JPH0352809B2 - - Google Patents

Info

Publication number
JPH0352809B2
JPH0352809B2 JP24513783A JP24513783A JPH0352809B2 JP H0352809 B2 JPH0352809 B2 JP H0352809B2 JP 24513783 A JP24513783 A JP 24513783A JP 24513783 A JP24513783 A JP 24513783A JP H0352809 B2 JPH0352809 B2 JP H0352809B2
Authority
JP
Japan
Prior art keywords
component force
detection probe
force detection
measured
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24513783A
Other languages
Japanese (ja)
Other versions
JPS60140110A (en
Inventor
Yoshihide Nishida
Yoji Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24513783A priority Critical patent/JPS60140110A/en
Publication of JPS60140110A publication Critical patent/JPS60140110A/en
Publication of JPH0352809B2 publication Critical patent/JPH0352809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/24Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、被測定物表面の法線方法の測定方法
及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method and apparatus for measuring the normal line of the surface of an object to be measured.

〔従来技術〕 従来は、たとえば被測定物との当接を検出する
タツチプローブと、このタツチプローブを移動す
る位置決め装置とから成る3次元測定装置があつ
た。この3次元測定装置は、位置決め装置により
タツチプローブ被測定物に接触させ、接触時の位
置決め装置の移動距離から予め決められた座標系
における接触点の座標を検出するものである。し
たがつて、被測定物の任意の測定点における法線
方向を測定するには、被測定物の表面を特定する
ための測定点近傍の少なくとも3点の座標を測定
して計算を行なう必要があり、座標測定時の誤差
と計算時の誤差が累積され、高精度の測定ができ
ないという欠点があつた。
[Prior Art] Conventionally, there has been a three-dimensional measuring device that includes, for example, a touch probe that detects contact with an object to be measured and a positioning device that moves the touch probe. In this three-dimensional measuring device, a touch probe is brought into contact with an object to be measured using a positioning device, and the coordinates of a contact point in a predetermined coordinate system are detected from the moving distance of the positioning device at the time of contact. Therefore, in order to measure the normal direction at any measurement point of the object to be measured, it is necessary to measure and calculate the coordinates of at least three points near the measurement point to specify the surface of the object. However, errors during coordinate measurement and calculation errors are accumulated, making it impossible to perform highly accurate measurements.

〔発明の概要〕[Summary of the invention]

本発明は、上記のような欠点を解決するために
なされたもので、3分力検出プローブを被測定物
に押し付けたときに生ずる反力方向から、3分力
検出プローブと被測定物との接触点における法線
を高精度に測定することのできる物体表面の法線
方向の測定方法及びその装置を提供するものであ
る。
The present invention has been made in order to solve the above-mentioned drawbacks, and it is possible to detect the relationship between the 3-component force detection probe and the measured object from the direction of the reaction force generated when the 3-component force detection probe is pressed against the measured object. The present invention provides a method and apparatus for measuring the normal direction of an object surface, which can measure the normal line at a contact point with high precision.

第1図は3分力検出プローブ1が被測定物2に
接触したときに生ずる力の状態を3分力検出プロ
ーブ1を基準とした直交3次元座標系x,y,z
上で示した説明図である。3分力検出プローブ1
に作用する力を検出しながら、3分力検出プロー
ブ1をz軸方向へ移動させて被測定物2に接触さ
せ、3分力検出プローブ1に作用するx,y,z
軸方向の力x1,y1,z1のいずれかが所定の値(例
えば歪ゲージなどの力検出器により精度良く計測
できるスパン中央部の所定の値以上に達したとこ
ろで、z軸方向への移動を停止する。接触点での
面の法線方向がz軸方向でなければ、3分力検出
プローブ1には法線方向抗力Nと摩擦力Faとの
合力F1が作用する。3分力検出プローブ1に作
用する力F1は、接触点での面の法線方向ベクト
ルとx,y平面とのなす角θ2が90゜−θ2>θf、90゜
−θ2≦θfの場合によつて異なる。ここでθfは摩擦
角であり、3分力検出プローブ1と被測定物2と
の間の摩擦係数がμであれば、tanθf=μである。
90゜−θ2>θfすなわち被測定物2の表面とx−y平
面のなす角度が摩擦角θfより大きい場合、3分力
検出プローブ1に作用する力F1の方向の成分x1
y1,z1は次式で与えられる。
Figure 1 shows the state of the force generated when the 3-component force detection probe 1 contacts the object 2 to be measured, using an orthogonal three-dimensional coordinate system x, y, z with the 3-component force detection probe 1 as a reference.
It is an explanatory diagram shown above. 3 component force detection probe 1
While detecting the force acting on the three-component force detection probe 1, move the three-component force detection probe 1 in the z-axis direction and bring it into contact with the object to be measured 2.
When any of the axial forces x 1 , y 1 , or z 1 reaches a predetermined value (e.g., a predetermined value at the center of the span that can be measured with high accuracy using a force detector such as a strain gauge), the force in the z-axis direction is If the normal direction of the surface at the contact point is not the z-axis direction, the resultant force F 1 of the normal direction resistance N and the frictional force Fa acts on the 3-component force detection probe 1. 3 The force F 1 acting on the component force detection probe 1 is such that the angle θ 2 between the normal direction vector of the surface at the contact point and the x, y plane is 90° - θ 2 > θ f , 90° - θ 2 ≦ θ f varies depending on the case. Here, θ f is a friction angle, and if the friction coefficient between the three-component force detection probe 1 and the object to be measured 2 is μ, tanθ f =μ.
90° - θ 2 > θ f That is, when the angle between the surface of the object to be measured 2 and the x-y plane is larger than the friction angle θ f , the component x 1 in the direction of the force F 1 acting on the 3-component force detection probe 1 ,
y 1 and z 1 are given by the following formula.

