JPH03262584A - Apparatus for evaporating and concentrating waste liquid of photographic processing - Google Patents

Apparatus for evaporating and concentrating waste liquid of photographic processing

Info

Publication number
JPH03262584A
JPH03262584A JP5958290A JP5958290A JPH03262584A JP H03262584 A JPH03262584 A JP H03262584A JP 5958290 A JP5958290 A JP 5958290A JP 5958290 A JP5958290 A JP 5958290A JP H03262584 A JPH03262584 A JP H03262584A
Authority
JP
Japan
Prior art keywords
waste liquid
photographic processing
column
liquid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5958290A
Other languages
Japanese (ja)
Inventor
Masayuki Kurematsu
槫松 雅行
Nobutaka Goshima
伸隆 五嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP5958290A priority Critical patent/JPH03262584A/en
Publication of JPH03262584A publication Critical patent/JPH03262584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photographic Developing Apparatuses (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To efficiently perform concn. without generating a malodor by providing an ultrasonic transmitting means and an ultrasonic receiving means with respect to a conc. solution and emitting a concn. stop order and a concentrate recovery order on the basis of the signal of the receiving means. CONSTITUTION:A waste photographic processing liquid is introduced into the system to be evaporated and conc. by a heater 30. The waste liquid replenishing means 20 to an evaporating and concentrating column 11 and the ultrasonic transmitting means 71 and ultrasonic receiving means 72 to the conc. solution in the column 11 or a piping circuit 27 are provided and, on the basis of the signal of the receiving means 72, a concn. stop order or a concentrate recovery order is emitted. As a result, the waste photographic processing liquid is evaporated and conc. at as low a heating temp. as possible and can be conc. while it is quantitatively supplied to the concentrating column 11 without generating a malodor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は写真処理廃液の蒸発濃縮処理装置に関するもの
であり、特に自動現像機による写真感光材料の現像処理
に伴い発生する写真処理廃液を業者の回収によらず自動
現像機内もしくはその近傍にて処理するのに適した写真
処理廃液の蒸発濃縮処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an evaporative concentration treatment device for photographic processing waste liquid, and in particular, the present invention relates to an evaporative concentration treatment device for photographic processing waste liquid, and in particular, it is used to collect photographic processing waste liquid generated from the development process of photographic light-sensitive materials using automatic processors. This invention relates to an apparatus for evaporating and concentrating photographic processing waste liquid, which is suitable for processing in or near an automatic processing machine without recovering it.

〔発明の背景〕[Background of the invention]

一般に、ハロゲン化銀写真感光材料の写真処理は、黒白
感光材料の場合には、現像、定着、水洗等、カラー感光
材料の場合には発色現像、漂白定着(又は漂白、定着)
、水洗、安定化等の機能の1つ又は2つ以上を有する処
理液を用いた行程を組合わせて行われている。
In general, photographic processing of silver halide photographic materials includes development, fixing, washing, etc. in the case of black and white materials, and color development, bleach-fixing (or bleaching and fixing) in the case of color materials.
A combination of processes using a treatment liquid having one or more functions such as , water washing, and stabilization is performed.

そして、多量の感光材料を処理する写真処理においては
、処理によって消費された成分を補充し一方、処理によ
って処理液中に溶出或は蒸発によって濃化する成分(例
えば現像液における臭化物イオン、定着液における銀錯
塩のような)を除去して処理液成分を一定に保つことに
よって処理液の性能を一定に維持する手段が採られてお
り、上記補充のために補充液が処理液に補充され、写真
処理における濃厚化成分の除去のために処理液の一部が
廃棄されている。
In photographic processing in which a large amount of light-sensitive material is processed, components consumed during processing are replenished, while components that are eluted into the processing solution or concentrated by evaporation during processing (for example, bromide ions in the developer, bromide ions in the fixer), etc. A method is adopted to maintain the performance of the processing solution at a constant level by removing substances such as silver complex salts (such as silver complex salts) and keeping the processing solution components constant. A portion of the processing solution is discarded to remove thickening components during photographic processing.

近年、補充液は水洗の補充液である水洗水を含めて公害
上や経済的理由から補充の量を大幅に減少させたシステ
ムに変わりつつあるt゛、写真処理廃液は自動現像機の
処理槽から廃液管によって導かれ、水洗水の廃液や自動
現像機の冷却水等で稀釈されて下水道等に廃棄されてい
た。
In recent years, the system has been changing to a system in which the amount of replenishment fluid, including the washing water used as a replenishment fluid for washing, has been significantly reduced due to pollution and economic reasons. Photographic processing waste fluid is stored in the processing tank of automatic processors. The liquid was led out through waste pipes, diluted with waste liquid from washing water, cooling water from automatic processors, etc., and disposed of in sewers, etc.

しかしながら、近年の公害規制の強化により、水洗水や
冷却水の下水道や河川への廃棄は可能であるが、これら
以外の写真処理液[例えば、現像液、定着液、発色現像
液、漂白定着液(又は漂白液、定着液)、安定液等]の
廃棄は、実質的に不可能となっている。このため、各写
真処理業者は廃液を専門の廃液処理業者に回収料金を払
って回収してもらったり公害処理設備を設置したりして
いる。しかしながら、廃液処理業者に委託する方法は、
廃液を貯留しておくのにかなりのスペースが必要となる
し、またコスト的にも極めて高価であり、さらに公害処
理設備は初期投資(イニシャルコスト)が極めて大きく
、整備するのにかなり広大な場所を必要とする等の欠点
を有している。
However, due to stricter pollution regulations in recent years, it is possible to dispose of washing water and cooling water into sewers or rivers, but other photographic processing solutions [e.g. developer, fixer, color developer, bleach-fixer] (or bleaching solution, fixing solution), stabilizing solution, etc.] has become virtually impossible to dispose of. For this reason, each photo processing company pays a collection fee to a specialized waste liquid processing company to collect the waste liquid, or installs pollution treatment equipment. However, the method of outsourcing to a waste liquid treatment company is
A considerable amount of space is required to store the waste liquid, and it is also extremely expensive.Furthermore, the initial investment (initial cost) for pollution treatment equipment is extremely large, and it requires a fairly large space to set up. It has disadvantages such as requiring

さらに、具体的には、写真処理廃液の公害負荷を低減さ
せる公害処理方法としては、活性汚泥法(例えば、特公
昭51−12943号及び同昭51−7952号等)、
蒸発法(特開昭49−89437号及び同56−339
96号等)、電解酸化法(特開昭48−84462号、
同49−119458号、特公昭53−43478号、
特開昭49−119457号等)、イオン交換法(特公
昭51−37704号、特開昭53−383号、特公昭
53−43271号等)、逆浸透法(特開昭50−22
463号等)化学的処理法(特開昭49−64257号
、特公昭57−37396号、特開昭53−12152
号、同49−58833号、同53−63763号、特
公昭57−37395号等)等が知られているが、これ
らは未だ充分ではない。
Furthermore, specifically, as a pollution treatment method for reducing the pollution load of photographic processing waste liquid, activated sludge method (for example, Japanese Patent Publication No. 51-12943 and No. 51-7952, etc.);
Evaporation method (JP-A-49-89437 and JP-A-56-339)
No. 96, etc.), electrolytic oxidation method (JP-A-48-84462,
No. 49-119458, Special Publication No. 53-43478,
JP-A-49-119457, etc.), ion exchange method (JP-A-51-37704, JP-A-53-383, JP-A-53-43271, etc.), reverse osmosis method (JP-A-50-22)
No. 463, etc.) Chemical treatment methods (JP-A-49-64257, JP-A-57-37396, JP-A-53-12152)
No. 49-58833, No. 53-63763, Japanese Patent Publication No. 57-37395, etc.), but these are still insufficient.

