JPH0326281B2 - - Google Patents

Info

Publication number
JPH0326281B2
JPH0326281B2 JP59004992A JP499284A JPH0326281B2 JP H0326281 B2 JPH0326281 B2 JP H0326281B2 JP 59004992 A JP59004992 A JP 59004992A JP 499284 A JP499284 A JP 499284A JP H0326281 B2 JPH0326281 B2 JP H0326281B2
Authority
JP
Japan
Prior art keywords
pressure
oil
oil level
air
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59004992A
Other languages
Japanese (ja)
Other versions
JPS60151401A (en
Inventor
Tomio Nemoto
Keitaro Takiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59004992A priority Critical patent/JPS60151401A/en
Publication of JPS60151401A publication Critical patent/JPS60151401A/en
Publication of JPH0326281B2 publication Critical patent/JPH0326281B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧油タンク、特に水力発電所におけ
る圧油装置用圧油タンクの油面制御方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the oil level of a pressure oil tank, particularly a pressure oil tank for a pressure oil equipment in a hydroelectric power plant.

〔従来の技術〕 水力発電所においては、水車の水量調整用の案
内羽根または入口弁を操作する油圧サーボモータ
ーを制御するために圧油タンク及びこの圧油タン
クに圧縮空気を供給する空気補給装置が設けられ
ている。第1図はその概略の系統を示すもので、
1は圧油タンク、2は空気補給油面検出器、3は
圧力開閉器、4は空気圧縮機、5は空気タンク、
6は空気補給電磁弁、7は空気放出バルブを示し
ている。
[Prior Art] In a hydroelectric power plant, a pressure oil tank and an air replenishment device that supplies compressed air to the pressure oil tank are used to control the hydraulic servo motor that operates the guide vanes or inlet valves for adjusting the water volume of the water turbine. is provided. Figure 1 shows the general system.
1 is a pressure oil tank, 2 is an air supply oil level detector, 3 is a pressure switch, 4 is an air compressor, 5 is an air tank,
Reference numeral 6 indicates an air supply solenoid valve, and reference numeral 7 indicates an air release valve.

圧油タンク1の油面は常用最低油圧時油面L2
と常用最高油圧時油面L1との間に保持されてい
る。そして、圧油タンク1内の油圧と油面との関
係は、 P×Vn=一定 …(1) ここで Pは圧力 Vは空気の体積 nはポリトロープ指数 の関係が保たれた状態で油圧・油面が変化してい
る。
The oil level in the pressure oil tank 1 is the oil level L2 at the lowest normal oil pressure.
and the oil level L1 at the highest normal oil pressure. The relationship between the oil pressure and the oil level in the pressure oil tank 1 is P×V n = constant...(1) where P is the pressure, V is the volume of air, and n is the oil pressure with the polytropic index relationship maintained.・The oil level is changing.

ところが、圧油タンク1内の空気が油中に溶け
込んだり、また圧油タンク1外に漏気して圧油タ
ンク1内の空気量が減少すると、(1)式の関係にあ
る圧油タンク1内の油圧・油面のバランスが崩
れ、空気が減少した量に相当する分だけ圧油タン
ク1内の油面が上昇する。従つて、不足分の空気
量を圧油タンク1内に給気して圧油タンク1内の
油面を基準油面位置に戻してやる必要がある。
However, if the air in the pressure oil tank 1 dissolves into the oil or leaks outside the pressure oil tank 1 and the amount of air in the pressure oil tank 1 decreases, the pressure oil tank 1, which has the relationship of equation (1), The oil pressure and oil level in the pressure oil tank 1 become unbalanced, and the oil level in the pressure oil tank 1 rises by an amount corresponding to the amount of air that has decreased. Therefore, it is necessary to supply the insufficient amount of air into the pressure oil tank 1 to return the oil level in the pressure oil tank 1 to the reference oil level position.