x1=|N→|cosθ2・cosθ1−μ|N→
|sinθ2・sosθ1 x1=|N→|cosθ2・cosθ1−μ|N→
|sinθ2・sosθ1 y1=|N→|cosθ2・sinθ1−μ|N→|sinθ2・sin
θ1 z1=|N→|sinθ2+μ|N→|sosθ2 一方、90゜−θ2≦θfすなわち被測定物2の表面と
x−y平面とのなす角が摩擦角θfと等しいか、小
さい場合、3分力検出プローブ1に作用するF1
の 各方向の成分x1,y1,z1は、次式で与えられ
る。
x 1 =|N→|cosθ 2・cosθ 1 −μ|N→
|sinθ 2・sosθ 1 x 1 =|N→|cosθ 2・cosθ 1 −μ|N→
|sinθ 2・sosθ 1 y 1 =|N→|cosθ 2・sinθ 1 −μ|N→|sinθ 2・sin
θ 1 z 1 = |N → | sin θ 2 + μ | N → | sos θ 2 On the other hand, 90° − θ 2 ≦θ f In other words, the angle between the surface of the object to be measured 2 and the x-y plane is the friction angle θ f If equal or smaller, F 1 acting on the 3-component force detection probe 1
The components x 1 , y 1 , z 1 in each direction are given by the following equations.

x1=0 y1=0 z1=|N→|sinθ2−|N→| sosθ2/tanθ2 したがつて、3分力検出プローブ1に作用する
力F1のx,y方向成分より、90゜−θ2>θf、90゜−
θ2≦θfの状態が明確に判別できる。
x 1 = 0 y 1 = 0 z 1 = |N→|sinθ 2 −|N→| sosθ 2 /tanθ 2 Therefore, from the x and y direction components of the force F 1 acting on the three-component force detection probe 1, , 90°−θ 2f , 90°−
The state of θ 2 ≦θ f can be clearly determined.

90゜−θ2>θfの場合には、前記のz軸方向からの
接触動作に次いで、tanθ1=y1/x1で与えられる
θ1の方向へ3分力検出プローブ1を移動し、3分
力検出プローブ1に力が作用しないところで停止
した後、θ1の逆方向へ移動し、3分力検出プロー
ブ1に作用する法線方向の力Nと摩擦力F→bと合
力F→2のx,y,z軸方向の力x2,y2,z2のいず
れかが所定の値(例えば前記z軸方向の移動を停
止させたときに使用した値と同一の所定の値)以
上に達しところで移動を停止する。この時点で、
3分力検出プローブ1に作用する力F→2の各方向
の成分x2,y2,z2は次式で与えられる。
In the case of 90° - θ 2 > θ f , the 3-component force detection probe 1 is moved in the direction of θ 1 given by tan θ 1 = y 1 /x 1 , following the contact operation from the z-axis direction. , after stopping at a place where no force acts on the 3-component force detection probe 1, it moves in the opposite direction of θ 1 , and the force N in the normal direction, the frictional force F, which acts on the 3 -component force detection probe 1, and the resultant force F → Any of the forces x 2 , y 2 , z 2 in the x, y, and z axis directions of ), the movement will stop when it reaches this point. at this point
The components x 2 , y 2 , z 2 in each direction of the force F→ 2 acting on the three-component force detection probe 1 are given by the following equations.

x2=|N|cosθ・cosθ1+μ|N|sin
θ2・cosθ1 y2=|N|cosθ2・cosθ1+μ|N|sinθ2・sinθ1 z2=|N|sinθ2−μ|N|cosθ2 前記2回の接触動作により得られた力x1,y1
z1,x2,y2,z2から、接触点での面の法線ベクト
ルl→=cosθ2・cosθ1i→+cosθ2・sinθ1j→+sin
θ2k→の
x,y,z方向の成分は、次式で与えられる。こ
こでi→,j→,k→はそれぞれx,y,z方向の単位
ベクトルを示している。
x 2 =|N|cosθ・cosθ 1 +μ|N|sin
θ 2・cosθ 1 y 2 = |N|cosθ 2・cosθ 1 +μ|N|sinθ 2・sinθ 1 z 2 = |N|sinθ 2 −μ|N|cosθ 2 Obtained by the above two contact operations Force x 1 , y 1 ,
From z 1 , x 2 , y 2 , z 2 , the normal vector of the surface at the contact point l→=cosθ 2・cosθ 1 i→+cosθ 2・sinθ 1 j→+sin
The components of θ 2 k→ in the x, y, and z directions are given by the following equations. Here, i→, j→, k→ indicate unit vectors in the x, y, and z directions, respectively.

