angular displacement is arranged, and the excitation current iz of the electromagnet 57.58 is set at a frequency fo.
The resistance value of the MR element 61, which changes according to changes in the magnetic field, is converted into an electrical signal Ei, and frequency #! is generated from this electrical signal EiO. 1. Since the fO precept and the number of components 2fO precept are separated and extracted, the positional displacement can be detected using the first magnetic field BS+, E3sz, and the second magnetic field BS? , Else can detect angular displacement. Therefore, it is possible to simultaneously reproduce two pieces of displacement information from the extraction results corresponding to the modulation frequency of each magnetic field.

なお、本実施例では、第1の磁石に固定磁石51.52
を使用しているがこれに限らず電磁石であっても良い。
In addition, in this embodiment, fixed magnets 51 and 52 are used as the first magnet.
is used, but it is not limited to this, and an electromagnet may also be used.

要は、第2の磁石(実施例では電磁石57.58)の磁
界を変調する周波数(本実施例ではfo)と異なる周波
数で変調した磁界を発生できれば良い。ちなみに、本実
施例のように固定磁石を用いた場合、その磁界を周波数
ゼロで変調したことになるから、第1の磁界変調手段は
固定磁石51.52に含まれることになる。
In short, it is sufficient to generate a magnetic field modulated at a frequency different from the frequency (fo in this embodiment) that modulates the magnetic field of the second magnet (electromagnets 57 and 58 in the embodiment). Incidentally, when a fixed magnet is used as in this embodiment, the magnetic field is modulated at zero frequency, so the first magnetic field modulation means is included in the fixed magnets 51 and 52.

また、第2の磁石としての電磁石57.58の位置も上
記の実施例に限定されない。例えば、第7図に示すよう
に、一対の固定磁石51.52とMR素子61との間に
電磁石57a、58aを位置させても良い。
Further, the positions of the electromagnets 57 and 58 as the second magnets are not limited to the above embodiments. For example, as shown in FIG. 7, electromagnets 57a and 58a may be positioned between a pair of fixed magnets 51 and 52 and the MR element 61.

この場合、電磁石57a、58aの対向面の極性が反対
になるように一対の電磁石57a、58aを配置する。
In this case, the pair of electromagnets 57a, 58a are arranged so that the polarities of the opposing surfaces of the electromagnets 57a, 58a are opposite.

すなわち、その配列方向でお互いの極性が同向きとなる
ように配置する。あるい4よ、磁界の向きとセンス電流
isの向きが直交(ここで言う直交とは非平行の意)す
るように、電磁石57.58を配置しても良い。例えば
、周波数faの磁界Ba(位置情報を与える磁界と仮定
)と、周波数fb(fa≠fb)の磁界Bb(角度情報
を与える磁界と仮定)とを平行してMR素子に印加する
ような配置を採用した場合には、MR素子の磁化方向が
一定となるため、位置情報がfaで、そして角度情報が
fbで出力され、位置変位−角度変位を同時に検出でき
る。
That is, they are arranged so that their polarities are the same in the arrangement direction. Alternatively, the electromagnets 57 and 58 may be arranged so that the direction of the magnetic field and the direction of the sense current is are orthogonal (orthogonal here means non-parallel). For example, an arrangement where a magnetic field Ba of frequency fa (assumed to be a magnetic field that provides positional information) and a magnetic field Bb of frequency fb (fa≠fb) (assumed to be a magnetic field that provides angular information) are applied to the MR element in parallel. When this is adopted, since the magnetization direction of the MR element is constant, the positional information is outputted as fa and the angular information is outputted as fb, so that positional displacement and angular displacement can be detected simultaneously.

