JPH03261817A - Controlling method for stylus of coordinate measuring machine - Google Patents

Controlling method for stylus of coordinate measuring machine

Info

Publication number
JPH03261817A
JPH03261817A JP6183190A JP6183190A JPH03261817A JP H03261817 A JPH03261817 A JP H03261817A JP 6183190 A JP6183190 A JP 6183190A JP 6183190 A JP6183190 A JP 6183190A JP H03261817 A JPH03261817 A JP H03261817A
Authority
JP
Japan
Prior art keywords
probe
stylus
coordinate system
displacement
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6183190A
Other languages
Japanese (ja)
Inventor
Seiji Yamamoto
清二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP6183190A priority Critical patent/JPH03261817A/en
Publication of JPH03261817A publication Critical patent/JPH03261817A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize measurement with a fixed measuring pressure even when a stylus is flexible by obtaining the displacement of a probe in a direction of each axis of a probe coordinate system when the probe is shifted a predetermined amount because of the reaction in the direction of each axis. CONSTITUTION:In the case of profiling measurement, the scalar when the force obtained by combining the reaction force generated in a direction of a normal vector to the surface of an object 22 to be measured and the frictional force generated when a stylus 20 traces the surface of the object 22 is represented by a vector is used as the force F acting on the stylus 20. Moreover, the directional cosine of the combined force is used as direction cosines lambda, mu. In order to put the object 22 in contact with the stylus 20 at a contact point P with the measuring force F, a zero point of the probe is controlled so that the displacements xd, yd of the probe becomes the value expressed by a formula when Ku, Ky are constants. Accordingly, even a flexible stylus can measure with the constant measuring pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は座標測定機の三次元的に変位を検出できるスタ
イラスの制御方法に係り、特に被測定物に接触させたス
タイラスを被測定物の表面に倣って移働させて被測定物
の座標又は形状を求める座標測定機のスタイラス制御方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for controlling a stylus capable of three-dimensionally detecting displacement of a coordinate measuring machine, and in particular, the present invention relates to a method for controlling a stylus capable of three-dimensionally detecting displacement of a coordinate measuring machine. The present invention relates to a stylus control method for a coordinate measuring machine that moves along a surface to determine the coordinates or shape of an object to be measured.

〔従来の技術〕[Conventional technology]

一般に、被測定物の座標又は形状を倣い測定する場合、
プローブに設けられているスタイラスが被測定物の表面
を押圧しながら表面に倣って移動され、これにより被測
定物の表面形状を測定している。
Generally, when measuring the coordinates or shape of the object to be measured,
A stylus provided on the probe is moved while pressing against the surface of the object to be measured, thereby measuring the surface shape of the object to be measured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、−aに三次元的に変位を検出できるプロ
ーブは変位する軸毎に単位変位当たりで生ずる力が異な
るので、第3図に示すようにスタイラスlOを接点Pで
被測定物12の表面に接触さようとしても被測定物12
の表面の法線とプローブの変位から生ずる力が釣合う位
置P′点へスタイラスlOが滑って位置決めされ、これ
により測定すべき表面からのずれが生じ測定誤差が生じ
るという問題がある。
However, in a probe that can detect displacement three-dimensionally in -a, the force generated per unit displacement differs depending on the axis of displacement, so as shown in FIG. Even if you try to touch it, the object to be measured 12
The problem is that the stylus lO is slid and positioned at a point P' where the force resulting from the displacement of the probe and the normal to the surface of the probe are balanced, which causes a deviation from the surface to be measured, resulting in a measurement error.

また、スタイラス10の単位力当たりの撓みが大きい場
合、被測定物12に加わる力を制御することや、プロー
ブの絶対変位を制御するということができず、特に倣い
測定の場合倣い方向の制御ができないという問題を生じ
ることがある。
Furthermore, if the stylus 10 has a large deflection per unit force, it is not possible to control the force applied to the object to be measured 12 or the absolute displacement of the probe, and especially in the case of scanning measurement, it is difficult to control the scanning direction. There may be a problem that it cannot be done.