cosθ2・cosθ1=(x1+y1)/√(x1+x2
2+(y1+y22+(z1+z22 cosθ2・cosθ1=(x1+y1)/√(x1+x2
2+(y1+y22+(z1+z22 cosθ2・sinθ1=(y1+y2)/√(x1+x22+(y1+y
22+(z1+z22 cosθ2・cosθ1=(x1+y1)/√(x1+x2
2+(y1+y22+(z1+z22 cosθ2・sinθ1=(y1+y2)/√(x1+x22+(y1+y
22+(z1+z22 sinθ2=(z1+z2)/√(x1+x22+(y1+y22+(
z1+z22 一方、90゜−θ2≦θfの場合は、3分力検出プロー
ブ1を接触点のまわりに、z軸に対して摩擦角θf
の2倍より大きい角度θ0傾ける。3分力検出プロ
ーブ1を傾けたときの、3分力検出プローブ1を
基準にとつた直交座標系をx′1,y′,z′とすれば、
z′軸方向に3分力検出プローブ1を後退させた
後、x′,y′,z′座標系において90゜−θ2>θfの場

と同様に2回の接触動作を行なうことにより、
x′,y′,z′座標系での法線ベクトルが得られ、こ
の法線ベクトルをx,y,z座標系に変換すれ
ば、x,y,z座標系での法線ベクトルが得られ
る。たとえば、第2図に示すようにy軸方向のま
わりに、3分力検出プローブ1を角度θ0回転した
ときの、3分力検出プローブ1を基準とした座標
系x′,y′,z′において得られた法線方向ベクトル
の成分がlx′,ly′,lz′であれば、x,y,z座標
系での法線ベクトルは次式で変換される。
cosθ 2・cosθ 1 = (x 1 + y 1 )/√(x 1 + x 2
) 2 + (y 1 + y 2 ) 2 + (z 1 + z 2 ) 2 cosθ 2・cosθ 1 = (x 1 + y 1 )/√(x 1 + x 2
) 2 + (y 1 + y 2 ) 2 + (z 1 + z 2 ) 2 cosθ 2・sinθ 1 = (y 1 + y 2 )/√(x 1 + x 2 ) 2 + (y 1 + y
2 ) 2 + (z 1 + z 2 ) 2 cosθ 2・cosθ 1 = (x 1 + y 1 )/√(x 1 + x 2
) 2 + (y 1 + y 2 ) 2 + (z 1 + z 2 ) 2 cosθ 2・sinθ 1 = (y 1 + y 2 )/√(x 1 + x 2 ) 2 + (y 1 + y
2 ) 2 + (z 1 + z 2 ) 2 sinθ 2 = (z 1 + z 2 )/√(x 1 + x 2 ) 2 + (y 1 + y 2 ) 2 + (
z 1 + z 2 ) 2On the other hand, if 90°-θ 2 ≦θ f , move the 3-component force detection probe 1 around the contact point at a friction angle θ f with respect to the z-axis.
Tilt at an angle θ 0 greater than twice that of . If the orthogonal coordinate system based on the 3-component force detection probe 1 is x' 1 , y', z' when the 3-component force detection probe 1 is tilted, then
After retracting the 3-component force detection probe 1 in the z'-axis direction, by performing two contact operations in the x', y', z' coordinate system in the same way as in the case of 90° - θ 2 > θ f . ,
The normal vector in the x', y', z' coordinate system is obtained, and by converting this normal vector to the x, y, z coordinate system, the normal vector in the x, y, z coordinate system is obtained. It will be done. For example, as shown in Figure 2, when the three-component force detection probe 1 is rotated by an angle θ 0 around the y-axis direction, the coordinate system x', y', z is based on the three-component force detection probe 1. If the components of the normal direction vector obtained at ' are lx', ly', lz', the normal vector in the x, y, z coordinate system is transformed by the following equation.

l→=(cosθ0・lx′+sinθ0・lz′)i→
+ly′j→+(cosθ0l′z−sinθ0・l′x)k→ このようにして3分力検出プローブ1を被測定
物2に接触させたときのx,y,z軸方向の力よ
り被測定物表面の法線方向が得られる。
l→=(cosθ 0・lx′+sinθ 0・lz′)i→
+ly′j→+(cosθ 0 l′ z −sinθ 0・l′ x ) k→ In this way, when the three-component force detection probe 1 is brought into contact with the object to be measured 2, the The normal direction of the surface of the object to be measured can be obtained from the force.

第3図は本発明に係る物体表面の法線方向の測
定装置の機構部の全体構成を示した斜視図であ
る。2は被測定物、1はx,y,z方向の力を検
出できる3分力検出プローブ、3は先端に取付け
られた3分力検出プローブ1のx,y,z方向の
位置とy軸まわりの姿勢を変える4自由度の位置
決め装置である。
FIG. 3 is a perspective view showing the overall structure of the mechanism of the device for measuring the normal direction of the surface of an object according to the present invention. 2 is the object to be measured, 1 is a 3-component force detection probe that can detect forces in the x, y, and z directions, and 3 is the position of the 3-component force detection probe 1 attached to the tip in the x, y, and z directions and the y axis. It is a positioning device with 4 degrees of freedom that changes the posture of its surroundings.