さらに、上記の実施例では磁気抵抗素子46にMR素子
(強磁性金属抵抗素子)61を用いているが、例えムi
ホール素子や半導体磁気抵抗素子であっても良い。要は
、磁界の変化をセンシングできるものであれば良い。
Furthermore, in the above embodiment, an MR element (ferromagnetic metal resistance element) 61 is used as the magnetoresistive element 46, but even if
It may also be a Hall element or a semiconductor magnetoresistive element. In short, any device that can sense changes in the magnetic field is sufficient.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、2組の磁石から発生する各磁界をそれ
ぞれ異なる周波数で変調し、各磁界内に配置した磁気抵
抗素子の抵抗変化を電圧変化として検出すると共に、該
電圧変化から変調周波数に相当する周波数成分を抽出し
たので、一つのセンサで位置変位量と角度変位量とを同
時に検出することができる。
According to the present invention, each magnetic field generated from two sets of magnets is modulated at a different frequency, the resistance change of a magnetoresistive element placed within each magnetic field is detected as a voltage change, and the modulation frequency is determined from the voltage change. Since the corresponding frequency components are extracted, the amount of positional displacement and the amount of angular displacement can be detected simultaneously with one sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成図、 第2図は本発明の原理説明図、 第3〜7図は本発明に係る非接触変位センサの一実施例
を示す図であり、 第3図はその磁気回路およびセンサ部を含む構成図、 第4図;よそのセンサ部を含む要部の構成図、第5図は
そのMR素子の構成図、 第6図はそのMR素子に働く磁界を示す図、第7図は電
磁石の他の配置例を示す図である。 第8〜10図は従来例を示す図であり、第8図はそのM
R素子の原理説明図、 第9図はその位置変位センサの構成図、第10図はその
角度変位センサの構成図である。 48−・−・抽出手段、 51.52・・・・・・固定磁石(第1の磁石、第1の
磁界変調手段)、 57.58・・・−・電磁石(第2の磁石)、61・・
・・・・MR素子(磁気抵抗素子)、63・・・・・・
第二の電流源(第2の磁界変調手段)、64・・・−・
・検出回路(変換手段)、65・・・・・・フィルター
回路(抽出手段)。 40.41−・・・・・第1の磁石、 42.43・−・−・第2の磁石、 44・−・・・・第1の磁界変調手段、45・・・・・
・第2の磁界変調手段、46・−・・・・磁気抵抗素子
、 47・・・・・・変換手段、 第 2 図 第 図 第 4 図 第 図 λS −実施例のMR素子の構成図 第5図 電磁石の他の配置例を示す図 第7図 従来例のMR素子の原理説明図 第8図 第 図 従来例の角度変位センサの構成国 第10図
FIG. 1 is a diagram showing the principle configuration of the present invention, FIG. 2 is a diagram explaining the principle of the present invention, FIGS. 3 to 7 are diagrams showing an embodiment of the non-contact displacement sensor according to the present invention, and FIG. A configuration diagram including the magnetic circuit and the sensor section, FIG. 4; a configuration diagram of the main part including the other sensor section, FIG. 5 a configuration diagram of the MR element, and FIG. 6 showing the magnetic field acting on the MR element. 7 are diagrams showing other examples of arrangement of electromagnets. Figures 8 to 10 are diagrams showing conventional examples, and Figure 8 is the M
FIG. 9 is a diagram illustrating the principle of the R element, FIG. 9 is a configuration diagram of its position displacement sensor, and FIG. 10 is a configuration diagram of its angular displacement sensor. 48-- Extraction means, 51.52... Fixed magnet (first magnet, first magnetic field modulation means), 57.58... Electromagnet (second magnet), 61・・・
...MR element (magnetoresistive element), 63...
Second current source (second magnetic field modulation means), 64...
- Detection circuit (conversion means), 65... Filter circuit (extraction means). 40.41--First magnet, 42.43--Second magnet, 44--First magnetic field modulation means, 45...
・Second magnetic field modulation means, 46... Magnetoresistive element, 47... Conversion means, Fig. 2 Fig. 4 Fig. λS - Configuration diagram of the MR element of the embodiment Fig. 5 shows another example of the arrangement of electromagnets Fig. 7 is an explanatory diagram of the principle of a conventional MR element Fig. 8 Fig. 10 shows the configuration of a conventional angular displacement sensor

Claims (1)