一方、水資源面からの制約、給排水コストの上昇、自動
現像機設備における簡易さと、自動現像機周辺の作業環
境上の点等から、近年、水洗に変わる安定化処理を用い
、自動現像機外に水洗の給排水のための配管を要しない
自動現像機(いわゆる無水洗自動現像機)による写真処
理が普及しつつある。このような処理では処理液の温度
コントロールするための冷却水も省略されたものが望ま
れている。このような実質的に水洗水や冷却水を用いな
い写真処理では自動現像機からの写真処理廃液がある場
合と比べて水によって稀釈されないためその公害負荷が
極めて大きく一方において廃液量が少ない特徴がある。
On the other hand, due to constraints from water resources, rising water supply and drainage costs, the simplicity of automatic processor equipment, and the work environment around automatic processors, in recent years, stabilization treatments have been used instead of washing with water, and Photographic processing using automatic developing machines (so-called waterless automatic developing machines) that do not require piping for water supply and drainage is becoming popular. In such processing, it is desired that cooling water for controlling the temperature of the processing liquid can also be omitted. In this type of photographic processing, which does not substantially use rinsing water or cooling water, compared to the case where there is photographic processing waste liquid from automatic processors, the pollution load is extremely large because it is not diluted with water, and on the other hand, the amount of waste liquid is small. be.

従って、この廃液量が少ないことにより、給廃液用の機
外の配管を省略でき、それにより従来の自動現像機の欠
点と考えられる配管を設置するために設置後は移動が困
難であり、足下スペースが狭く、設置時の配管工事に多
大の費用を要し、温水供給圧のエネルギー費を要する等
の欠点が解消され、オフィスマシンとして使用できるま
でコンパクト化、簡易化が達成されるという極めて大き
い利点が発揮される。
Therefore, due to the small amount of waste liquid, it is possible to omit the piping outside the machine for supplying and waste liquid, which is considered to be a disadvantage of conventional automatic processors, as it is difficult to move after installation. The disadvantages such as the small space required, the high cost of piping work during installation, and the high energy cost of hot water supply pressure have been eliminated, and the machine has been made compact and simple enough to be used as an office machine. Benefits are demonstrated.

しかしながら、この反面、その廃液は極めて高い公害負
荷を有しており、河川はもとより下水道にさえ、その公
害規制に照らしてその廃液は全く不可能となってきてい
る。さらにこのような写真処理(多量の流水を用いて、
水洗を行わない処理)の廃液量は少ないとはいえ、例え
ば比較的小規模なカラー処理ラボでも、1日に100程
度となる。
However, on the other hand, the waste liquid has an extremely high pollution load, and in light of pollution regulations, it has become completely impossible to drain the waste liquid into rivers or even sewers. Furthermore, such photo processing (using a large amount of running water,
Although the amount of waste liquid from processes that do not involve water washing is small, for example, even in a relatively small-scale color processing laboratory, the amount is about 100 per day.

従って、一般には廃液回収業者によって回収され、二次
及び三次処理され無害化されているが、回収費の高騰に
より廃液引き取り価格は年々高くなるばかりでなく、ミ
ニラボ等では回収効率は悪いため、なかなか回収に来て
もらうことができず、廃液が店に充満する等の問題を生
じている。
Therefore, waste liquid is generally collected by a waste liquid collection company and rendered harmless through secondary and tertiary processing.However, not only is the price of waste liquid collection increasing year by year due to rising collection costs, but collection efficiency is low in minilabs, etc., so it is difficult to do so. No one can come to collect the liquid, causing problems such as waste liquid filling the store.

一方、これらの問題を解決するために写真処理廃液の処
理をミニラボ等でも容易に行えることを目的として、写
真処理廃液を加熱して水分を蒸発乾固ないし固化するこ
とが研究されており、例えば、実開昭60−70841
号等に示されている。発明者等の研究では写真処理廃液
を蒸発処理した場合、亜硫酸ガス、硫化水素、アンモニ
アガス等の有害ないし極めて悪臭性のガスが発生する。
On the other hand, in order to solve these problems, research has been conducted on heating the photographic processing waste liquid to evaporate the water to dryness or solidify it, with the aim of making it easier to process the photographic processing waste liquid even in minilabs. , Utsukai Showa 60-70841
It is shown in the number etc. According to research conducted by the inventors, when photographic processing waste liquid is evaporated, harmful or extremely malodorous gases such as sulfur dioxide gas, hydrogen sulfide, and ammonia gas are generated.

これは写真処理液の定着液や漂白定着液としてよく用い
られるチオ硫酸アンモニウムや亜硫酸塩(アンモニウム
塩、ナトリウム塩又はカリウム塩)が高温のため分解す
ることによって発生することがわかった。更に蒸発処理
時には写真処理廃液中の水分等が蒸気となって気体化す
ることにより体積が膨張し、蒸発釜中の圧力が増大する
。このためこの圧力によって蒸発処理装置から前記有害
ないし悪臭性のガスが装置外部へもれ出してしまい、作
業環境上極めて好ましくないことが起こる。
It has been found that this is caused by the decomposition of ammonium thiosulfate and sulfites (ammonium salt, sodium salt, or potassium salt), which are commonly used as fixing solutions and bleach-fixing solutions in photographic processing solutions, due to high temperatures. Further, during the evaporation process, moisture and the like in the photographic processing waste liquid becomes vapor and gasifies, thereby expanding the volume and increasing the pressure in the evaporation pot. Therefore, this pressure causes the harmful or malodorous gases to leak out of the evaporation treatment apparatus to the outside of the apparatus, resulting in an extremely unfavorable working environment.

そこで、これらを解決するために実開昭60−7084
1号には蒸発処理装置の排気管部に活性炭等の排ガス処
理部を設ける方法が開示されている。しかし5、この方
法は写真処理廃液中の多量の水分による水蒸気により、
排ガス処理部で結露又は凝結し、ガス吸収処理剤を水分
が覆い、ガス吸収能力を瞬時に失わせてしまう重大な欠
点を有しており、未だ実用には供し得ないものであった
Therefore, in order to solve these problems,
No. 1 discloses a method of providing an exhaust gas treatment section such as activated carbon in the exhaust pipe section of an evaporation treatment device. However, 5. this method is not effective due to the large amount of water vapor in the photographic processing waste liquid.
It has the serious drawback that dew condensation or condensation occurs in the exhaust gas treatment section, covering the gas absorption treatment agent with moisture, causing an instantaneous loss of gas absorption ability, and it has not yet been put to practical use.

これらの問題点を解決するために、この出願人等は写真
処理廃液を蒸発処理するに際し、蒸発によって生じる蒸
気を凝縮させる冷却凝縮手段を設け、さらに凝縮によっ
て生じる凝縮水を処理するとともに非ll縮威分につい
ても処理して外部へ放出する写真処理廃液の処理方法及
び装置について先に提案した。
In order to solve these problems, the present applicant et al. installed a cooling condensing means to condense the vapor generated by evaporation when evaporating photographic processing waste liquid, and further treated the condensed water generated by condensation and We have previously proposed a method and apparatus for treating photographic processing waste liquid that is also treated and discharged to the outside.

しかしながら、上記提案によれば、次のような問題点が
あることを見い出した。すなわち、蒸発処理によって生
じる蒸気は冷却凝縮手段で凝縮されるが、冷却凝縮効率
が悪いと、凝縮されないで装置外部へ放出される蒸気の
比率が高くなり、たとえ活性炭で処理したとしても、悪
臭で有害なガスが装置外部へ放出される比率も高くなる
。さらに冷却凝縮手段によって凝縮された凝縮水も、た
とえ活性炭で処理したとしても、廃棄する時l:おった
り、公害負荷が高くそのまま下水等に排出できない場合
もある。
However, it has been discovered that the above proposal has the following problems. In other words, the vapor generated by the evaporation process is condensed by the cooling condensing means, but if the cooling condensation efficiency is poor, the proportion of vapor that is not condensed and is released to the outside of the device increases, resulting in a bad odor even if treated with activated carbon. The rate at which harmful gases are released to the outside of the device also increases. Further, even if the condensed water condensed by the cooling condensing means is treated with activated carbon, it may be difficult to dispose of it, or it may not be able to be discharged directly into the sewage system due to its high pollution load.