第4図は3分力検出プローブ1の実施例を示す
斜視図である。4はベース、5はベース4に両端
が固定された板バネ、6は板バネ4の中央部に固
定され、x,y方向にそれぞれ2ケ所づつ薄肉部
を有する弾性体、7は先端が球状に形成され後端
が弾性体6に固定された触針である。8,9,1
0は歪ゲージで、板バネ5には歪ゲージ8が中央
を対称に2個貼りつけている。また弾性体6には
x方向に薄くなつている部分に歪ゲージ9が2個
貼りつけられており、y方向に薄くなつている部
分に歪ゲージ10が2個貼りつけられている。板
バネ5及び弾性体6に、上記のように歪ゲージ8
〜10を貼りつけ、後述のように歪ゲージ8〜1
0をブリツジ回路に結線することによつて、触針
7に作用する力のz方向成分を歪ゲージ8、x方
向成分を歪ゲージ9、y方向成分を歪ゲージ10
によつてそれぞれ独立して検出することができ
る。
FIG. 4 is a perspective view showing an embodiment of the three-component force detection probe 1. 4 is a base, 5 is a leaf spring whose both ends are fixed to the base 4, 6 is an elastic body fixed to the center of the leaf spring 4 and has two thin parts in each of the x and y directions, and 7 is a spherical tip. This is a stylus with a rear end fixed to an elastic body 6. 8,9,1
0 is a strain gauge, and two strain gauges 8 are attached to the leaf spring 5 symmetrically about the center. Further, two strain gauges 9 are attached to the elastic body 6 at a portion where it becomes thinner in the x direction, and two strain gauges 10 are attached at a portion where it becomes thinner in the y direction. A strain gauge 8 is attached to the leaf spring 5 and the elastic body 6 as described above.
~10, and strain gauge 8~1 as described below.
0 to the bridge circuit, the z-direction component of the force acting on the stylus 7 is transmitted to the strain gauge 8, the x-direction component to the strain gauge 9, and the y-direction component to the strain gauge 10.
Each can be detected independently.

第5図は制御装置の一例を示すブロツク図で、
制御装置11は3分力検出プローブ1からの出力
を処理する3分力検出回路12と、位置決め装置
3を制御する位置決め装置制御回路13と、マイ
クロコンピユータ14とからなつている。3分力
効出回路12は歪ゲージ8〜10ごとにそれぞれ
歪ゲージ出力信号処理回路15〜17を備えてい
る。たとえば、処理回路15では、2個の歪ゲー
ジ8と2個の固定抵抗18で構成されたブリツジ
回路がストレインアンプ19によつて印加され、
このプリツジの出力信号はストレインアンプ19
で増幅され、直流信号として出力される。他の歪
ゲージ出力信号処理回路16,17も同様に直流
信号を出力する。ただし、歪ゲージ出力信号処理
回路15におけるブリツジ回路は、歪ゲージ8が
貼り付けてある板バネ5に作用するz方向の力だ
けを取り出すために、2個の歪ゲージ8が対向す
るように構成し、歪ゲージ出力信号処理回路1
6,17におけるプリツジ回路は、弾性体6に作
用するx,y方向の力を取り出すためにそれぞれ
2個の歪ゲージ9,10が隣接するように構成さ
れている。ゲージ出力処理回路15,17からの
直流信号はサンプルホールド回路20に入力さ
れ、マルチプレクサ21を介してA/D変換回路
22でデジタル信号化された後、マイクロコンピ
ユータ14に取り込まれる。マイクロコンピユー
タ14は、CPU(セントラルプロセツサユニツ
ト)、ROM(読出し専用メモリ)、RAM(読出し
書込みメモリ)、I/O(入力/出力)インタフエ
ース等を内蔵し、本法線方向測定装置の判別・指
令・演算手段を構成し、下記の制御指令発生手
段、3分力値判別手段及び法線方向演算手段とを
含むものである。
FIG. 5 is a block diagram showing an example of a control device.
The control device 11 includes a three-component force detection circuit 12 that processes the output from the three-component force detection probe 1, a positioning device control circuit 13 that controls the positioning device 3, and a microcomputer 14. The three-component force effect circuit 12 includes strain gauge output signal processing circuits 15 to 17 for each of the strain gauges 8 to 10, respectively. For example, in the processing circuit 15, a bridge circuit composed of two strain gauges 8 and two fixed resistors 18 is applied by a strain amplifier 19,
The output signal of this pritzge is the strain amplifier 19
is amplified and output as a DC signal. The other strain gauge output signal processing circuits 16 and 17 similarly output DC signals. However, the bridge circuit in the strain gauge output signal processing circuit 15 is configured such that two strain gauges 8 face each other in order to extract only the force in the z direction acting on the leaf spring 5 to which the strain gauges 8 are attached. and strain gauge output signal processing circuit 1
The pritzge circuits 6 and 17 are constructed such that two strain gauges 9 and 10 are adjacent to each other in order to take out the forces in the x and y directions that act on the elastic body 6. The DC signals from the gauge output processing circuits 15 and 17 are input to a sample hold circuit 20, converted into digital signals by an A/D conversion circuit 22 via a multiplexer 21, and then taken into the microcomputer 14. The microcomputer 14 has a built-in CPU (central processor unit), ROM (read-only memory), RAM (read/write memory), I/O (input/output) interface, etc., and is used to determine the normal direction measuring device.・It constitutes a command/calculation means, and includes the following control command generation means, 3-component force value discrimination means, and normal direction calculation means.