更に、プローブが取付けられた測定装置本体(例えば三
次元測定機)の座標系とプローブの座標系が平行でない
場合、プローブとそれを取付けた装置本体の座標系を機
械的に平行に設置する必要があるという問題が生じるこ
とがある。
Furthermore, if the coordinate system of the measurement device body (for example, a coordinate measuring machine) to which the probe is attached is not parallel to the coordinate system of the probe, it is necessary to install the probe and the coordinate system of the device body to which it is attached mechanically parallel. The problem may arise that there is.

本発明はこのような事情に鑑みてなされたもので、スタ
イラスを被測定物表面の所定の位置に位置決めすること
ができ、また撓みやすいスタイラスの場合でも特に倣い
測定において倣い方向を制御することができ、更に、プ
ローブを取付けた測定装置本体のもつ座標系とプローブ
の座標系が平行に保たれてなくても被測定物の測定を行
うことができる座標測定機のスタイラス制御方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to position a stylus at a predetermined position on the surface of an object to be measured, and even in the case of a stylus that is easily bent, it is possible to control the scanning direction especially in scanning measurement. To provide a stylus control method for a coordinate measuring machine, which can measure an object to be measured even if the coordinate system of a measuring device main body to which a probe is attached and the coordinate system of the probe are not kept parallel. With the goal.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は、前記目的を達成する為に、測定装置の本体に
移動自在に設けられた三次元的に変位を検出できるプロ
ーブのスタイラスを、被測定物の表面に沿って移動して
被測定物の形状等を測定する測定方法において、予め与
えられている本体座標系からプローブ座標系への変換行
列及び被測定物表面とスタイラスとの接点における被測
定物表面の法線の本体座標系の方向余弦の値に基づいて
、前記法線の方向余弦の値をプローブ座標系における方
向余弦の値に換算し、次に、予め与えられているプロー
ブ座標系の各軸方向に働くプローブの単位変位当りの押
圧力に基づいて、プローブが所定量変位した時のスタイ
ラスに掛るプローブ座標系の各軸方向に働く押圧力を求
め、前記スタイラスの押圧力とスタイラスが被測定物表
面から受ける反力との釣合い条件及び前記プローブ座標
系の法線の方向余弦の値に基づいて、プローブ座標系の
各軸方向の反力を求め、該各軸方向の反力からプローブ
座標系の各軸方向のプローブの変位量を求め、求められ
たプローブの変位量に基づいてプローブを移動すること
を特徴としている。
In order to achieve the above object, the present invention moves a stylus of a probe that is movably provided on the main body of a measuring device and is capable of three-dimensionally detecting displacement along the surface of the object to be measured. In a measurement method for measuring the shape, etc. of a body, the transformation matrix from the body coordinate system to the probe coordinate system given in advance and the direction of the body coordinate system of the normal to the surface of the workpiece at the point of contact between the workpiece surface and the stylus. Based on the cosine value, convert the direction cosine value of the normal line to the direction cosine value in the probe coordinate system, and then calculate the per unit displacement of the probe acting in each axis direction of the probe coordinate system given in advance. Based on the pushing force of Based on the balance condition and the value of the direction cosine of the normal line of the probe coordinate system, the reaction force in each axis direction of the probe coordinate system is determined, and from the reaction force in each axis direction, the reaction force of the probe in each axis direction of the probe coordinate system is calculated. The method is characterized in that the amount of displacement is determined and the probe is moved based on the determined amount of displacement of the probe.