さらに、ミニラボでは店のスペースが極めて限られてお
り、写真処理液を処理することにより発生する悪臭が特
に問題となるばかりでなく、廃液処理装置自体の設置ス
ペースが問題となる。また、装置の値段やランニングコ
ストも重要な問題である従って、写真処理廃液を、悪臭
で有害なガスを発生することなく処理できるコンパクト
で安価でかつランニングコストが低い処理装置が要゛望
されている。
Furthermore, the space available in minilabs is extremely limited, and not only is the bad odor generated by processing photographic processing solutions a particular problem, but also the installation space for the waste solution processing equipment itself becomes a problem. Furthermore, the price and running cost of the equipment are also important issues, so there is a need for a compact, inexpensive processing equipment with low running costs that can process photographic processing waste without emitting foul-smelling and harmful gases. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような問題点を解決するために本出願人は特願昭6
2−69437号等を提案し、写真廃液によって発生す
る悪臭が少なく、かつ確実に処理すべき写真処理廃液を
供給可能になるようにした。そのために蒸発釜(分離蒸
発カラム)Iこ液面センサーを設は常に該カラムの写真
処理廃液の液面高さを検出し、該液の蒸発濃縮処理で液
面が低下した食だけずつ該廃液を供給補充するようにし
た。
In order to solve these problems, the applicant filed a patent application in 1983.
No. 2-69437, etc. were proposed, and it was possible to reduce the bad odor generated by the photographic waste liquid and to reliably supply the photographic processing waste liquid to be processed. For this purpose, the evaporator (separation evaporation column) I is equipped with a liquid level sensor that constantly detects the liquid level of the photographic processing waste liquid in the column, and only removes the liquid whose liquid level has decreased due to the evaporation concentration process. The supply was replenished.

しかし、液面高さを検出して、その減少に見合う廃液だ
け供給して、濃縮液乃至蒸発蒸気の温度を管理しないで
濃縮液自体を高温にするようなことがあると処理廃液の
濃縮中に悪臭を出すガスが発生するようなことになる。
However, if the liquid level height is detected and only the waste liquid corresponding to the decrease is supplied, and the temperature of the concentrated liquid or evaporated steam is not controlled, the concentrated liquid itself may be heated to a high temperature. This will result in the generation of foul-smelling gas.

また、そのような悪臭を発生しないようにして際限なく
廃液を蒸発させて煮詰めて行けば、水分が除かれ、完全
に固形分だけ残り容積的には最も効率が良くなるが多大
のエネルギーと時間を必要とし好ましくない。また蒸発
濃縮カラム内にかたまりついて回収しにくくなることも
ある。
In addition, if the waste liquid is evaporated and boiled down endlessly without producing such a bad odor, the moisture will be removed and only solid matter will remain.Although it would be most efficient in terms of volume, it would require a lot of energy and time. is necessary and undesirable. In addition, it may become difficult to collect by clumping inside the evaporation concentration column.

そこで適切な濃度の所で濃縮を停止して回収するように
した方が得策である。しかし濃度を的確に検知できる手
段がない。
Therefore, it is better to stop the concentration and recover the concentration at an appropriate concentration. However, there is no way to accurately detect the concentration.

本出願人は、特願昭60−259006においてその手
段について処理時間により判断する方法や写真処理廃液
の蒸気温度、該廃液の液面レベル、訪廃液から排出され
る蒸気量、該廃液の重量、該廃液の電気伝導率、該廃液
の光学濃度、該廃液の粘度の検出等の方法の任意の1つ
、またはいくつかの組み合わせによって達成されること
を示唆したが、まだ完全とは言えない。
The present applicant has disclosed in Japanese Patent Application No. 60-259006 a method of determining the method based on the processing time, the steam temperature of the photographic processing waste liquid, the liquid level of the waste liquid, the amount of steam discharged from the visiting waste liquid, the weight of the waste liquid, Although it has been suggested that this can be achieved by any one or some combination of methods such as detecting the electrical conductivity of the waste liquid, the optical density of the waste liquid, and the viscosity of the waste liquid, it is still not perfect.

本発明はこのような問題点を解決してできるだけ低い加
熱温度で写真処理廃液を蒸発濃縮させて定量ずつ該廃液
を濃縮カラムに補給しながら効率良く悪臭を発すること
なく濃縮を行う写真処理廃液の蒸発濃縮装置を提供する
ことを課題目的にする。
The present invention solves these problems by evaporating and concentrating the photographic processing waste liquid at the lowest possible heating temperature and replenishing the waste liquid in quantitative quantities to the concentration column, thereby efficiently concentrating the photographic processing waste liquid without emitting any bad odor. The purpose of the project is to provide an evaporative concentration device.

〔課題を解決するための手段〕[Means to solve the problem]

この目的は、系内に写真処理廃液を入れ該廃液を蒸発濃
縮していく写真処理廃液の蒸発濃縮装置において、蒸発
濃縮カラムへの廃液補給手段と肱カラム内または該配管
回路内の該濃縮液に対して超音波発信手段と超音波受信
手段とを有し核受信手段の信号に基づいて濃縮停止指令
又は濃縮物の回収指令を行うようにしたことを特徴とす
る写真処理廃液の蒸発濃縮装置によって達成される。
The purpose of this is to provide a means for replenishing waste liquid to the evaporative concentration column and a means for replenishing the concentrated liquid in the column or piping circuit in an evaporative concentration device for photographic processing waste liquid in which the waste liquid is placed in the system and the waste liquid is evaporated and concentrated. An apparatus for evaporating and concentrating photographic processing waste liquid, comprising an ultrasonic transmitting means and an ultrasonic receiving means, and is configured to issue a command to stop concentration or a command to recover concentrate based on a signal from the nuclear receiving means. achieved by.

〔実施例〕〔Example〕

本発明の実施例を第1図の配管図、第2図(a)(b 
)、(c )、(d )の各側断面図、第2図(e)の
上面図、第3図のフローチャートによって説明する。
The embodiment of the present invention is shown in the piping diagram in Fig. 1 and in Fig. 2 (a) and (b).
), (c), and (d), a top view of FIG. 2(e), and a flowchart of FIG. 3.

本発明の写真処理廃液の蒸発濃縮装置lは分離カラム装
置10.廃液供給装置20.加熱装置30、冷却装置4
0及び制御装置50で構成されていて、分離カラム装置
10は、蒸発濃縮カラム(V−3) 11と同一液面で
連通する供給廃液の滞留部12が設けられている。該滞
留部の連通管12^の先端は第1図に示すように細めら
れて上方に曲げられ前記濃縮カラム11内の液中に沈め
られ該カラム11の液面近くに生ずる浮遊物が該滞留部
に逆流してこないようにしである。また、該滞留部12
は該カラム11の内部にあってもよく外部であってもよ
い。そして、蒸発濃縮カラムはスラッジ回収容器(V−
4) 15と接続パイプ14で連結されていて、該容器
は載置台16上にばね状クッンヨンを介して載置される
。そして廃液が濃縮されたスラッジは該容器内に順次落
下してゆき、該スラッジがたまり、所定重量に達すると
マイクロスイッチ(MS−1) 19によって検出可能
にしである。そして該載置台上のベッセル(16a)に
液もれが生じるとそれの検出用液面センサー(LC−5
) 18が設けられている。更に蒸発濃縮カラム(V−
3) 11内の滞留部12に廃液レベル検出用液面セン
サー(LC−1) 13が設けられている。
The apparatus for evaporating and concentrating photographic processing waste liquid of the present invention is a separation column apparatus 10. Waste liquid supply device 20. Heating device 30, cooling device 4
0 and a control device 50, the separation column device 10 is provided with a retention section 12 for the supplied waste liquid that communicates with the evaporation concentration column (V-3) 11 at the same liquid level. The tip of the communication pipe 12^ of the retention section is narrowed and bent upward as shown in FIG. 1, and is submerged in the liquid in the concentration column 11, so that suspended matter generated near the liquid surface of the column 11 is collected in the retention part. This is to prevent it from flowing back into the room. In addition, the retention section 12
may be located inside or outside the column 11. Then, the evaporation concentration column is connected to the sludge collection container (V-
4) The container is connected to the container 15 by a connecting pipe 14, and the container is placed on the mounting table 16 via a spring-like spring. The sludge, which is the concentrated waste liquid, falls one after another into the container, and when the sludge accumulates and reaches a predetermined weight, it becomes detectable by the microswitch (MS-1) 19. If liquid leaks in the vessel (16a) on the mounting table, the liquid level sensor (LC-5) detects it.
) 18 are provided. Furthermore, an evaporation concentration column (V-
3) A liquid level sensor (LC-1) 13 for detecting the level of waste liquid is provided in the retention section 12 in the 11.