前記制御指令発生手段は、3分力検出プローブ
1を被測定物体表面に押つけたり離したりする複
数の手順(前記測定方法で説明したz軸方向に押
しつけたり、θ1の逆方向及びθ1の正方向に移動し
たりする複数の手順)の指令を記載した制御プロ
グラムを前記ROMに内蔵し、入力される下記の
第2の判別結果信号を勘案して選択した手順の指
令制御プログラムをROMより読出し、位置決め
装置制御回路13に3分力検出プローブ1の位置
及び姿勢を多自由度(例えば4自由度)に制御す
るための制御指令を逐次出力し、入力される下記
の第1の判別結果信号により前記制御指令の出力
を停止する手段を有するものである。
The control command generating means executes a plurality of procedures for pressing and releasing the three-component force detection probe 1 against the surface of the object to be measured (pressing in the z-axis direction explained in the measurement method, pressing in the opposite direction of θ 1 and in the opposite direction of θ 1) . A control program containing commands for multiple procedures (such as moving in the forward direction) is built into the ROM, and a command control program for a procedure selected in consideration of the second determination result signal inputted below is stored in the ROM. The control commands for controlling the position and orientation of the three-component force detection probe 1 in multiple degrees of freedom (for example, four degrees of freedom) are read out and sequentially outputted to the positioning device control circuit 13, and the following first determination result is input. It has means for stopping the output of the control command in response to a signal.

前記3分力値判別手段は、前記制御指令発生手
段が制御指令を出力しているとき(例えば3分力
検出プローブ1をz軸方向に押つけているとき)、
前記3分力検出回路12の各出力値のいずれかが
所定の値になつたか、または前記各出力値がすべ
て零になつた(例えば3分力検出プローブ1を前
記θ1の逆方向へ移動中にこの状態になつた)こと
を判別し、該判別結果に基づき制御指令の出力を
停止させるための第1の判別結信号と、前記制御
指令発生手段が制御指令の出力開始及び停止の前
後に、前記3分力検出回路12が出力するx軸及
びy軸方向の力成分がともに零である(例えば前
記測定方法で説明した3分力検出プローブ1をz
軸方向に押しつける移動を停止後のx軸方向の力
x1及びy軸方向の力y1がともに零である)ことを
判別し、該判別結果に基づき制御指令プログラム
を選択させる(例えば3分力検出プローブ1を傾
けて別の座標系で測定する)ための第2の判別結
果信号とをそれぞれ前記制御指令発生手段に出力
する手段を有するものである。
The 3-component force value determining means is configured to: when the control command generating means is outputting a control command (for example, when pressing the 3-component force detection probe 1 in the z-axis direction);
Either one of the output values of the 3-component force detection circuit 12 has reached a predetermined value, or all of the output values have become zero (for example, if the 3-component force detection probe 1 is moved in the opposite direction of θ 1 ) A first determination signal for determining whether this state has been reached during operation and stopping the output of the control command based on the determination result; In this case, the force components in the x-axis and y-axis directions output by the 3-component force detection circuit 12 are both zero (for example, when the 3-component force detection probe 1 explained in the measurement method is
Force in the x-axis direction after stopping movement pushing in the axial direction
x 1 and the force y 1 in the y-axis direction are both zero), and select a control command program based on the determination result (for example, tilt the 3-component force detection probe 1 and measure in a different coordinate system). ), and a means for outputting a second discrimination result signal for each of the above-mentioned control commands to the control command generating means.

前記法線方向演算手段は、3分力検出プローブ
1が接触する被測定物表面の法線方向を算出する
プログラム(例えば前記式(1)〜(5)等の演算式をプ
ログラム化したもの)を前記ROMに内蔵し、該
プログラムに基づき、前記制御指令発生手段が制
御指令の出力開始及び停止の前後に、前記3分力
検出回路12が出力するx,y,z軸方向の力成
分から被測定物表面の法線方向を算出する手段を
有するものである。
The normal direction calculation means is a program that calculates the normal direction of the surface of the object to be measured that the 3-component force detection probe 1 comes into contact with (for example, a program containing calculation equations such as equations (1) to (5) above). is built into the ROM, and based on the program, the control command generation means calculates the force components in the x, y, and z axis directions output by the three-component force detection circuit 12 before and after starting and stopping the output of the control command. It has means for calculating the normal direction of the surface of the object to be measured.

位置決め装置制御回路13は、3分力検出プロ
ーブ1の位置と姿勢を変える位置決め装置3の4
個のアクチユエータ駆動回路23〜26からな
り、それぞれアクチエータ27〜30をマイクロ
コンピユータ14から出力される指令に従つて駆
動する。
The positioning device control circuit 13 controls the positioning devices 3 and 4 for changing the position and attitude of the 3-component force detection probe 1.
The microcomputer 14 includes actuator drive circuits 23 to 26, each of which drives actuators 27 to 30 in accordance with commands output from the microcomputer 14.

上記のように構成した本発明に係る物体表面の
法線方向測定装置の動作を第6図,第7図a〜f
で説明する。第6図は3分力検出プローブ1が接
触している面とx−y平面のなす角度が摩擦角よ
り大きい場合における、3分力検出プローブ1の
先端の動作を、法線ベクトルを含みx−y平面に
垂直な平面上で示している。第7図は3分力検出
プローブ1が接触している面とx−y平面のなす
角度が摩擦角より小さい場合における3分力検出
プローブ1の動作をx−z平面上でで示してい
る。
The operation of the device for measuring the normal direction of the object surface according to the present invention configured as described above is shown in FIGS. 6 and 7 a to f.
I will explain. Figure 6 shows the motion of the tip of the 3-component force detection probe 1, including the normal vector, when the angle formed between the surface in contact with the 3-component force detection probe 1 and the x-y plane is larger than the friction angle. - It is shown on a plane perpendicular to the y plane. Figure 7 shows the operation of the 3-component force detection probe 1 on the x-z plane when the angle formed between the surface in contact with the 3-component force detection probe 1 and the x-y plane is smaller than the friction angle. .