圧油タンク1内の空気補給による従来の油圧・
油面制御方法においては、常用最高油圧時油面L
1に対して油面がΔLだけ上昇して空気補給油面
L0に達したら行なつていたため、圧油の消費に
より油圧・油面が変化している間、例えば、常用
最低油圧時油面L2から許容最低油圧時油面L3
の間での異常、例えば、圧油タンク1内の空気漏
れ、または外部からの空気浸入等が発生しても、
油圧・油面の異常検出及び空気補給の制御が出来
ず、常に安定した圧油タンク1内の油圧・油面の
関係を確保することが出来なかつた。また、何ら
かの異常によつて空気タンク5の圧縮空気が圧油
タンク1内に必要以上に多く入り過ぎ、余剰空気
を放出する場合には、空気放出バルブ7を手動に
て開放して空気を外部に放出し圧油タンク1の油
面を制御するという方法を行なつていた。
Conventional hydraulic pressure by supplying air in the pressure oil tank 1
In the oil level control method, the oil level L at the maximum normal oil pressure is
1, when the oil level rose by ΔL and reached the air replenishment oil level L0, while the oil pressure and oil level changed due to consumption of pressure oil, for example, the oil level L2 at the lowest normal oil pressure. From the allowable minimum oil pressure oil level L3
Even if an abnormality occurs, such as an air leak inside the pressure oil tank 1 or air intrusion from the outside,
It was not possible to detect abnormalities in the oil pressure and oil level and to control air supply, and it was not possible to always ensure a stable relationship between the oil pressure and oil level in the pressure oil tank 1. In addition, if the compressed air from the air tank 5 enters the pressure oil tank 1 in an excessive amount due to some abnormality and the excess air is to be released, the air release valve 7 is manually opened to release the air to the outside. The method used was to control the oil level in the pressure oil tank 1 by releasing the oil into the tank.

第2図は従来の空気補給の電気シーケンスで、
2は空気補給油面検出器、3は圧力タンク1内の
圧力が正常状態でL0油面相当に上昇すると開路
する圧力開閉器、6は空気補給電磁弁、8は空気
補給時間設定用タイマ、9は補助継電器を示して
いる。圧油タンク1内の空気が減少して油面が上
昇して、空気補給油面L0に達すると、空気補給
油面検出器2が閉路し、かつ圧力開閉器3が閉路
されているため、空気補給時間設定用タイマ8が
作動し、補助継電器9が付勢され、空気補給電磁
弁6を付勢して、第1図に示す空気タンク5に貯
えられている圧縮空気を圧油タンク1に給気す
る。空気補給時間設定用タイマ8は空気補給油面
L0から常用最高油面L1まで油面を復帰させる
ために必要な空気量を空気タンク5より圧油タン
ク1へ補給するのに要する時間をあらかじめ設定
しその時間だけ給気するようになつている。
Figure 2 shows the electrical sequence for conventional air replenishment.
2 is an air replenishment oil level detector; 3 is a pressure switch that opens when the pressure in the pressure tank 1 rises to the level equivalent to L0 oil level under normal conditions; 6 is an air replenishment solenoid valve; 8 is a timer for setting air replenishment time; 9 indicates an auxiliary relay. When the air in the pressure oil tank 1 decreases and the oil level rises and reaches the air replenishment oil level L0, the air replenishment oil level detector 2 is closed and the pressure switch 3 is closed. The air replenishment time setting timer 8 is activated, the auxiliary relay 9 is energized, the air replenishment solenoid valve 6 is energized, and the compressed air stored in the air tank 5 shown in FIG. 1 is transferred to the pressure oil tank 1. supply air to The air replenishment time setting timer 8 sets in advance the time required for replenishing the pressure oil tank 1 from the air tank 5 with the amount of air necessary to return the oil level from the air replenishment oil level L0 to the normal maximum oil level L1. Air is only supplied during that time.

一方、空気補給を停止する場合には、空気補給
時間設定用タイマ8の復帰や空気補給油面検出器
2の開路、または、圧力開閉器3の開路のいずれ
かの条件が成立すれば空気補給電磁弁6が消勢さ
れ、圧油タンク1への給気は停止する。
On the other hand, when stopping air replenishment, air replenishment is performed when any of the following conditions is met: the air replenishment time setting timer 8 returns, the air replenishment oil level detector 2 opens, or the pressure switch 3 opens. The solenoid valve 6 is deenergized and the air supply to the pressure oil tank 1 is stopped.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の如く、従来の圧油タンク1の油面制御方
法は、圧油タンク1の油面が常用最高油圧時油面
L1〜常用最低油圧時油面L2を逸脱し、空気補
給油面L0まで上昇した時にのみ異常とみなして
補正を実施しているために、例えば油面が常用最
低油圧時油面L2〜許容最低油圧時油面L3の正
常な使用範囲中に空気の漏気、または浸入等の異
常が発生した時には油面の異常検出、かつ油面制
御が出来ないという欠点があつた。
As mentioned above, the conventional method for controlling the oil level of the pressure oil tank 1 is such that the oil level of the pressure oil tank 1 deviates from the oil level L1 at normal maximum oil pressure to the oil level L2 at normal minimum oil pressure, and reaches the air supply oil level L0. Since the correction is performed by treating the oil level as abnormal only when the oil level rises, air leakage or intrusion may occur within the normal operating range of oil level L2 at normal minimum oil pressure to oil level L3 at allowable minimum oil pressure. When such an abnormality occurs, there is a drawback that it is not possible to detect the abnormality in the oil level and control the oil level.