廃液供給装置20は廃液タンク21と、その液面レヘル
センサー(LC−3) 28と該廃液タンク(V−5)
 21から、流出供給用の耐熱塩化ビニールパイプC以
下耐熱塩ビパイプという) 22.24により、廃液供
給ポンプ(P−1) 23を介して前記滞留部12に廃
液を供給する配管と、蒸発濃縮カラムに廃液供給ポンプ
(P−2) 25を介して耐熱塩ビパイプ22,26.
27により廃液を供給する配管とよりなる。
The waste liquid supply device 20 includes a waste liquid tank 21, its liquid level health sensor (LC-3) 28, and the waste liquid tank (V-5).
21 indicates a heat-resistant vinyl chloride pipe C for outflow supply (hereinafter referred to as heat-resistant PVC pipe); 22. indicates a waste liquid supply pump (P-1); a pipe for supplying waste liquid to the retention section 12 via 23; and an evaporation concentration column. and heat-resistant PVC pipes 22, 26. through a waste liquid supply pump (P-2) 25.
27 is a pipe for supplying waste liquid.

濃縮カラム(V−3) 11内の濃縮液の加熱装置30
は濃縮カラム11から配管された耐熱塩ビパイプ34に
よって濃縮液がヒータ32を設けた加熱器31の循環パ
イプ中に入り加熱され、更に前記耐熱塩ビパイプ27を
通じて再び濃縮カラム(V−3) 11に戻されて循環
するようにしである。そして加熱濃縮液の温度は加熱器
31の循環パイプ中に設けられた温度センサー(丁C−
1) 33によって検出される。また濃縮液の循環はエ
アポンプ(P−4) 37によって行われる。勿論、前
記温度センサーは前記蒸発濃縮カラム中に設けてもよい
Heating device 30 for the concentrated liquid in the concentration column (V-3) 11
The concentrated liquid enters a circulation pipe of a heater 31 equipped with a heater 32 through a heat-resistant PVC pipe 34 piped from the concentration column 11 and is heated, and then returns to the concentration column (V-3) 11 through the heat-resistant PVC pipe 27. It is meant to be returned and circulated. The temperature of the heated concentrated liquid is determined by a temperature sensor (C-C) installed in the circulation pipe of the heater 31.
1) Detected by 33. Further, the circulation of the concentrated liquid is performed by an air pump (P-4) 37. Of course, the temperature sensor may be provided in the evaporative concentration column.

また、前記循環パイプとして耐熱塩ビパイプ27には濃
縮廃液が流れるがその流速は該濃縮廃液の濃度によって
異なる。即ちその流速は超音波流速測定手段70により
特定することができる。即ち流れの方向に沿って超音波
発振器71と超音波受信器72を設けて、送受信の時間
差が流速によって異なることを利用して、該廃液の流速
を測定し、該流速と濃度の相関により濃度を特定するよ
うにしである。
Further, the concentrated waste liquid flows through the heat-resistant PVC pipe 27 as the circulation pipe, and the flow rate thereof varies depending on the concentration of the concentrated waste liquid. That is, the flow velocity can be determined by the ultrasonic flow velocity measuring means 70. That is, an ultrasonic oscillator 71 and an ultrasonic receiver 72 are installed along the flow direction, and the flow rate of the waste liquid is measured by taking advantage of the fact that the time difference between transmission and reception varies depending on the flow rate, and the concentration is determined by the correlation between the flow rate and the concentration. The purpose is to identify the

そしてこれにより、エネルギー効率がよく、濃縮液を回
収し易く、かつ濃縮カラム(V−3) 11や、該液循
環パイプである耐熱塩ビパイプ27のつまりを起こさず
、しかも容積のできるだけ減縮された状態−二するため
の濃度に仕上げるようにしである。
As a result, the energy efficiency is good, the concentrated liquid is easy to recover, the concentrated column (V-3) 11 and the heat-resistant PVC pipe 27 which is the liquid circulation pipe are not clogged, and the volume is reduced as much as possible. I tried to finish it to a concentration suitable for state-2.

本実施例に於ては発振器71と受信器72は流れの方向
と逆方向に斜めに向けであるが流れと同方向に斜めに配
置しても差し支えない。
In this embodiment, the oscillator 71 and the receiver 72 are oriented obliquely in the opposite direction to the flow direction, but they may be arranged obliquely in the same direction as the flow direction.

このようにして、循環パイプとしての耐熱塩ビパイプ2
7の外から流速を測定することが可能になる。まl:、
送信受信は透過型でも対応可能である。
In this way, heat-resistant PVC pipe 2 as a circulation pipe
It becomes possible to measure the flow rate from outside of 7. M:,
A transparent type can also be used for transmission and reception.

つぎに冷却装置40について説明する。水道水は水槽(
V−1) 41に溜められ、パイプ42を通ってバルブ
(SV−1) 48を介して冷却塔(V−2) 46に
供給されて、冷水シャワーが浴びせられる。冷水塔底部
には液面計(LC−2) 45が設けられ供給水の所定
の高低差が検出されるようにしである。更に水供給レベ
ルセンサー(LC−4) 43、冷却塔液もれセンサー
(LC−8) 44が設けられ、冷却塔底部からは排水
パイプ48を通じ排出ポンプ(P−3) 47によって
排水が行えるようにしである。
Next, the cooling device 40 will be explained. Tap water is in an aquarium (
V-1) 41 and is supplied through a pipe 42 to a cooling tower (V-2) 46 via a valve (SV-1) 48 to be showered with cold water. A liquid level gauge (LC-2) 45 is provided at the bottom of the cooling water tower to detect a predetermined difference in height of the supplied water. Furthermore, a water supply level sensor (LC-4) 43 and a cooling tower liquid leak sensor (LC-8) 44 are provided, and water can be drained from the bottom of the cooling tower through a drainage pipe 48 by a discharge pump (P-3) 47. It's Nishide.

一方冷却fFr (V−2) 46+: ハ蒸気濃縮カ
ラム(v−3)11からの過熱蒸気が、耐熱塩ビパイプ
を通って冷却塔(V−2) 46の下部に入り凝縮され
るようにしである。凝縮されなかった蒸気は耐熱塩ビパ
イプ36を通ってエアポンプ(P−4) 37に入り耐
熱塩ビパイプ38.27を通り蒸発濃縮カラム11に再
び入るようにしである。
On the other hand, cooling fFr (V-2) 46+: (c) The superheated steam from the vapor concentration column (V-3) 11 passes through a heat-resistant PVC pipe and enters the lower part of the cooling tower (V-2) 46 so that it is condensed. be. The uncondensed vapor passes through the heat-resistant PVC pipe 36, enters the air pump (P-4) 37, passes through the heat-resistant PVC pipe 38, 27, and enters the evaporation concentration column 11 again.

各液面計センサーによる液面情報及び温度センサーによ
る情報は第1図の点線で示すように制御装置50の制御
盤(DO5) 51に送られ、写真処理廃液の蒸発濃縮
装置全体の運転制御がなされる。なお、制御盤51の要
部は7アン52によって空冷されている。
The liquid level information from each liquid level sensor and the information from the temperature sensor are sent to the control panel (DO5) 51 of the control device 50, as shown by the dotted line in Fig. 1, and the operation control of the entire photographic processing waste liquid evaporation concentration apparatus is carried out. It will be done. The main parts of the control panel 51 are air-cooled by a 7-amplifier 52.

以上本発明の装置の構成を示したが、次に該装置の作動
を第3図の70−チャートを用いて説明する。
The configuration of the apparatus of the present invention has been described above, and now the operation of the apparatus will be explained using chart 70 in FIG.

以下各ステップ(以下St、と書く)について概略をの
べる。
Each step (hereinafter referred to as St) will be outlined below.

初期化された状態で、ファンP−5がONされると制御
盤51の要部の空冷が始まる。そしてSL、1にて重量
センサー(MS−1(W))のチエツクが行われ、Ye
s(以下Yという)のときはスラッジ回収容器が満杯に
なっているのに回収されてないからブザーが鳴り該容器
数り出し可能ランプが点灯している。取り出し終われば
、また既に取出してあれば、N06(以下Nという)で
ありブザーも鳴らず、ランプも点灯せず、次のSt、2
に移る。
When the fan P-5 is turned on in the initialized state, air cooling of the main parts of the control panel 51 starts. Then, the weight sensor (MS-1 (W)) is checked at SL, 1, and Ye
s (hereinafter referred to as Y), the sludge collection container is full but the sludge has not been collected, so the buzzer sounds and the container count ready lamp lights up. Once it has been taken out, or if it has already been taken out, it is N06 (hereinafter referred to as N), the buzzer does not sound, the lamp does not light up, and the next St., 2nd St.
Move to.