3分力検出プローブ1を位置決め装置3により
z軸方向に移動させるとともに、逐次3分力検出
プローブ1からの出力を制御装置11へ取込む。
3分力検出プローブ1が被測定物2に接触し、3
分力検出プローブ1に作用するx,y,z軸方向
のいずれかが所定の値以上になつたところで、z
軸方向への移動を停止する。この時点での3分力
検出プローブ1に作用するx,y,z軸方向の力
x1,y1,z1をマイクロコンピユータ14に記憶し
ておく。
The three-component force detection probe 1 is moved in the z-axis direction by the positioning device 3, and the output from the three-component force detection probe 1 is sequentially input to the control device 11.
The 3-component force detection probe 1 comes into contact with the object to be measured 2, and the 3-component force detection probe 1
When any of the x, y, and z axis directions acting on the component force detection probe 1 exceeds a predetermined value, the z
Stop axial movement. Forces in the x, y, and z axis directions acting on the 3-component force detection probe 1 at this point
x 1 , y 1 , and z 1 are stored in the microcomputer 14.

次にx1,y1のいずれかが零でないならば、マイ
クロコンピユータ14にtanθ1=y1/x1で与えら
れるθ1を計算し、位置決め装置3により3分力検
出プローブ1をθ1の方向へ後退させ、3分力検出
プローブ1に作用する力が零になつたところで後
退を停止した後、再び逆方向へ移動させ、3分力
検出プローブ1に作用するx,y,z軸方向の力
x2,y2,z2のいずれかが所定の値以上になつたと
ころで、移動を停止する。x1,y1,z1,x2,y2
z2よりマイクロコンピユータ14で法線方向を計
算することにより、物体表面の法線方向を得るこ
とができる。
Next, if either x 1 or y 1 is not zero, the microcomputer 14 calculates θ 1 given by tanθ 1 = y 1 /x 1 , and the positioning device 3 moves the 3-component force detection probe 1 to θ 1. The probe is moved backward in the direction of directional force
Movement is stopped when any one of x 2 , y 2 , and z 2 reaches a predetermined value or more. x 1 , y 1 , z 1 , x 2 , y 2 ,
By calculating the normal direction from z 2 using the microcomputer 14, the normal direction of the object surface can be obtained.

一方、x1,y1がともに零であれば、位置決め装
置3により3分力検出プローブ1の先端の球の中
心まわりに摩擦角の2倍以上の角度回転させる。
3分力検出プローブ1を回転したときの3分力検
出プローブ1を基準にとつた座標系をx′,y′,
z′とすれば、次に位置決め装置3により3分力検
出プローブ1をz′方向へ後退させ、3分力検出プ
ローブ1に力が作用しなくなるところで停止した
後、z′方向へ移動し3分力検出プローブに作用す
る力x3,y3,z3のいずれかが所定の値を越えたと
ころで移動を停止し、x3,y3,z3をマイクロコン
ピユータ14に記憶する。次にマイクロコンピユ
ータ14によりtanθ1=y3/x3で与えられるθ1
計算し、位置決め装置3により3分力検出プロー
ブ1をθ1の方向へ後退させ、3分力検出プローブ
1に作用する力が零になつたところで後退を停止
した後再び逆方向へ移動させ、3分力検出プロー
ブ1に作用するx,y,z軸方向の力x4,y4,z4
のいずれかが所定の値以上になつたところで移動
を停止する。x3,y3,z3,x4,y4,z4よりマイク
ロコンピユータ14でx′,y′,z′座標系での法線
方向を計算した後、3分力検出プローブ1を傾け
た角度の分を補正すれば物体表面の法線方向を得
ることができる。
On the other hand, if x 1 and y 1 are both zero, the positioning device 3 rotates the three-component force detection probe 1 around the center of the sphere at the tip by an angle that is more than twice the friction angle.
The coordinate system based on the 3-component force detection probe 1 when the 3-component force detection probe 1 is rotated is x', y',
z', then the positioning device 3 moves the 3-component force detection probe 1 backward in the z' direction, stops when no force acts on the 3-component force detection probe 1, and then moves in the z' direction. Movement is stopped when any of the forces x 3 , y 3 , z 3 acting on the component force detection probe exceeds a predetermined value, and x 3 , y 3 , z 3 are stored in the microcomputer 14 . Next, the microcomputer 14 calculates θ 1 given by tan θ 1 = y 3 /x 3 , and the positioning device 3 moves the 3-component force detection probe 1 backward in the direction of θ 1 to act on the 3-component force detection probe 1. After stopping the retreat when the applied force becomes zero, the probe is moved in the opposite direction again, and the forces in the x, y, and z axes directions acting on the three-component force detection probe 1 are x 4 , y 4 , z 4
The movement is stopped when any one of the values exceeds a predetermined value. After calculating the normal direction in the x ' , y', z' coordinate system using the microcomputer 14 from x 3 , y 3 , z 3 , x 4 , y 4 , z 4 , the three-component force detection probe 1 is tilted. By correcting the angle, the normal direction of the object surface can be obtained.