〔作用〕[Effect]

本発明によれば、予め与えられている被測定物表面とス
タイラスとの齋点における被測定物表面の法線の本体座
標系の方向余弦の値をプローブ座標系における方向余弦
の値に換算し、次に、プローブが所定量変位した時のプ
ローブ座標系の各軸方向に働くスタイラスの押圧力を求
め、この押圧力とスタイラスが被測定物表面から受ける
反力との釣合い条件及び前記プローブ座標系における被
測定的表面における法線の方向余弦の値に基づいてプロ
ーブ座標系の各軸方向の反力を求め、この各軸方向の反
力からプローブが前記所定量変位した時のプローブ座標
系の各軸方向のプローブの変位を求めることができる。
According to the present invention, the value of the direction cosine in the body coordinate system of the normal to the workpiece surface at a predetermined fixation point between the workpiece surface and the stylus is converted into the direction cosine value in the probe coordinate system. Next, calculate the pressing force of the stylus acting in each axis direction of the probe coordinate system when the probe is displaced by a predetermined amount, and calculate the balance condition between this pressing force and the reaction force that the stylus receives from the surface of the object to be measured, and the probe coordinates. The reaction force in each axis direction of the probe coordinate system is determined based on the value of the direction cosine of the normal to the surface to be measured in the system, and the probe coordinate system when the probe is displaced by the predetermined amount from the reaction force in each axis direction is calculated. The displacement of the probe in each axis direction can be determined.

従って、求められたプローブの変位に基づいてプローブ
を移動することによりスタイラスの位置ずれを防止する
ことができる。
Therefore, by moving the probe based on the determined displacement of the probe, misalignment of the stylus can be prevented.

また、求められたプローブの各軸方向の変位に基づいて
、プローブの変位から生じる測定圧が一定になるように
プローブの移動を制御することができるので撓み易いス
タイラスでも測定圧を一定に保持することができる。
In addition, based on the determined displacement of the probe in each axis direction, the movement of the probe can be controlled so that the measurement pressure generated from the displacement of the probe remains constant, so the measurement pressure can be kept constant even with a stylus that is easily bent. be able to.

更に、プローブが所定量変位した時のプローブ座標系の
各軸方向のスタイラスの撓み量を求め、この撓み量及び
前記所定量変位からプローブ座標系の各軸方向のスタイ
ラスの中心座標を求め、予め与えられている本体座標系
からプローブ座標系への変換行列とに基づいて、プロー
ブの全軸の零点を本体座標系で求めることができるので
、プローブ座標系を本体座標系に対して平行になるよう
に配置する必要がt;い。
Furthermore, the amount of deflection of the stylus in each axis direction of the probe coordinate system when the probe is displaced by a predetermined amount is determined, and the center coordinates of the stylus in each axis direction of the probe coordinate system are determined from this amount of deflection and the predetermined amount of displacement. Based on the given transformation matrix from the body coordinate system to the probe coordinate system, the zero points of all axes of the probe can be found in the body coordinate system, so the probe coordinate system becomes parallel to the body coordinate system. It is necessary to arrange it like this.

〔実施例〕〔Example〕

以下添付図面に従って本発明に係る座標測定機のスタイ
ラス制御方法の好ましい実施例を詳説する。
Preferred embodiments of the stylus control method for a coordinate measuring machine according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図には図示しない測定装置本体(以下「本体」と称
す。)の座標系0−X、IYIl とプローブ(図示せ
ず)の座標系c−xyとの関係が示されている。
FIG. 1 shows the relationship between the coordinate system 0-X, IYIl of the measuring device main body (hereinafter referred to as "main body"), not shown, and the coordinate system c-xy of the probe (not shown).

先ず、スタイラス20が位置ずれを生じないプローブの
変位を求める。
First, the displacement of the probe without causing displacement of the stylus 20 is determined.

ここで、以下に示す(1)乃至(6)の情報が予め与え
られているとすると、 (1)本体の座標系OXXYN に対するプローブの座
標系c−xyへの変換行列:M (2)本体の座標系o −x、 y、におけるスタイラ
ス20と被測定物22の表面との接点Pの座標:Xp 
 %  Vp (3)接点Pにおける被測定物22の表面における法線
の方向余弦:λ1、μ。
Here, assuming that the following information (1) to (6) is given in advance, (1) A transformation matrix for the coordinate system OXXYN of the main body to the coordinate system c-xy of the probe: M (2) The main body The coordinates of the point of contact P between the stylus 20 and the surface of the object to be measured 22 in the coordinate system o - x, y: Xp
% Vp (3) Directional cosine of the normal to the surface of the object to be measured 22 at the contact point P: λ1, μ.