ここでは廃液タンク(V−5) 21内のレベルセンサ
ー(LC−3) 28がNであればブザーが鳴り、廃液
タンク空の表示ランプが点灯する。しかし廃液タンクが
空でなければYであり、冷却装置40のバルブ(SV−
1) 48を開いて水槽41からの水を冷却塔に入れる
。モしてSt、3に移りレベルセンサー(LC−4) 
43がNであればブザーが鳴り水道水ランプが点灯し続
ける。モしてLC−4がYになれば、水道水ランプが消
え、エアポンプ(P−4) 37が作動し、St、4に
移る。
Here, if the level sensor (LC-3) 28 in the waste liquid tank (V-5) 21 is N, the buzzer sounds and the waste liquid tank empty indicator lamp lights up. However, if the waste liquid tank is not empty, the status is Y, and the valve of the cooling device 40 (SV-
1) Open 48 and let water from water tank 41 into the cooling tower. Move to St, 3 and level sensor (LC-4)
If 43 is N, the buzzer sounds and the tap water lamp continues to light. When LC-4 becomes Y, the tap water lamp goes out, the air pump (P-4) 37 starts operating, and the process moves to St.4.

St、4ではレベルセンサー(LC−2) 45が働き
Nであれば、排水ポンプ(P−3) 47が0FFSY
であれば該ポンプ(P−3) 47がONになる。そし
てSt、5に移りレベルセンサー(LC−3) 28が
YならSt、6に移り、Nならば後述するようにS L
、13の終わる段階まで飛ぶ。
In St, 4, if level sensor (LC-2) 45 is working and N, drain pump (P-3) 47 is 0FFSY
If so, the pump (P-3) 47 is turned on. Then, move to St, 5, level sensor (LC-3) If 28 is Y, move to St, 6, if N, move to S L as described later.
, jump to the ending stage of 13.

さてSt、6ではレベルセンサー(LC−4)がNなら
ば、後述するようにブザーが鳴り水道水ランプが点灯し
ヒーター32、バルブ(SV−1) 48、エアポンプ
(P−4) 37、廃液供給ポンプ(P−1) 23、
同(P−2) 25、エアポンプ(P−4) 37のい
ずれもそれぞれOFFにする。しかし、(LC−4)が
YであればSt、7に進む。そこで液もれ検出センサー
(LC−5) 18によってスラッジ回収容器載置台1
6まわりの液もれの有無が検出され、NであればSt、
8に進み液もれ検出センサー(LC−6) 47Aによ
って各ポンプベースまわりの液もれが検出され、Nであ
ればst、gに進みパイプ38のレベルセンサー(LC
7)39のレベルが検出されNであればS L、IOに
進み、そこで冷却塔の液もれセンサー(LC−8) 4
4によって液もれが検出され、NであればS t、ll
に進む。S t、7 、S t、8 、S t、9 、
S t、lOに於いてそれぞれYであればブザーが鳴り
、異常ランプが点灯し、前述の各機能のヒーター バル
ブ(5V−1)及び各ポンプp−4、p−1、P−2、
P−3がいずれもOFFになる。
Now, in St. 6, if the level sensor (LC-4) is N, the buzzer will sound and the tap water lamp will turn on, as described later, and the heater 32, valve (SV-1) 48, air pump (P-4) 37, waste liquid Supply pump (P-1) 23,
Turn off both air pump (P-2) 25 and air pump (P-4) 37. However, if (LC-4) is Y, proceed to St, 7. Therefore, a liquid leak detection sensor (LC-5) 18 is installed on the sludge collection container mounting table 1.
The presence or absence of liquid leakage around 6 is detected, and if it is N, St.
Proceed to step 8, liquid leakage detection sensor (LC-6) 47A detects liquid leakage around each pump base, and if N, proceed to st, g and check the level sensor (LC-6) of pipe 38.
7) If the level of 39 is detected and is N, proceed to SL, IO, where the cooling tower liquid leak sensor (LC-8) 4
If a liquid leak is detected by 4 and N, then S t, ll
Proceed to. S t,7 , S t,8 , S t,9 ,
If each of S t and lO is Y, the buzzer sounds, the abnormality lamp lights up, and the heater valve (5V-1) of each function mentioned above and each pump p-4, p-1, P-2,
Both P-3 are turned OFF.

S t、llにおいて蒸発濃縮カラム11と連通ずる供
給廃液の滞留部12に設けられたレベルセンサー(LC
−1) 13がNならば廃液供給ポンプ(P−2) 2
5を作動させYならば、該ポンプ(P−2) 25をO
FFにし、ヒーター32をON L S t、12に移
る。
A level sensor (LC
-1) If 13 is N, waste liquid supply pump (P-2) 2
If 5 is activated, turn the pump (P-2) 25 to O.
Switch to FF and turn on the heater 32 to ON L S t, 12.

S t、12にて、温度センサー(TC−1)が65℃
以下であればSt、4にかえる。そしてSt、4〜11
を再び繰り返す。TC−1が65°Cを超えていれば前
記供給ポンプ(P−1) 23をONし、60秒中10
秒間動かし前記滞留部12に廃液を供給する。モしてS
 t、13に移行する。
At S t, 12, the temperature sensor (TC-1) was 65℃.
If it is below, change to St, 4. and St, 4-11
Repeat again. If TC-1 exceeds 65°C, turn on the supply pump (P-1) 23 and
The waste liquid is supplied to the retention section 12 by moving for a second. Mo and S
Move to t, 13.

S t、13において前記温度センサー(TC−1) 
33により、85°Cを超すようだと供給廃液も少なく
なり、カラム(V−3) 11内や循環パイプとしての
耐熱塩ビパイプ27内の液の濃度が高くなり流速も下が
ってしまう。そして蒸発濃縮カラム11も過熱されて来
ることになり直ちにヒーター32、供給ポンプ(P−1
) 23をOFFにする。そして、85℃に達しなけれ
ばSt、4に戻し、以後st、4〜13を繰返させる。
At S t, 13 the temperature sensor (TC-1)
33, if the temperature exceeds 85°C, the amount of waste liquid to be supplied will decrease, and the concentration of the liquid in the column (V-3) 11 and the heat-resistant PVC pipe 27 as a circulation pipe will increase and the flow rate will decrease. Then, the evaporation concentration column 11 is also heated, and the heater 32 and supply pump (P-1
) Turn off 23. If the temperature does not reach 85° C., the temperature is returned to St. 4, and steps 4 to 13 are repeated thereafter.

さて85℃に達した場合は更に進み、供給ポンプ(P−
2) 25をONL、廃液供給タン’y(V−5)21
の底部に残った廃液を汲み上げて0〜180秒の間の任
意の設定時間だけ作動させ濃縮液を薄め濃度が下がり循
環パイプとしての耐熱塩ビバイグ27内の流速が上がり
設定値を示してきた後、前記供給ポンプ(P−2) 2
5をOFFにして、S t、14に移る。
Now, if the temperature reaches 85℃, it will proceed further and the supply pump (P-
2) Connect 25 to ONL, waste liquid supply tank (V-5) 21
After pumping up the waste liquid remaining at the bottom of the pump and operating it for an arbitrary set time between 0 and 180 seconds to dilute the concentrated liquid, the concentration decreases and the flow velocity inside the heat-resistant PVC big 27 as a circulation pipe increases and reaches the set value. , the supply pump (P-2) 2
Turn 5 off and move on to S t, 14.