本発明は、このような欠点を除去し、圧油タン
ク内油圧・油面を運転範囲の全領域で常に安定し
た状態に保つことができ、安全で信頼性の高い圧
油タンクの油面制御方法を提供することを目的と
するものである。
The present invention eliminates these drawbacks and maintains the oil pressure and oil level in the pressure oil tank in a stable state over the entire operating range, providing safe and reliable oil level control in the pressure oil tank. The purpose is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は発電所における圧油タンクの油圧・油
面をポリトロープ変化特性を基準にして制御する
方法において、油圧・油面・温度の検出結果に基
づき、第一にP×Vn=一定(ここでPは圧力、
Vは空気の体積、nはポリトロープ指数)なるポ
リトロープ変化特性より求めた圧油タンク内の油
圧・油面の関数値としての許容範囲を設定し、第
二にP×V=R×T(ここでPは圧力、Vは空気
の体積、Rは空気のガス定数、Tは絶対温度)な
る理想気体の状態式より求めた温度特性を考慮し
温度変化に対する前記の油圧・油面の関数値とし
ての許容範囲の補正を行ない、得られた関数値を
判定基準として前記圧油タンク内の油圧・油面の
異常を検出し、その結果に基づいて、前記圧油タ
ンクの油圧・油面変化全領域において速やかに油
圧・油面・温度を正常領域へ復帰させるよう空気
補給又は余剰空気放出を行なうことを特徴とする
ものである。
The present invention is a method for controlling the oil pressure and oil level of a pressure oil tank in a power plant based on polytropic change characteristics, based on the detection results of oil pressure, oil level, and temperature . and P is pressure,
The allowable range is set as a function value of the oil pressure and oil level in the pressure oil tank, which is determined from the polytropic change characteristic where V is the volume of air and n is the polytropic index. Second, P x V = R x T (here Considering the temperature characteristics obtained from the ideal gas equation of state where P is the pressure, V is the volume of the air, R is the gas constant of the air, and T is the absolute temperature, the function value of the above-mentioned oil pressure and oil level with respect to temperature change is calculated. After correcting the permissible range of This system is characterized by air supply or surplus air release to quickly return the oil pressure, oil level, and temperature to normal ranges.

〔作用〕[Effect]

本発明の圧油タンクの油面制御方法では、油
圧・油面・温度の検出結果に基づき、第一にP×
Vn=一定(ここでPは圧力、Vは空気の体積、
nはポリトロープ指数)なるポリトロープ変化特
性より求めた圧油タンク内の油圧・油面の関数値
としての許容範囲を設定し、第二にP×V=R×
T(ここでPは圧力、Vは空気の体積、Rは空気
のガス定数、Tは絶対温度)なる理想気体の状態
式より求めた温度特性を考慮し温度変化に対する
前記の油圧・油面の関数値としての許容範囲の補
正を行なうので、温度特性を考慮した油圧・油面
の関係を関数値として許容範囲を定めることがで
きる。従つて、この関数値と、例えば連続量にて
常時検出される油圧・油面・温度とを比較して圧
油タンク内の油圧・油面関係の異常を検出するの
で圧油タンクの油圧・油面変化全領域において速
やかに異常を検出することができる。そしてこの
検出結果に基づいて油圧・油面・温度を正常領域
へ復帰させるように空気補給又は余剰空気放出を
行うので、圧油タンク内の油圧・油面を運転範囲
の全領域で常に安定した状態を保つことができ、
安全で信頼性の高い圧油タンクの油面制御が可能
となる。
In the oil level control method for a pressure oil tank of the present invention, based on the detection results of oil pressure, oil level, and temperature, first
V n = constant (where P is pressure, V is volume of air,
The allowable range is set as a function value of the oil pressure and oil level in the pressure oil tank, which is determined from the polytropic change characteristic (n is a polytropic index), and secondly, P×V=R×
Considering the temperature characteristics obtained from the ideal gas equation of state T (where P is pressure, V is the volume of air, R is the gas constant of air, and T is absolute temperature), the above-mentioned hydraulic pressure and oil level against temperature changes are calculated. Since the allowable range is corrected as a function value, the allowable range can be determined using the relationship between oil pressure and oil level in consideration of temperature characteristics as a function value. Therefore, this function value is compared with, for example, continuously detected oil pressure, oil level, and temperature to detect abnormalities related to the oil pressure and oil level in the pressure oil tank. Abnormalities can be quickly detected in all areas of oil level changes. Based on this detection result, air is supplied or surplus air is released to return the oil pressure, oil level, and temperature to the normal range, so the oil pressure and oil level in the pressure oil tank are always stable throughout the operating range. can maintain the condition,
Safe and reliable oil level control in pressure oil tanks becomes possible.