(4)プローブ各軸方向の単位変位当りに生じるカニk
Xk。
(4) Crab k generated per unit displacement in each axis direction of the probe
Xk.

(5)スタイラス20がプローブ各軸で単位力当りで生
じる撓み量:ρ8  ρ。
(5) Amount of deflection of the stylus 20 per unit force on each axis of the probe: ρ8 ρ.

(6)スタイラス20の半径:「 第1図においてプローブの全軸の零点を、本体の座標系
o −x、 y、において点C(xc  yc )に位
置決めするように制御する。
(6) Radius of stylus 20: "In FIG. 1, the zero points of all axes of the probe are controlled to be positioned at point C (xc yc) in the body's coordinate system ox, y.

また、被測定物22の表面上の接点Pでスタイラス20
が接する時、スタイラス20の中心座標をXs、yi 
とすると 今、プローブの零点が装置上の点Cに位置決めされた時
に生じるプローブの変位をXd、y、とすると、プロー
ブの座標系C−XYの各軸方向に生じる力F、、F、は
、 (但し、F−、ハy77下717ンー〉以上からプロー
ブの変位Xa  ’Jd はである。
In addition, the stylus 20 is connected to the contact point P on the surface of the object to be measured 22.
When they touch, the center coordinates of the stylus 20 are Xs, yi
Now, if the displacement of the probe that occurs when the zero point of the probe is positioned at point C on the device is Xd, y, then the forces F,, F, that occur in each axis direction of the probe coordinate system C-XY are , (However, F-, high77 lower 717n-) The displacement of the probe from above is Xa'Jd.

更に、被測定物22の表面上の接点Pにおけるその表面
の法線の方向余弦は、次式によってプローブの座標c−
xyにおける方向余弦λ、μに変換できる。
Furthermore, the direction cosine of the normal line to the surface of the object 22 at the contact point P on the surface of the object to be measured 22 is expressed as the probe coordinate c-
It can be converted into direction cosines λ and μ in xy.

と表すことができる。It can be expressed as.

ここで倣い測定の場合には、スタイラス20に掛る力F
として被測定物22の表面の法線ベクトルの方向に生じ
る反力と、スタイラス20が被測定物22表面を倣う際
に生じる摩擦力を合成した力をベクトルで表した時のス
カシを代入し、また、λ、μにはその合皮した力のベク
トルの方向余弦を代入すれば良い。
In the case of scanning measurement, the force F applied to the stylus 20 is
Substituting the sum of the reaction force generated in the direction of the normal vector of the surface of the object to be measured 22 and the frictional force generated when the stylus 20 traces the surface of the object to be measured 22 expressed as a vector, Moreover, the direction cosine of the vector of the synthesized force may be substituted for λ and μ.

以上から、被測定物22とスタイラス20とが接点Pに
おいて測定圧Fで接触するためには、プローブの変位X
ds yd が式(4)で求められる値になる位置へプ
ローブの零点が位置するように装置を制御すれば良い。
From the above, in order for the object to be measured 22 and the stylus 20 to come into contact at the contact point P with the measurement pressure F, the probe displacement X
The device may be controlled so that the zero point of the probe is located at the position where ds yd becomes the value determined by equation (4).

このように、本発明によれば、被測定物22とスタイラ
ス20とが接点Pにおいてスタイラス20が位置ずれを
生じないように被測定物22の表面に沿って移動させる
ことができる。
As described above, according to the present invention, the object to be measured 22 and the stylus 20 can be moved along the surface of the object to be measured 22 at the contact point P so that the stylus 20 does not become misaligned.