尚、本実施例では蒸発濃縮カラム(V−3) 11内の
液面低下検出時の濃縮液の温度が65℃を超えたときに
処理廃液を前記滞留部に供給するようにし、85℃を超
えると蒸発濃縮動作終了と判断し、濃縮液の加熱循環配
管回路内に廃液及び/又は水を供給して配管内の濃縮液
をうすめて循環パイプとしての耐熱塩ビパイプ27内の
流速即ち、該パイプ27及び濃縮カラム(V−3) 1
1内の濃度が設定値になるようにさせ、あるいは、濃縮
液温度が40°Cに下がるまで続けて該濃縮液が配管回
路内でかたまらないようにさせたりして該蒸発濃縮装置
を制御している。
In this example, when the temperature of the concentrated liquid exceeds 65°C when a drop in the liquid level in the evaporative concentration column (V-3) 11 is detected, the treated waste liquid is supplied to the retention section. When the concentration exceeds the limit, it is determined that the evaporation concentration operation has ended, and the waste liquid and/or water is supplied into the heating circulation piping circuit for the concentrated liquid to dilute the concentrated liquid in the piping, and the flow rate in the heat-resistant PVC pipe 27 as a circulation pipe is increased. Pipe 27 and concentration column (V-3) 1
The evaporative concentrator is controlled by making the concentration in 1 reach the set value, or by continuing to prevent the concentrate from clumping in the piping circuit until the concentrate temperature drops to 40°C. ing.

しかし設定温度やこれに伴う循環パイプとしての耐熱塩
ビパイプ内の流速即ち濃度の設定値はこれ等に限定され
るものでなく悪臭を発生しないだめの最高温度の設定は
95℃までは可能である。そしてこれを超すようになる
とわずかではあるが悪臭の発生もでてくるようになる。
However, the set temperature and the associated flow rate or concentration in the heat-resistant PVC pipe as a circulation pipe are not limited to these, and the maximum temperature can be set up to 95 degrees Celsius without generating a bad odor. . If the temperature exceeds this level, a bad odor will start to appear, albeit slightly.

95℃以下であれば実用上充分しのげる領域といえる。If it is 95°C or lower, it can be said to be a range that can be sufficiently overcome in practical terms.

そして、前記流速即ちそれに伴う前記濃度は、回収し易
くエネルギー効率も考慮した廃液濃度が得られるように
設定すればよい。
The flow rate, that is, the concentration associated with the flow rate may be set so as to obtain a concentration of waste liquid that is easy to recover and takes energy efficiency into consideration.

S t、14においてはレベルセンサー(LC−2)の
設定値H,Lに応じてNの場合は排水ポンプ(P−3)
47をOFFにし、Yの場合は該ポンプをONにして排
水する。
In S t, 14, depending on the setting values H and L of the level sensor (LC-2), if N, the drain pump (P-3)
47 is turned off, and in the case of Y, the pump is turned on to drain water.

そしてS t、15に進み温度センサー(TC−1) 
33が40℃以上であれば、40℃以下になるまで循環
を統ける。
Then proceed to S t, 15, temperature sensor (TC-1)
If 33 is above 40°C, the circulation will be controlled until it becomes below 40°C.

モしてSt、15において、温度センサー(TC−1)
33の検出温度が40 ’C以下になることを検出する
とバルブ(SV−1) 48、エアポンプ(P−4) 
37、排水ポンプ(P−3) 47をOFFにし、廃液
供給ポンプ(P−2) 25をONにし、タイマーを0
〜240秒の間の任意の所定設定時間だけ作動させパイ
プ27,34゜38内の濃縮された廃液は薄められてパ
イプ内に詰まってしまう現象をなくせるようにした後、
該ポンプ(P−2) 25をOFFにさせる。そして、
同時に制御盤51の空冷ファン(P−5) 52もOF
Fにし、終了ブザーを鳴らし、スラッジ回収容器(V−
4) 15の取出し可能ランプを点灯して一連のプロセ
スを終了する。
Temperature sensor (TC-1) at St. 15
When the detected temperature of 33 is detected to be below 40'C, the valve (SV-1) 48, air pump (P-4)
37. Turn off the drain pump (P-3) 47, turn on the waste liquid supply pump (P-2) 25, and set the timer to 0.
After operating for an arbitrary predetermined time period of ~240 seconds, the concentrated waste liquid in the pipes 27, 34 and 38 is diluted and the phenomenon of clogging in the pipes can be eliminated.
The pump (P-2) 25 is turned off. and,
At the same time, the air cooling fan (P-5) 52 of the control panel 51 is also turned off.
F, sound the end buzzer, and remove the sludge collection container (V-
4) Turn on the 15 removable lamps to complete the series of processes.

なお、温度検出手段としては、熱電対、熱膨張式(ガス
、液)センサー、光センサー等が用いられ、また、濃縮
液、蒸気温度を温度検出手段で直接検出するようにする
ことが最も好ましいが、濃縮液、蒸気が存在する容器、
パイプ等の壁温度を検出することも有効であり本発明は
それを金色する。
In addition, as the temperature detection means, a thermocouple, a thermal expansion type (gas, liquid) sensor, an optical sensor, etc. are used, and it is most preferable that the temperature of the concentrated liquid or steam is directly detected by the temperature detection means. However, the container in which the concentrated liquid or vapor is present,
It is also effective to detect the wall temperature of pipes, etc., and the present invention makes this possible.

また、本発明は、濃縮液の加熱循環系及び/又は蒸発濃
縮カラムにエアを吹き込むことが好ましく、概エア流量
は0.5〜10012/kcaQの範囲が好ましい。本
発明の設定温度は上記エア流量により異なるが一般には
50〜95℃の範囲で設定される。
Further, in the present invention, it is preferable to blow air into the heating circulation system and/or the evaporative concentration column of the concentrated liquid, and the approximate air flow rate is preferably in the range of 0.5 to 10012/kcaQ. The set temperature of the present invention varies depending on the air flow rate, but is generally set in the range of 50 to 95°C.

以上の実施例では、循環パイプ内の廃液濃度と流速の相
関を超音波流速測定手段70により行ったが、他の実施
例として、廃液濃度が濃縮カラム内の濃縮液に対する超
音波透過率または反射率の変化と相関することがわかっ
ているので、この相関にもとずいて前記透過率または反
射率を所定値に設定して好ましい最終廃液濃度になるよ
う制御することが可能になる。したがってこの手段も本
発明に包含される。
In the above embodiment, the correlation between the concentration of the waste liquid in the circulation pipe and the flow rate was performed using the ultrasonic flow rate measuring means 70. However, in other embodiments, the concentration of the waste liquid in the concentration column may be determined by the ultrasonic transmittance or reflection of the concentrate in the concentration column. Since it is known that there is a correlation with a change in the rate, it is possible to set the transmittance or reflectance to a predetermined value based on this correlation and control it so as to obtain a preferable final waste liquid concentration. Therefore, this means is also included in the present invention.

さて本発明の他の実施例を第4図の断面図を用いて説明
する。
Another embodiment of the present invention will now be described with reference to the sectional view of FIG.

減圧に耐える減圧蒸発濃縮カラム(以下単にカラムとい
う) 101内に、写真処理廃液を注入貯留し、該カラ
ム101の上部蒸気凝縮部105には、減圧手段107
を接続して、減圧する如くした。大気圧より低い減圧下
では、そのものの沸騰点以下で沸騰が起こることは知ら
れており、本発明では、減圧下で行なうものである。次
に該カラム101内には、3次元配置とした加熱手段1
02を設け、この加熱手段102は、その下部を上記写
真処理廃液の貯留部104に浸し、該写真処理廃液を加
熱する如くし、その上部は、該写真処理廃液の貯留部か
ら突出して空中にあり、この部分に、該写真処理廃液を
、上記貯留部から吸引ポンプ106による液給送手段1
03をもって、散布する如くし、もって、減圧下での加
熱蒸発に加え、散布滴下過程での加熱蒸発を繰り返し、
効率よく急速に濃縮化を行なうものである。
A photographic processing waste liquid is injected and stored in a reduced pressure evaporation concentration column (hereinafter simply referred to as column) 101 that can withstand reduced pressure.
I connected it to reduce the pressure. It is known that boiling occurs below the boiling point of the substance under reduced pressure lower than atmospheric pressure, and in the present invention, boiling is carried out under reduced pressure. Next, in the column 101, heating means 1 arranged three-dimensionally are provided.
02, the heating means 102 has its lower part immersed in the storage part 104 of the photographic processing waste liquid to heat the photographic processing waste liquid, and its upper part protrudes from the storage part 104 of the photographic processing waste liquid and is immersed in the storage part 104 of the photographic processing waste liquid. In this part, the photographic processing waste liquid is transferred from the storage part to the liquid supply means 1 by the suction pump 106.
03, as if spraying, and in addition to heating evaporation under reduced pressure, heating evaporation during the spraying and dropping process was repeated,
It performs efficient and rapid concentration.