以上の説明では3分力検出プローブが被測定物
に接触したときに生じる力の方向から物体表面の
法線方向を測定する場合を示したが、本発明の物
体表面の法線方向測定装置は高精度の3次元物体
形状測定装置としても用いることができる。通常
の3次元物体形状測定装置では、位置決め装置の
先に取付けたタツチプローブが被測定物に接触し
たときのタツチプローブのx,y,z座標を求め
る動作を多数点行なつて被測定物の形状を測定し
ていたため、測定点間の補間の際の誤差とタツチ
プローブ先端の大きさによる実際の接触点と測定
した接触点との位置の誤差が避られない。しかし
ながら本発明のように接触点での法線方向がわか
れば、測定点間を補間するときの情報量がふえ、
補間の精度を上げることができる。また、x軸と
角度θをなす斜面と先端が半径rの球になつてい
る3分力検出プローブとを2次元で示した第8図
のように、法線方向より球の接触位置がわかるた
め、正確に被測定物上の接触点の位置を測定でき
る。したがつて、本発明によれば、3次元物体の
形状測定を高精度に測定することが可能である。
In the above explanation, the normal direction of the object surface is measured from the direction of the force generated when the 3-component force detection probe comes into contact with the object to be measured, but the normal direction measuring device of the object surface of the present invention It can also be used as a highly accurate three-dimensional object shape measuring device. In a typical three-dimensional object shape measuring device, the touch probe attached to the tip of the positioning device makes contact with the object to be measured, and the touch probe's x, y, and z coordinates are determined at multiple points. Since the shape was being measured, errors in interpolation between measurement points and errors in the position between the actual contact point and the measured contact point due to the size of the tip of the touch probe are unavoidable. However, if the normal direction at the contact point is known as in the present invention, the amount of information when interpolating between measurement points increases.
Interpolation accuracy can be increased. In addition, as shown in Figure 8, which shows a two-dimensional diagram of a slope forming an angle θ with the x-axis and a three-component force detection probe whose tip is a sphere with radius r, the contact position of the sphere can be determined from the normal direction. Therefore, the position of the contact point on the object to be measured can be accurately measured. Therefore, according to the present invention, it is possible to measure the shape of a three-dimensional object with high precision.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれ
ば被測定物の表面上の測定点での法線方向が直接
得られ、高精度の測定が行なえる等の顕著な効果
をあげることができる。
As is clear from the above explanation, according to the present invention, the normal direction at the measurement point on the surface of the object to be measured can be directly obtained, and remarkable effects such as high precision measurement can be achieved. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3分力検出プローブが物体表面に接触
したときの力の状態を示す説明図、第2図は3分
力検出プローブを傾ける場合の力の状態を示す説
明図、第3図は物体表面の法線方向測定装置の機
構部を示す斜視図、第4図は3分力検出プローブ
を示す斜視図、第5図は制御回路構成の一例を示
すブロツク図、第6図、第7図a,b,c,d,
e,fは3分力検出プローブの動作説明図、第8
図は本発明の他の実施例を示す説明図である。 1……3分力検出プローブ、2……被測定物、
3……位置決め装置、11……制御装置。なお各
図中同一符号は同一または相当部分を示すものと
する。
Figure 1 is an explanatory diagram showing the state of force when the 3-component force detection probe contacts the object surface, Figure 2 is an explanatory diagram showing the state of force when the 3-component force detection probe is tilted, and Figure 3 is FIG. 4 is a perspective view showing a mechanism for measuring the normal direction of an object surface; FIG. 4 is a perspective view showing a three-component force detection probe; FIG. 5 is a block diagram showing an example of a control circuit configuration; FIGS. Figures a, b, c, d,
e and f are operation explanatory diagrams of the 3-component force detection probe, No. 8
The figure is an explanatory diagram showing another embodiment of the present invention. 1... 3-component force detection probe, 2... object to be measured,
3...Positioning device, 11...Control device. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 作用する力の直交3次元座標系をなすx,