次に、プローブの絶対変位dを一定に保つ制御の場合、
式(4)からプローブの変移ベクトルの方向余弦のプロ
ーブの座標系c−xyにおける各袖戊分λ6、μmは・ となる。
Next, in the case of control to keep the absolute displacement d of the probe constant,
From equation (4), the direction cosine of the displacement vector of the probe in each arm radius λ6, μm in the coordinate system c-xy of the probe is as follows.

ここで、a=、G;7−]コ7フ7=一定であることか
ら、プローブ変位xd、ydはとなるように位置決めす
れば良い。
Here, since a=,G;7-]7=constant, the probe displacements xd and yd may be positioned as follows.

これにより、撓み易いスタイラスでも測定圧−定、また
はプローブ変位一定の均一条件による測定を行うことが
できる。
Thereby, even with a stylus that is easily bent, measurement can be performed under uniform conditions with a constant measurement pressure or a constant probe displacement.

次いで、本体の座標系o−x、y、とプローブの座標系
c−xyの零点Cとの関係を求める。
Next, the relationship between the body coordinate system ox, y and the zero point C of the probe coordinate system c-xy is determined.

プローブに変位X、1 、V’が生じた場合のプローブ
の座標系c−xyにおけるスタイラス20の各軸方向撓
み量B、、、By は である。
When displacements X,1, V' occur in the probe, the amount of deflection B, , By of each axial direction of the stylus 20 in the coordinate system c-xy of the probe is as follows.

従って、プ、ローブの座標系c−xyにおけるスタイラ
ス20の中心座標Xs  、ys’は式(4)または(
6)と式(7)より であり、従って、プルーブの零点を位置決めすべき装置
の座aOXM Yll における点Cの座標XCへ3’
cは ) によって求められる。
Therefore, the center coordinates Xs, ys' of the stylus 20 in the coordinate system c-xy of the lobe can be calculated using equation (4) or (
6) and equation (7), and therefore, the zero point of the probe is 3' to the coordinate XC of the point C at the seat aOXM Yll of the device to be positioned.
c is calculated by ).

これにより、プローブの座標系を本体の座標系に対して
平行になるようにプローブを装置に配置する必要がない
This eliminates the need to arrange the probe in the device so that the coordinate system of the probe is parallel to the coordinate system of the main body.

尚、本発明に係る座標測定機のスタイラス制御方法はポ
イントッーポイント測定、倣い測定のいずれにも適用す
ることができる。
Note that the stylus control method for a coordinate measuring machine according to the present invention can be applied to both point-to-point measurement and scanning measurement.

前記実施例では二次元について説明したが、二次元のみ
でなく三次元方向へ変移するプローブにも適用できる。
Although the above embodiments have been described in terms of two dimensions, the present invention can also be applied to probes that move not only in two dimensions but also in three dimensions.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明に係る座標測定機のスタイラス
制御方法によれば、プローブの各軸で単位変位当りに生
じる力が異なっても位置ずれを生じることなくスタイラ
スを位置決めできる。従って、スタイラスと被測定物と
の接点を制御でき、特に三次元形状を断面測定する場合
には接点が常に断面上に存在するように制御を行うこと
ができる。
As described above, according to the stylus control method for a coordinate measuring machine according to the present invention, the stylus can be positioned without positional deviation even if the forces generated per unit displacement differ in each axis of the probe. Therefore, the point of contact between the stylus and the object to be measured can be controlled, and especially when measuring the cross section of a three-dimensional shape, the point of contact can be controlled so that the point of contact always exists on the cross section.

また、撓み易いスタイラスでも測定圧一定またはプロー
ブ変位一定による均一条件で測定することができる。
Furthermore, even a stylus that is easily bent can be measured under uniform conditions with a constant measurement pressure or constant probe displacement.