〔実施例〕〔Example〕

以下、実施例について説明する。 Examples will be described below.

第3図は一実施例の概略の系統、第4図は空気
補給の電気シーケンスを示すもので、第1図及び
第2図と同一の部分には同一の符号を付してあ
る。これらの図で、10は温度センサ、11は油
面センサ、12は圧力センサ、13は演算制御装
置、14は空気放出電磁弁、15は空気補給デジ
タル接点、16は空気放出デジタル接点を示して
いる。
FIG. 3 shows a schematic system of one embodiment, and FIG. 4 shows an electrical sequence for air supply. The same parts as in FIGS. 1 and 2 are given the same reference numerals. In these figures, 10 is a temperature sensor, 11 is an oil level sensor, 12 is a pressure sensor, 13 is an arithmetic control unit, 14 is an air release solenoid valve, 15 is an air supply digital contact, and 16 is an air release digital contact. There is.

第5図は圧油タンクの正常領域のアルゴリズム
の説明図で、横軸、縦軸にそれぞれ油圧P、油面
Hがとつてあり、Yは理想油圧・油面特性曲線、
Y1は判定基準に用いる油圧・油面特性の上限値
の曲線、Y2は判定基準に用いる油圧・油面特性
の下限値の曲線、HN及びPNはそれぞれ油面及び
油圧の検出値、Pnaxは油面HN時における油圧・
油面特性の上限値、Pnioは油面HN時における油
圧・油面特性の下限値を示しており、Lが許容範
囲を示している。すなわち、第5図は空気量の変
化を油面に換算した油面と油圧の関数値として油
面の上限値Y1と下限値Y2を定めた油圧・油面の
アルゴリズム特性を示している。
Figure 5 is an explanatory diagram of the algorithm for the normal region of a pressure oil tank, where the horizontal and vertical axes represent oil pressure P and oil level H, respectively, and Y is the ideal oil pressure/oil level characteristic curve,
Y 1 is the curve of the upper limit value of the oil pressure/oil level characteristics used as the judgment criterion, Y 2 is the curve of the lower limit value of the oil pressure/oil level characteristic used as the judgment criterion, H N and P N are the detected values of the oil level and oil pressure, respectively. , P nax is the hydraulic pressure at oil level H N.
The upper limit value of the oil level characteristics, P nio , indicates the lower limit value of the oil pressure/oil level characteristics when the oil level is H N , and L indicates the allowable range. In other words, Figure 5 shows the oil pressure/oil level algorithm characteristics in which the upper limit value Y 1 and lower limit value Y 2 of the oil level are determined as a function value of the oil level and the oil pressure, which is a change in air amount converted to an oil level. .

従つて、この実施例の圧油タンク1において
は、圧油タンク1内の状態を、温度センサ10、
油面センサ11、圧力センサ12によつて連続量
で常時検出し、演算制御装置13に取り込み、第
4図の油圧・油面のアルゴリズム特性と検出値と
を比較し、検出値が許容範囲(Y1〜Y2)を外れ
ているときは、許容範囲L内の理想曲線Y付近に
なるまで空気を補給又は放出して異常状態の修正
を行ない正常位置に戻すように制御される。
Therefore, in the pressure oil tank 1 of this embodiment, the state inside the pressure oil tank 1 is detected by the temperature sensor 10,
The oil level sensor 11 and the pressure sensor 12 constantly detect continuous quantities, which are input into the arithmetic and control unit 13, and the detected values are compared with the algorithm characteristics of oil pressure and oil level shown in Fig. 4, and the detected values are determined to be within the allowable range ( Y 1 to Y 2 ), the abnormal state is corrected by supplying or discharging air until the position is near the ideal curve Y within the allowable range L, and the control is performed to return to the normal position.