ここで蒸発した水分は、このカラム101内の上部に冷
却手段108Aと凝縮水の案内部及び水受け108Cを
設けることによって、コンパクト化と、カラム内の減圧
安定化のために寄与する如くした。
By providing a cooling means 108A, a condensed water guide, and a water receiver 108C in the upper part of the column 101, the evaporated water contributes to compactness and stabilization of the reduced pressure inside the column.

一方、上記の蒸発濃縮を繰り返して、高濃度に固形化し
た成分はこのカラム101の下部に連結した容器112
で受は取り回収する。この発明において加熱手段102
を液中と空中とにまたがる3次元配置とした理由は液中
部分はおもに写真処理廃液の予熱に当たり空中の部分は
これに散布滴下する写真処理廃液との接触面積を大きく
する効果があり、ガス発生の無い低温蒸発を均一に効率
よく行なうのに効果がある。さらにこのカラム101内
の上部には冷却手段108を設けて、下部より上がって
きた水蒸気を捕らえて冷却凝縮して、水滴として回収す
る如くした。これは発生蒸気によって、このカラム10
1内の減圧バランスが崩れ、減圧装置107(本実施例
ではエジェクターを使用)で規定の減圧状態を維持する
ために多大の負荷がかかるのを軽減する効果がある。即
ち発生蒸気によりカラム101内の圧力が上昇するとこ
ろをすぐさま冷却凝縮して圧力上昇を抑制するのである
On the other hand, the components solidified to a high concentration by repeating the evaporation concentration described above are stored in a container 111 connected to the lower part of this column 101.
The receiver will be picked up and collected. In this invention, the heating means 102
The reason for the three-dimensional arrangement of the parts in the liquid and in the air is that the part in the liquid is mainly used for preheating the photographic processing waste liquid, and the part in the air has the effect of increasing the contact area with the photographic processing waste liquid that is sprayed onto it. It is effective in uniformly and efficiently performing low-temperature evaporation without generation. Further, a cooling means 108 was provided at the upper part of this column 101 to capture water vapor rising from the lower part, cool and condense it, and recover it as water droplets. This column 10 is
This has the effect of reducing the burden on the pressure reduction device 107 (an ejector is used in this embodiment) to maintain a specified pressure reduction state due to the imbalance of pressure reduction in the pressure reduction device 107. That is, when the pressure within the column 101 increases due to generated steam, it is immediately cooled and condensed to suppress the pressure increase.

この構成において、加熱手段102の上記液中部分を当
該減圧蒸発に最適な温度とすると、この加熱手段102
が1体に同じ温度で上記空中にある部分も管理され、電
熱効果の相違で、空中にある部分の実質的な表面温度は
高くなり、これに、写真処理廃液が触れると急加熱によ
る不快ガスの発生もあるので、散布する写真処理廃液の
量を加減して、上記空中にある加熱手段の部分を、ガス
発生温度以下に抑えるか又は液中、液外で加熱手段を分
けて別々に適温に制御してもよい。
In this configuration, if the temperature of the submerged portion of the heating means 102 is set to the optimum temperature for the reduced pressure evaporation, this heating means 102
The parts in the air are kept at the same temperature, and due to the difference in the electric heating effect, the actual surface temperature of the parts in the air is higher, and when photographic processing waste comes in contact with it, it suddenly heats up and generates unpleasant gases. Therefore, the amount of photographic processing waste liquid to be sprayed may be adjusted to keep the above-mentioned part of the heating means in the air below the gas generation temperature, or the heating means may be heated separately inside and outside the liquid to maintain the appropriate temperature. may be controlled.

さらに上記加熱手段102および冷却手段108Aは公
知技術のいずれでもよいが、本実施例ではヒートポンプ
を使用した。そしてこの冷却手段の表面に水蒸気が触れ
て凝縮し、水滴となって、この冷却手段108Aを伝わ
って水回収容器109に集められる。加熱手段の表面温
度は好ましくは10000以下で、特に、20°C〜6
0℃が最も好ましい。
Further, the heating means 102 and the cooling means 108A may be any known technology, but in this example, a heat pump was used. The water vapor comes into contact with the surface of this cooling means, condenses, becomes water droplets, passes through this cooling means 108A, and is collected in a water recovery container 109. The surface temperature of the heating means is preferably below 10,000, particularly between 20°C and 6°C.
0°C is most preferred.

上記加熱手段102にヒートポンプの放熱部を用い、上
記冷却手段108Aおよび水回収容器109内に設けた
冷却手段108Bにヒートポンプの吸熱部を使用しであ
る。
The heat radiation section of a heat pump is used as the heating means 102, and the heat absorption section of a heat pump is used as the cooling means 108A and the cooling means 108B provided in the water recovery container 109.

そして加熱手段102を構成するヒートポンプの凝縮器
をチャージさせるチャージパイプ1258よび該加熱手
段102の後に配管した膨張弁の役目をするキャピラリ
ーチューブ126や、冷却手段108Aのアウト側に配
設される冷媒用のコンプレッサー121およびその冷媒
を空冷凝縮させる空冷凝縮器1.22、およびそのファ
ン124とファンモータ123はカラム101の外に置
かれている。
A charge pipe 1258 that charges the condenser of the heat pump that constitutes the heating means 102, a capillary tube 126 that serves as an expansion valve that is piped after the heating means 102, and a refrigerant pipe that is installed on the outside of the cooling means 108A. The compressor 121 and the air-cooled condenser 1.22 for air-cooling and condensing its refrigerant, as well as its fan 124 and fan motor 123, are placed outside the column 101.

また、加熱手段102の凝縮器を通りキャピラリーチュ
ーブ126から、水回収容器109内の冷却手段108
Bに接続しt;上で更にその延長が冷却手段108Aと
してカラム101内の上部蒸気凝縮部105の冷媒蒸発
器に接続されカラム101外のコンプレッサー121に
還るようにしである。
Also, water passes through the condenser of the heating means 102 from the capillary tube 126 to the cooling means 108 in the water recovery container 109.
Further, its extension is connected to the refrigerant evaporator of the upper vapor condensing section 105 in the column 101 as a cooling means 108A, and is returned to the compressor 121 outside the column 101.

そして、水回収容器109内の冷水は水循環ポンプ(P
−2) 133によって減圧装R(エジェクター)10
7につなげられ、カラム101上部の蒸気凝縮部105
の凝縮液回収口1oscからパイプ134で引かれた水
を水回収容器109に入れると共に同時にカラム101
内の減圧を行うようにしである。
The cold water in the water recovery container 109 is pumped through a water circulation pump (P
-2) Decompression device R (ejector) 10 by 133
7 and is connected to the vapor condensing section 105 at the top of the column 101.
The water drawn through the pipe 134 from the condensate recovery port 1osc of the column 101 is introduced into the water recovery container 109.
Make sure to reduce the pressure inside.

また、水回収容器109からオーバーフローした水はパ
イプ136によって水槽135に送られる。そしてこれ
は下水に排水される。
Further, water overflowing from the water recovery container 109 is sent to a water tank 135 through a pipe 136. This is then drained into the sewer.

そして、カラム101内への処理廃液は容器131から
適時ポンプCP−1) 106で送られる。該ポンプ1
06はカラム101内の濃縮液循環ポンプとしても使用
される。
Then, the treated waste liquid into the column 101 is sent from the container 131 by the pump CP-1) 106 at appropriate times. The pump 1
06 is also used as a concentrate circulation pump within the column 101.

二のようにしてかなり単純なヒートポンプにより蒸発蒸
気は多くが液化され、わずかが排気口136から排気さ
れるので、臭気は完全に防止されるようになる。
In the second manner, most of the evaporated vapor is liquefied by a fairly simple heat pump, and only a small amount is exhausted from the exhaust port 136, so that odor is completely prevented.

そしてこのようなカラム101内の濃縮液の濃度は、v
glの実施例のように循環パイプ内の流速を超音波の送
受信手段71.72によって検出しながら設定@+、:
入ったときをもって決定することができるしその決定J
こ基づき濃縮停止および濃縮物の回収を行うようにする
ことができる。
The concentration of the concentrated liquid in the column 101 is v
Setting while detecting the flow velocity in the circulation pipe by the ultrasonic transmitting/receiving means 71 and 72 as in the embodiment of gl @+,:
You can decide as soon as you enter, and that decision J
Based on this, the concentration can be stopped and the concentrate can be recovered.