更に、プローブの座標系の全軸の零点を求めることがで
きるので、プローブの座標系を本体の座標系に対して平
行になるようにプローブを装置に取付ける必要がない。
Furthermore, since the zero points of all axes of the probe's coordinate system can be determined, it is not necessary to attach the probe to the apparatus so that the probe's coordinate system is parallel to the coordinate system of the main body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は被測定物の表面にスタイラスが接触している状
態において、本体の座標系とプローブの座標系の関係を
示す図、第2図はプローブの座標系におけるスタイラス
による被測定物表面への押圧力と反力との関係を示す図
、第3図は従来のスタイラスの押圧力が各軸方向に等し
くない場合スタイラスが被測定物の表面を移動する状態
を示す図である。 10.20・・・スタイラス、 12.22・・・被測定物。
Figure 1 shows the relationship between the body's coordinate system and the probe's coordinate system when the stylus is in contact with the surface of the object to be measured, and Figure 2 shows the relationship between the stylus and the probe's surface in the probe's coordinate system. FIG. 3 is a diagram showing a state in which a conventional stylus moves on the surface of an object to be measured when the pressing force of a conventional stylus is not equal in each axial direction. 10.20...Stylus, 12.22...Object to be measured.

Claims (4)

【特許請求の範囲】[Claims] (1)測定装置の本体に移動自在に設けられた三次元的
に変位を検出できるプローブのスタイラスを、被測定物
の表面に沿って移動して被測定物の形状等を測定する測
定方法において、 予め与えられている本体座標系からプローブ座標系への
変換行列及び被測定物表面とスタイラスとの接点におけ
る被測定物表面の法線の本体座標系の方向余弦の値に基
づいて、前記法線の方向余弦の値をプローブ座標系にお
ける方向余弦の値に換算し、 次に、予め与えられているプローブ座標系の各軸方向に
働くプローブの単位変位当りの押圧力に基づいて、プロ
ーブが所定量変位した時のスタイラスに掛るプローブ座
標系の各軸方向に働く押圧力を求め、 前記スタイラスの押圧力とスタイラスが被測定物表面か
ら受ける反力との釣合い条件及び前記プローブ座標系の
法線の方向余弦の値に基づいて、プローブ座標系の各軸
方向の反力を求め、 該各軸方向の反力からプローブ座標系の各軸方向のプロ
ーブの変位量を求め、 求められたプローブの変位量に基づいてプローブを移動
することを特徴とする座標測定機のスタイラス制御方法
(1) In a measurement method in which a stylus of a probe that is movably attached to the main body of the measuring device and is capable of three-dimensionally detecting displacement is moved along the surface of the object to be measured to measure the shape, etc. of the object to be measured. , based on the transformation matrix from the body coordinate system to the probe coordinate system given in advance and the value of the direction cosine of the body coordinate system of the normal to the object surface at the point of contact between the object surface and the stylus. The value of the direction cosine of the line is converted to the value of the direction cosine in the probe coordinate system, and then the probe is Determine the pressing force acting on the stylus in each axis direction of the probe coordinate system when the stylus is displaced by a predetermined amount, and determine the balance condition between the pressing force of the stylus and the reaction force that the stylus receives from the surface of the object to be measured, and the method of the probe coordinate system. Based on the value of the direction cosine of the line, find the reaction force in each axis direction of the probe coordinate system, find the displacement of the probe in each axis direction of the probe coordinate system from the reaction force in each axis direction, and calculate the probe displacement in each axis direction of the probe coordinate system. A stylus control method for a coordinate measuring machine, characterized in that a probe is moved based on the amount of displacement of the coordinate measuring machine.
(2)前記求められたプローブの各軸方向の変位に基づ
いて、プローブの変位量が一定になるようにプローブの
移動を制御することを特徴とした請求項(1)記載の座
標測定機のスタイラス制御方法。
(2) The coordinate measuring machine according to claim (1), wherein the movement of the probe is controlled so that the amount of displacement of the probe is constant based on the determined displacement of the probe in each axial direction. Stylus control method.
(3)前記求められたプローブの各軸方向の変位に基づ
いて、プローブの変位から生じる測定圧が一定となるよ
うにプローブの移動を制御することを特徴とした請求項
(1)記載の座標測定機のスタイラス制御方法。
(3) The coordinate system according to claim (1), wherein the movement of the probe is controlled based on the determined displacement of the probe in each axial direction so that the measured pressure generated from the displacement of the probe is constant. How to control the stylus of the measuring machine.
(4)プローブが所定量変位した時のプローブ座標系の
各軸方向のスタイラスの撓み量を求め、該撓み量及び前
記所定量変位からプローブ座標系の各軸方向のスタイラ
スの中心座標を求め、該中心座標と予め与えられている
本体座標系からプローブ座標系への変換行列とに基づい
て、プローブの全軸の零点を本体座標系で求めることを
特徴とする請求項(1)記載の座標測定機のスタイラス
制御方法。
(4) Determine the amount of deflection of the stylus in each axis direction of the probe coordinate system when the probe is displaced by a predetermined amount, and determine the center coordinates of the stylus in each axis direction of the probe coordinate system from the amount of deflection and the predetermined amount of displacement; The coordinate system according to claim 1, characterized in that zero points of all axes of the probe are determined in the body coordinate system based on the center coordinates and a conversion matrix from the body coordinate system to the probe coordinate system given in advance. How to control the stylus of the measuring machine.
JP6183190A 1990-03-12 1990-03-12 Controlling method for stylus of coordinate measuring machine Pending JPH03261817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6183190A JPH03261817A (en) 1990-03-12 1990-03-12 Controlling method for stylus of coordinate measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6183190A JPH03261817A (en) 1990-03-12 1990-03-12 Controlling method for stylus of coordinate measuring machine