第4図に示すアルゴリズム特性範囲は、圧油タ
ンク内の油圧がPで空気量がVであるとき(1)式の
示す如く、 P×Vn=一定 …(1)′ ここでnはポリトープ指数で、圧油タンク内の
空気温度の変化によつて変わり、一般的には、
n=1.0〜1.4となることが知られている。
The algorithm characteristic range shown in Figure 4 is as shown in equation (1) when the oil pressure in the pressure oil tank is P and the amount of air is V, P x V n = constant...(1)' Here, n is a polytope. It is an index that changes depending on the change in air temperature in the pressure oil tank, and generally,
It is known that n=1.0 to 1.4.

なるポリトロープ変化特性に則つて定まつてい
る。
It is determined according to the polytropic change characteristics.

一方、圧油タンク内の油圧P、空気量V、絶対
温度T、空気のガス定数Rの間には、理想気体の
状態式として P×V=R×T …(2) の関係があり、この理想気体の状態式から、初期
値の油圧・油面・温度をそれぞれP1,V1,T1
し、変化後の油圧・油面・温度をそれぞれP2
V2,T2とすると P1×V1/T1=P2×V2/T2 …(3) となる。
On the other hand, there is a relationship between the oil pressure P in the pressure oil tank, the amount of air V, the absolute temperature T, and the gas constant R of air as shown in the equation of state for an ideal gas: P x V = R x T (2), From this ideal gas state equation, the initial values of oil pressure, oil level, and temperature are respectively P 1 , V 1 , and T 1 , and the changed oil pressure, oil level, and temperature are P 2 , respectively.
Assuming V 2 and T 2 , P 1 ×V 1 /T 1 =P 2 ×V 2 /T 2 (3).

ここで、絶対温度Tと摂氏温度tとの間には T=273+t …(4) の関係があるので、温度増加量又は減少量をΔt
とすると、変化後の温度T2は T2=273+t+Δt …(5) となる。
Here, since there is a relationship between absolute temperature T and degree Celsius temperature t as T = 273 + t...(4), the amount of increase or decrease in temperature can be expressed as Δt
Then, the temperature T 2 after the change is T 2 =273+t+Δt (5).

従つて、空気量一定と考えた場合の温度変化に
よる圧力変化は P1/273+t=P2/273+t+Δt …(6) P2=P1{1+Δt/273+t} …(7) となる。
Therefore, assuming that the amount of air is constant, the pressure change due to temperature change is P 1 /273+t=P 2 /273+t+Δt (6) P 2 =P 1 {1+Δt/273+t} (7).

この圧油タンク内の温度変化により正常領域の
アルゴリズムに修正を加わえたものが第6図で、
平行移動して圧油タンク内の状態を監視するよう
にする。第6図において第5図と同一の部分には
同一符号が付してある。この図で、Y′は温度Δt
変化後の理想油圧・油面特性曲線、Y1′は温度Δt
変化後の判定基準に用いる油圧・油面特性の上限
値の曲線、Y2′は温度Δt変化後の判定基準に用い
る油圧・油面特性の下限値の曲線、H′N及びP′N
それぞれ温度Δt変化後の油面及び油圧の検出値、
P′naxは油面H′N時における油圧・油面特性の上限
値、P′nioは油面H′N時における油圧・油面特性の
下限値、Lは初期条件における許容範囲、L′は温
度Δt変化後の許容範囲、Mは温度Δt変化による
圧力補正を示している。
Figure 6 shows the algorithm for the normal region that has been modified based on temperature changes in the pressure oil tank.
It moves in parallel to monitor the condition inside the pressure oil tank. In FIG. 6, the same parts as in FIG. 5 are given the same reference numerals. In this figure, Y′ is the temperature Δt
Ideal oil pressure/oil level characteristic curve after change, Y 1 ′ is temperature Δt
The curve of the upper limit value of the oil pressure/oil level characteristic used as the criterion after the change in temperature, Y 2 ′ is the curve of the lower limit value of the oil pressure/oil level characteristic used as the criterion after the change in temperature Δt, H′ N and P′ N are Detected values of oil level and oil pressure after temperature Δt change, respectively,
P′ nax is the upper limit of the oil pressure and oil level characteristics when the oil level is H′ N , P′ nio is the lower limit of the oil pressure and oil surface characteristics when the oil level is H′ N , L is the allowable range under the initial conditions, and L′ is an allowable range after a change in temperature Δt, and M is a pressure correction due to a change in temperature Δt.