また、別のタイプの超音波発信器73オよび超音波受信
器74をカラム101の外に設置し、カラム内の廃液濃
度の挙動を見て、発振波に対する受信波の位相変化によ
り濃度を検出することができる。
In addition, another type of ultrasonic transmitter 73 and an ultrasonic receiver 74 are installed outside the column 101, and the behavior of the waste liquid concentration in the column is observed, and the concentration is detected by the phase change of the received wave with respect to the oscillated wave. can do.

そして発信はパルス波で行うことがノイズを防止できて
好ましい。
It is preferable that the transmission be performed using a pulse wave because noise can be prevented.

本実施例では超音波発信器73または超音波受信器74
はカラム101の外側面に接着して取付けたが、勿論こ
の発信器738よび受信器74をセットにして直接廃液
中に入れておくことも可能である。しかし、保全面耐久
面からすると前者の方が望ましい。
In this embodiment, the ultrasonic transmitter 73 or the ultrasonic receiver 74
Although the transmitter 738 and the receiver 74 are attached to the outer surface of the column 101 by adhesive, it is of course possible to put the transmitter 738 and receiver 74 as a set directly into the waste liquid. However, from the standpoint of maintenance and durability, the former is more desirable.

また、これ等の実施例に使用した超音波の発振および受
信周波数は512KH2であった。しかしこれに限定さ
れるものではない。
Further, the oscillation and reception frequency of the ultrasonic waves used in these examples was 512KH2. However, it is not limited to this.

〔発明の効果〕〔Effect of the invention〕

本発明により、蒸発濃縮カラム内の濃縮廃液の温度を悪
臭を発生させない程度の設定温度に制御しながら、更に
、エネルギーコストの良好な、また回収し易い濃度に濃
縮し、できるだけ容積を縮減した写真処理廃液の濃縮を
コンパクトな蒸発濃縮装置によって行うことができるよ
うになり、大ラボ、ミニラボをとわず、今まで問題とな
っていた写真処理廃液の処分が安定確実に効率よく、公
害問題を起こすことなくしかも熟練を要することもなく
、簡単に安心して取扱えるようになった。
Photograph of the present invention, which controls the temperature of the concentrated waste liquid in the evaporative concentration column to a set temperature that does not generate bad odors, and further condenses it to a concentration that is economical in energy costs and easy to recover, reducing the volume as much as possible. Processing waste liquid can now be concentrated using a compact evaporation concentration device, making it possible to dispose of photographic processing waste liquid, which has been a problem in the past, stably, reliably and efficiently, and to eliminate pollution problems in both large and mini-labs. It can now be handled easily and safely without causing any problems or requiring any skill.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の配管図。 第2図(a )、(b )、(c )、(d )は本発
明の1実施例の各側断面図、第2図(e)は本発明の1
実施例の上面図。 第31!7は本発明の1実施例の70−チャート。 第4図は本発明の他の実施例の断面図。 l・・・蒸発濃縮装置   10・・・分離カラム装置
11・・・蒸発濃縮カラム  12・・・滞留部13・
・・レベルセンサー(LC−1)14・・・接続パイプ
    15・・・スラッジ回収容器16・・・載置台
      20・・・廃液供給装置21・・・廃液タ
ンク(V−5)  23.25・・・廃液供給ポンプ3
0・・・加熱装置     31・・・加熱器33・・
・温度センサー(TC−1) 37・・・エアポンプ(P−4)  40・・・冷却装
置50・・・制御装置 70・・・超音波流速測定手段
FIG. 1 is a piping diagram of one embodiment of the present invention. FIGS. 2(a), (b), (c), and (d) are side sectional views of one embodiment of the present invention, and FIG. 2(e) is an embodiment of the present invention.
The top view of an example. No. 31!7 is a 70-chart of one embodiment of the present invention. FIG. 4 is a sectional view of another embodiment of the invention. l... Evaporative concentration device 10... Separation column device 11... Evaporative concentration column 12... Retention section 13.
... Level sensor (LC-1) 14 ... Connection pipe 15 ... Sludge collection container 16 ... Mounting table 20 ... Waste liquid supply device 21 ... Waste liquid tank (V-5) 23.25. ...Waste liquid supply pump 3
0... Heating device 31... Heater 33...
・Temperature sensor (TC-1) 37...Air pump (P-4) 40...Cooling device 50...Control device 70...Ultrasonic flow rate measuring means

Claims (1)

【特許請求の範囲】[Claims] 系内に写真処理廃液を入れ該廃液を蒸発濃縮していく写
真処理廃液の蒸発濃縮装置において、蒸発濃縮カラムへ
の廃液補給手段と該カラム内または該配管回路内の該濃
縮液に対して超音波発信手段と超音波受信手段とを有し
該受信手段の信号に基づいて濃縮停止指令又は濃縮物の
回収指令を行うようにしたことを特徴とする写真処理廃
液の蒸発濃縮装置。
In an evaporative concentrator for photographic processing waste liquid that puts photographic processing waste liquid into the system and evaporates and concentrates the waste liquid, there is a means for replenishing the waste liquid to the evaporative concentration column, and a means for supplying the waste liquid to the column or the piping circuit. 1. An evaporative concentration device for photographic processing waste liquid, comprising a sonic wave transmitting means and an ultrasonic receiving means, and is configured to issue a concentration stop command or a concentrate recovery command based on a signal from the receiving means.
JP5958290A 1990-03-09 1990-03-09 Apparatus for evaporating and concentrating waste liquid of photographic processing Pending JPH03262584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5958290A JPH03262584A (en) 1990-03-09 1990-03-09 Apparatus for evaporating and concentrating waste liquid of photographic processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5958290A JPH03262584A (en) 1990-03-09 1990-03-09 Apparatus for evaporating and concentrating waste liquid of photographic processing

Publications (1)

Publication Number Publication Date
JPH03262584A true JPH03262584A (en) 1991-11-22

Family

ID=13117365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5958290A Pending JPH03262584A (en) 1990-03-09 1990-03-09 Apparatus for evaporating and concentrating waste liquid of photographic processing

Country Status (1)

Country Link
JP (1) JPH03262584A (en)

Similar Documents

Publication Publication Date Title
EP0457303B1 (en) Apparatus for concentrating waste liquor from photographic process
US5770019A (en) Apparatus for concentrating waste liquid
JPH03262584A (en) Apparatus for evaporating and concentrating waste liquid of photographic processing
JP2949357B2 (en) Method and apparatus for evaporative concentration of photographic processing waste liquid
JPH03221184A (en) Apparatus for evaporative concentration of waste photographic processing solution
JPH03229683A (en) Apparatus for evaporative concentration of waste photographic processing solution
JP3168015B2 (en) Aqueous solution evaporator
JP3329474B2 (en) Evaporation and concentration device for aqueous solution
JPH03267189A (en) Evaporation concentrating device for waste photographic processing liquid
EP0292282B1 (en) Method of treating photographic process waste liquor through concentration by evaporation
JPH03232580A (en) Concentrate recovering method and evaporation concentrating device for waste photographic processing solution
JP2959039B2 (en) Evaporation and concentration equipment for photographic processing waste liquid
JPH03238079A (en) Vacuum evaporative concentrating device for photographic processing liquid waste
JPH03221185A (en) Apparatus for evaporative concentration of waste photographic processing solution
JPH0422480A (en) Apparatus for evaporative concentration treatment of waste photographic processing solution
JP3023687B2 (en) Method and apparatus for evaporative concentration of photographic processing waste liquid
JP2952506B2 (en) Evaporation and concentration equipment for photographic processing waste liquid
JPH03288587A (en) Apparatus for vacuum evaporative concentration of waste photographic processing solution
JPH0411984A (en) Vacuum evaporative concentrator for waste photographic processing solution
JP2941451B2 (en) Aqueous solution evaporator
JPH03293081A (en) Vaporizing and concentrating equipment for photographic processing waste liquid
JPH0418976A (en) Evaporating and thickening device for waste photographic processing liquid
JPH04338949A (en) Evaporation/concentration device for aqueous solution
JPH03293077A (en) Vaporizing and concentrating method for photographic processing waste liquid
JPH03293082A (en) Vaporizing and concentrating equipment for photographic processing waste liquid