Publications (1)

Publication Number Publication Date
JPH03261817A true JPH03261817A (en) 1991-11-21

Family

ID=13182436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6183190A Pending JPH03261817A (en) 1990-03-12 1990-03-12 Controlling method for stylus of coordinate measuring machine

Country Status (1)

Country Link
JP (1) JPH03261817A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528709A (en) * 1998-10-24 2002-09-03 レニショウ パブリック リミテッド カンパニー Analog probe calibration and error mapping method
JP2006201105A (en) * 2005-01-24 2006-08-03 Mitsutoyo Corp Three-dimensional measuring instrument and probe used therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528709A (en) * 1998-10-24 2002-09-03 レニショウ パブリック リミテッド カンパニー Analog probe calibration and error mapping method
JP2006201105A (en) * 2005-01-24 2006-08-03 Mitsutoyo Corp Three-dimensional measuring instrument and probe used therefor

Similar Documents

Publication Publication Date Title
US5040306A (en) Surface-sensing device
US4769763A (en) Control for coordinate measuring instruments
US5129044A (en) Position/force controlling apparatus for working machine with multiple of degrees of freedom
US8161660B2 (en) Measuring device with extensible cord and method
JP3341933B2 (en) Scanning method and scanning device for workpiece surface
US5189806A (en) Method of and apparatus for scanning the surface of a workpiece
JP2873404B2 (en) Method and apparatus for scanning the surface of a workpiece
US6163973A (en) Non-contact surface roughness measuring device
US5334918A (en) Method of controlling a coordinate positioning machine for measurement of a workpiece
US20050055839A1 (en) Probe head for coordinate measuring machines
JP2005507495A (en) Probe calibration method
US5152072A (en) Surface-sensing device
EP3382327A1 (en) Compact coordinate measurement machine configuration with large working volume relative to size
Iwasawa et al. Development of a measuring method for several types of programmed tool paths for NC machine tools using a laser displacement interferometer and a rotary encoder
JP2001518606A (en) Device for detecting the position of two objects
JP2831610B2 (en) measuring device
JPH03261817A (en) Controlling method for stylus of coordinate measuring machine
JPH01503090A (en) Wide area device for measuring linear dimensions of parts
US5243872A (en) Robotic hand for controlling movement in multiple axes
JPH0352809B2 (en)
JP2017223574A (en) Industrial machine
US6013997A (en) Three dimensional tactile seam tracing device
JPH0323842B2 (en)
JP2022029974A (en) Shape measurement device control method
JP2737325B2 (en) Robot trajectory generation method