すなわち、初期状態の許容領域Y1〜Y2は、運
転中の温度変化(Δt)により正常領域に補正を
加えてY1′〜Y2′とし、常に圧力タンク内圧力油面
の関係を油面・油圧変化の全領域で正常関係に保
持することができる。
In other words, the allowable range Y 1 to Y 2 in the initial state is corrected to the normal range due to the temperature change (Δt) during operation, and becomes Y 1 ′ to Y 2 ′, and the relationship between the pressure oil level in the pressure tank is always adjusted based on the oil level. A normal relationship can be maintained over the entire range of surface and oil pressure changes.

実施例の圧油タンク1では、第6図の温度の関
数として方程式化した油圧・油面特性を演算制御
装置13に記憶しておき、連続量にて常時又は一
定時間毎に検出される温度センサ10、油面セン
サ11、圧力センサ12からの信号と、前述の正
常領域のアルゴリズム特性とを比較して、その時
の圧油タンク1内の油圧・油面の関係が第6図の
A点にある場合、これは許容範囲外であるため、
速やかに異常(空気不足)を検出し、演算制御装
置13から空気補給デジタル接点15が付勢さ
れ、空気補給電磁弁6を付勢して空気タンク5か
ら圧油タンク1に空気を補給し、圧油タンク1内
圧力を上昇せしめA点の異常状態を正常領域内の
理想油圧・油面特性曲線Y上のC点の付近まで修
正して油面制御が行なわれる。また、圧油タンク
1内の状態が第6図においてB点にある場合に
は、速やかに異常(空気余剰)を検出し、演算制
御装置13から空気放出デジタル接点15が付勢
され、空気放出電磁弁14を付勢して圧油タンク
1内の余剰空気を放出し、圧油タンク1内圧力を
降下せしめ、B点の異常状態を正常領域内の理想
油圧・油面特性曲線上のC点の付近まで修正して
油面制御が行なわれる。
In the pressure oil tank 1 of the embodiment, the oil pressure/oil level characteristics expressed as a function of temperature as shown in FIG. The signals from the sensor 10, oil level sensor 11, and pressure sensor 12 are compared with the algorithm characteristics of the normal region described above, and the relationship between the oil pressure and oil level in the pressure oil tank 1 at that time is determined at point A in FIG. , this is not acceptable, so
Immediately detects an abnormality (lack of air), the air supply digital contact 15 is energized by the arithmetic and control unit 13, the air supply solenoid valve 6 is energized, and air is supplied from the air tank 5 to the pressure oil tank 1. Oil level control is performed by increasing the internal pressure of the pressure oil tank 1 and correcting the abnormal condition at point A to near point C on the ideal oil pressure/oil level characteristic curve Y within the normal range. In addition, when the state inside the pressure oil tank 1 is at point B in FIG. The solenoid valve 14 is energized to release excess air in the pressure oil tank 1, lowering the pressure in the pressure oil tank 1, and changing the abnormal state at point B to C on the ideal oil pressure/oil level characteristic curve within the normal range. Oil level control is performed by making corrections to the vicinity of the point.

次に、水力発電所の圧油タンクにおける温度補
正を考慮した異常診断監視アルゴリズムの作成例
について示すと、この作成例では、圧油タンクの
タンク内径は1436mm、全容量は3600Lit、空気量
及び油量は油圧47Kg/cm2においてそれぞれ
2200Lit及び1400Litであり、常用最高油面は50
Kg/cm2、常用最低油面は47Kg/cm2、上限警報油
圧・油面は、52Kg/cm2、下限警報油圧・油面は
42.5Kg/cm2とし、この場合の上限警報油圧・油面
は空気補給油面L0より約10〜20mm上の位置に設
定し、下限警報油圧・油面は常用最低油圧・油面
L2と許容最低油圧・油面L3との中間の位置に
設定した。
Next, we will show an example of creating an abnormality diagnosis monitoring algorithm that takes temperature correction into consideration for a pressure oil tank in a hydroelectric power plant. The amounts are respectively at hydraulic pressure of 47Kg/ cm2.
2200Lit and 1400Lit, and the maximum oil level for regular use is 50
Kg/cm 2 , minimum normal oil level is 47Kg/cm 2 , upper limit alarm oil pressure/oil level is 52Kg/cm 2 , lower limit alarm oil pressure/oil level is
42.5Kg/cm 2 , and in this case, the upper limit alarm oil pressure/oil level is set at a position approximately 10 to 20 mm above the air supply oil level L0, and the lower limit alarm oil pressure/oil level is set to the minimum normal oil pressure/oil level L2. It was set at a position midway between the lowest oil pressure and oil level L3.