【特許請求の範囲】 a)離隔して対向配置する二対の第1および第2の磁石
と、 b)前記第1の磁石の極性を第1の周波数で交番反転す
る第1の磁界変調手段と、 c)前記第2の磁石の極性を前記第1の周波数と異なる
第2の周波数で交番反転する第2の磁界変調手段と、 d)前記第1の磁石および第2の磁石から発生する第1
の磁界および第2の磁界内に介在し、これらの磁界の変
化を抵抗値の変化として捕らえる磁気抵抗素子と、 e)該磁気抵抗素子の抵抗値変化を電気信号に変換する
変換手段と、 f)該電気信号の中から前記第1の周波数および第2の
周波数成分を抽出し、各々を第1の抽出信号および第2
の抽出信号として出力する抽出手段と、 を備えたことを特徴とする非接触変位センサ。
[Scope of Claims] a) two pairs of first and second magnets that are spaced apart and facing each other, and b) a first magnetic field modulation means that alternately inverts the polarity of the first magnet at a first frequency. c) a second magnetic field modulating means for alternating the polarity of the second magnet at a second frequency different from the first frequency; and d) generated from the first magnet and the second magnet. 1st
and a second magnetic field, and captures changes in these magnetic fields as changes in resistance; e) conversion means for converting changes in resistance of the magnetoresistive element into electrical signals; ) Extract the first frequency and second frequency components from the electrical signal, and separate them into the first extracted signal and the second frequency component, respectively.
A non-contact displacement sensor comprising: an extraction means for outputting an extraction signal as an extraction signal.
JP6328390A 1990-03-14 1990-03-14 Contactless displacement sensor Pending JPH03262920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6328390A JPH03262920A (en) 1990-03-14 1990-03-14 Contactless displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6328390A JPH03262920A (en) 1990-03-14 1990-03-14 Contactless displacement sensor

Publications (1)

Publication Number Publication Date
JPH03262920A true JPH03262920A (en) 1991-11-22

Family

ID=13224845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6328390A Pending JPH03262920A (en) 1990-03-14 1990-03-14 Contactless displacement sensor

Country Status (1)

Country Link
JP (1) JPH03262920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206904A (en) * 2000-11-08 2002-07-26 Yamaha Corp Sensor
JP2010038766A (en) * 2008-08-06 2010-02-18 Tokai Rika Co Ltd Rotation detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206904A (en) * 2000-11-08 2002-07-26 Yamaha Corp Sensor
JP2010038766A (en) * 2008-08-06 2010-02-18 Tokai Rika Co Ltd Rotation detector

Similar Documents

Publication Publication Date Title
CN112444191B (en) Inductive angle sensor
US8664943B2 (en) Position detecting apparatus
US9182249B2 (en) Rotation angle detection device
US20160061863A1 (en) Magnetic current sensor and current measurement method
US7064537B2 (en) Rotation angle detecting device
CN108474669A (en) Difference Hall magnet polarity for AMR360 degree sensors detects
EP3764115B1 (en) Magnetic field sensor with magnetoresistance elements arranged in a bridge and having a common reference direction and opposite bias directions
CN107202966B (en) The measurement method and system of a kind of alternate magnetic flux leakage of transformer winding
JP3655897B2 (en) Magnetic detector
CN105988090A (en) Micro-machine magnetic field senor and application thereof
JP3487452B2 (en) Magnetic detector
JP4028971B2 (en) Assembling method of magnetic sensor
US3956618A (en) Mechanical-electrical transducer
JPH03262920A (en) Contactless displacement sensor
CN105051500B (en) Magnet sensor arrangement
US20230384125A1 (en) Position detection system
JP3749955B2 (en) Inductive two-dimensional position detector
JPS60162920A (en) Resolver device using magnetism sensing element
WO2023058697A1 (en) Motor position detection system
JPH10255236A (en) Magnetism detecting apparatus
WO2022244734A1 (en) Magnetic sensor and magnetic detection system
US10094890B2 (en) Magnetic sensor
JP2923959B2 (en) Magnetic bearing detector
JPH07332912A (en) Non-contact potentiometer and displacement sensor of moving body
JP2567237B2 (en) Mechanical displacement detector and device