この圧油タンクの異常診断アルゴリズムは、上
限警報油圧・油面〜下限警報油圧・油面の範囲に
ついて作成され、この範囲外に油圧・油面がある
時は、異常診断監視アルゴリズムの有無を問わ
ず、全て異常として検出する。
The abnormality diagnosis algorithm for this pressure oil tank is created for the range from the upper limit alarm oil pressure/oil level to the lower limit alarm oil pressure/oil level, and when the oil pressure/oil level is outside this range, the presence or absence of the abnormality diagnosis monitoring algorithm is checked. First, everything is detected as abnormal.

このように、実施例の圧油タンクにおいては、
圧油タンク内の油圧・油面・温度を連続量で検出
し、温度変化を考慮した油圧・油面の変化特性に
従つた監視により空気補給又は放出制御を行なう
ことが可能となつたため、圧油タンク内油圧・油
面を運転範囲の全領域で常に安定した状態に保つ
ことができ、安全で信頼性の高い圧油装置用圧油
タンクの油面制御が得られる。
In this way, in the pressure oil tank of the example,
It has become possible to continuously detect the oil pressure, oil level, and temperature in the pressure oil tank, and to perform air replenishment or release control by monitoring according to the change characteristics of the oil pressure and oil level, taking temperature changes into consideration. The oil pressure and oil level in the oil tank can always be maintained in a stable state over the entire operating range, providing safe and reliable oil level control in the pressure oil tank for pressure oil equipment.

〔発明の効果〕〔Effect of the invention〕

本発明は、圧油タンク内油圧・油面を運転範囲
の全領域で常に安定した状態に保つことができ、
安全で信頼性の高い圧油タンクの油面制御方法を
提供することができる。
The present invention can always maintain the oil pressure and oil level in the pressure oil tank in a stable state over the entire operating range.
A safe and reliable oil level control method for a pressure oil tank can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の圧油タンク油面制御系統図、第
2図は同じく油面制御電気シーケンス図、第3図
は本発明の圧油タンクの油面制御方法の一実施例
に使用される圧油タンク油面制御系統図、第4図
は同じく油面制御電気シーケンス図、第5図は同
じく圧油タンクの油圧・油面の正常領域のアルゴ
リズム説明図、第6図は同じく温度特性を考慮し
た圧油タンクの油圧・油面のアルゴリズム説明図
である。 1……圧油タンク、4……空気圧縮機、5……
空気タンク、6……空気補給電磁弁、14……空
気放出電磁弁、15……空気補給デジタル接点、
16……空気放出デジタル接点。
Fig. 1 is a conventional pressure oil tank oil level control system diagram, Fig. 2 is an oil level control electrical sequence diagram, and Fig. 3 is used in an embodiment of the oil level control method for a pressure oil tank of the present invention. Pressure oil tank oil level control system diagram, Figure 4 is also an oil level control electrical sequence diagram, Figure 5 is also an algorithm explanatory diagram of the normal range of oil pressure and oil level of the pressure oil tank, and Figure 6 is also the same temperature characteristic. It is an explanatory diagram of the algorithm of the oil pressure and oil level of the pressure oil tank taken into consideration. 1...Pressure oil tank, 4...Air compressor, 5...
Air tank, 6...Air supply solenoid valve, 14...Air release solenoid valve, 15...Air supply digital contact,
16...Air release digital contact.

Claims (1)

【特許請求の範囲】[Claims] 1 水力発電所における圧油タンクの油圧・油面
をポリトロープ変化特性を基準にして制御する方
法において、油圧・油面・温度の検出結果に基づ
き、第一にP×Vn=一定(ここでPは圧力、V
は空気の体積、nはポリトロープ指数)なるポリ
トロープ変化特性より求めた圧油タンク内の油
圧・油面の関数値としての許容範囲を設定し、第
二にP×V=R×T(ここでPは圧力、Vは空気
の体積、Rは空気のガス定数、Tは絶対温度)な
る理想気体の状態式より求めた温度特性を考慮し
温度変化に対する前記の油圧・油面の関数値とし
ての許容範囲の補正を行ない、得られた関数値を
判定基準として前記圧油タンク内の油圧・油面の
異常を検出し、その結果に基づいて、前記圧油タ
ンクの油圧・油面変化全領域において速やかに油
圧・油面・温度を正常領域へ復帰させるよう空気
補給又は余剰空気放出を行なうことを特徴とする
圧油タンクの油面制御方法。
1 In a method of controlling the oil pressure and oil level of a pressure oil tank in a hydroelectric power plant based on polytropic change characteristics, firstly, P×V n = constant (here, P is pressure, V
is the volume of air and n is the polytropic exponent). Set the allowable range as a function value of the oil pressure and oil level in the pressure oil tank, and then set the tolerance range as a function value of the oil pressure and oil level in the pressure oil tank. P is the pressure, V is the volume of the air, R is the gas constant of the air, and T is the absolute temperature. The permissible range is corrected, and abnormalities in the oil pressure and oil level in the pressure oil tank are detected using the obtained function values as judgment criteria, and based on the results, the entire range of oil pressure and oil level changes in the pressure oil tank is detected. A method for controlling an oil level in a pressure oil tank, characterized by supplying air or releasing excess air so as to quickly return oil pressure, oil level, and temperature to normal ranges.
JP59004992A 1984-01-13 1984-01-13 Oil level controlling method of pressure oil tank Granted JPS60151401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59004992A JPS60151401A (en) 1984-01-13 1984-01-13 Oil level controlling method of pressure oil tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59004992A JPS60151401A (en) 1984-01-13 1984-01-13 Oil level controlling method of pressure oil tank

Publications (2)

Publication Number Publication Date
JPS60151401A JPS60151401A (en) 1985-08-09
JPH0326281B2 true JPH0326281B2 (en) 1991-04-10

Family

ID=11599100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59004992A Granted JPS60151401A (en) 1984-01-13 1984-01-13 Oil level controlling method of pressure oil tank

Country Status (1)

Country Link
JP (1) JPS60151401A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201132A (en) * 2004-01-15 2005-07-28 Toshiba Plant Systems & Services Corp Oil pressure supply system and inlet valve controller
CN103195644B (en) * 2013-03-26 2015-04-15 四川中鼎自动控制有限公司 Automatic air supplement system and air supplement method for oil pressure device of hydropower station
JP6525418B2 (en) * 2014-10-22 2019-06-05 日本車輌製造株式会社 vehicle

Also Published As

Publication number Publication date
JPS60151401A (en) 1985-08-09

Similar Documents

Publication Publication Date Title
KR100672273B1 (en) Gas supply system
JPH0326281B2 (en)
CN111448096A (en) Method for releasing a fuel cell system and fuel cell system
JP4747513B2 (en) Gas supply device
KR20180095984A (en) The method for detecting malfunction of the high pressure cylinder disposed in a fuel cell system
JP2017008980A (en) Hydraulic control device of work machine
CN114076004B (en) Medium-pressure heat supply system and medium-pressure heat supply method
KR20100084032A (en) Automatic control of net-positive suction head of ballast pump during automatic ballast water exchange
KR20090067039A (en) Gas valve arrangement
KR200331414Y1 (en) Fuel Supply Pipe for Emergency Generation of Electric Power
JP2773003B2 (en) Pneumatic control system and device for air dome method
JP4437752B2 (en) Sealing oil supply device for rotating electrical machines
JP2509612B2 (en) Bypass controller
JP2007247802A (en) Hydraulic control circuit having improved pressure controllability
JPS5983801A (en) Oil surface control method for pressurized oil tank
JP2539514B2 (en) Boiler water supply control device
JPH1183344A (en) Automatic vacuum controller for condenser
JPH0198804A (en) Condensate recirculation flow controller
JPH03111603A (en) Monitor of oil level in oil tank
JPH04224399A (en) High pressure gas filling up device
JPH04194502A (en) Generating plant and method and device for controlling water level
JPH01295001A (en) Controlled fluid pressure generating apparatus
JPS63176605A (en) Warming controller
JPH0979508A (en) Feed water controller for steam generating plant
JPS6039701Y2 (en) Air conditioning control device