y,z軸方向の分力をそれぞれ独立に検出できる
3分力検出プローブを被測定物表面に押しつけ被
測定物表面の法線方向を測定する方法において、 3分力検出プローブに作用する力を測定しな
がら3分力検出プローブをz軸方向に移動さ
せ、3分力検出プローブが被測定物に接触し
て、3分力検出プローブに作用する前記x,
y,z軸方向の力x1,y1,z1のいずれかが所定
の値になると移動を停止する。 x1,y1がともに零でない場合には、tanθ1
y1/x1で与えられる角度θ1方向へ3分力検出プ
ローブに作用する力が零になるまで移動した後
停止する。次いで、角度θ1の逆方向へ移動し、
3分力検出プローブが被測定物に接触し3分力
検出プローブに作用する前記x,y,z軸方向
の力x2,y2,z2のいずれかが前記所定の値にな
ると移動を停止する。この動作で得られたx1
y1,z1とx2,y2,z2より、前記x,y,z軸方
向の単位ベクトルをi,j,kとすると、被測
定物表面の法線ベクトルl=lxi+lyj+lz
のx,y,z軸方向の成分として lx=(x1+x2)/√(122
122+(122, ly=(y1+y2)/√(122
122+(122, lz=(z1+z2)/√(122
122+(122, を得る。 x1,y1がともに零の場合には、3分力検出プ
ローブを被測定物と3分力検出プローブの摩擦
角の2倍以上の角度傾けた後、前記,と同
様の動作で法線方向を得、傾けた角度の補正を
行なつて被測定物表面の法線方向を得ることを
特徴とする物体表面の法線方向の測定方法。 2 作用する力の直交3次元座標系をなすx,
y,z軸方向の成分を、それぞれ独立に検出でき
るように歪ゲージを貼り付けた3分力検出プロー
ブと、 前記3分力検出プローブからの出力信号により
作用する力の前記x,y,z軸方向の成分を演算
する3分力検出回路と、 判別・指令・演算手段と、 前記判別・指令・演算手段から出力される制御
指令に基づき前記3分力検出プローブの位置及び
姿勢を多自由度に駆動制御する位置決め装置とを
備え、 前記判別・指令・演算手段は、 前記3分力検出回路の出力信号により3分力
検出プローブに作用する3分力値をそれぞれ測
定しながら、3分力検出プローブをZ軸方向に
移動させ、3分力検出プローブが被測定物に接
触後は、3分力検出プローブに作用する3分力
値x1,y1,z1のいずれかが所定の値になつたこ
とを判別し、該判別結果に基づき前記z軸方向
への移動を停止させる制御指令を位置決め装置
に出力する第1の3分力値判別手段及び制御指
令発生手段と、 前記3分力値x1,y1がともに雰でない場合に
は、前記3分力検出回路の出力信号により3分
力検出プローブに作用する3分力値をそれぞれ
測定しながら、まず3分力検出プローブを
tanθ1=y1/x1で与えられる角度θ1方向へ移動
させ、3分力検出プローブに作用する3分力値
がすべて零になつたことを判別し、該判別結果
に基づき前記角度θ1方向への移動を停止させ、
次に3分力検出プローブを前記角度θ1の逆方向
へ移動させ、3分力検出プローブに作用する3
分力値x2,y2,z2のいずれかが所定の値になつ
たことを判別し、該判別結果に基づき前記角度
θ1の逆方向への移動を停止させる制御指令を位
置決め装置に出力する第2の3分力値判別手段
及び制御指令発生手段と、 前記3分力検出プローブの位置決め制御に基
づき、3分力検出回路から出力された3分力値
x1,y1,z1とx2,y2,z2より、前記x,y,z
軸方向の単位ベクトルをi,j,kとすると、
被測定物表面の法線ベクトル l=lxi+lyj+lzkをx,y,z軸方向の成
分は lx=(x1+x2)/√(122
122+(122, ly=(y1+y2)/√(122
122+(122, lz=(z1+z2)/√(122
122+(122, として演算して、被測定物表面の法線方向を算
出する第1の法線方向演算手段と、 前記3分力値x1,y1がともに零の場合には、
3分力検出プローブを被測定物と3分力検出プ
ローブの摩擦角の2倍以上の角度傾ける姿勢制
御指令を位置決め装置に出力する制御指令発生
手段と、 前記3分力検出プローブの姿勢制御終了後に、
前記,と同様の3分力検出プローブの位置決
め制御に基づく法線方向演算式により法線方向を
算出し、前記姿勢制御により傾けた角度の補正を
行なつて被測定物表面の法線方向を演算する第2
の法線方向演算手段とを含むことを特徴とする物
体表面の法線方向の測定装置。
[Claims] 1. x, which forms an orthogonal three-dimensional coordinate system of the acting force;
In the method of pressing a three-component force detection probe that can independently detect component forces in the y and z-axis directions against the surface of the object to be measured and measuring the normal direction of the surface of the object to be measured, the force acting on the three-component force detection probe is The three-component force detection probe is moved in the z-axis direction while measuring, and the three-component force detection probe contacts the object to be measured, and the x, which acts on the three-component force detection probe,
Movement is stopped when any of the forces x 1 , y 1 , z 1 in the y and z axis directions reaches a predetermined value. If both x 1 and y 1 are not zero, tanθ 1 =
It moves in the angle θ 1 direction given by y 1 /x 1 until the force acting on the three-component force detection probe becomes zero, and then stops. Then move in the opposite direction of the angle θ 1 ,
When the 3-component force detection probe comes into contact with the object to be measured and any of the forces x 2 , y 2 , z 2 in the x, y, and z axis directions acting on the 3-component force detection probe reaches the predetermined value, the probe stops moving. Stop. x 1 obtained by this operation,
From y 1 , z 1 and x 2 , y 2 , z 2 , if the unit vectors in the x, y, and z axis directions are i, j, k, then the normal vector to the surface of the object to be measured is l=l x i+l y j+l z k
As the components in the x, y, and z axes of
( 1 + 2 ) 2 + ( 1 + 2 ) 2 , l y = (y 1 + y 2 ) / √ ( 1 + 2 ) 2 +
( 1 + 2 ) 2 + ( 1 + 2 ) 2 , l z = (z 1 + z 2 ) / √ ( 1 + 2 ) 2 +
( 1 + 2 ) 2 + ( 1 + 2 ) 2 , we get. If x 1 and y 1 are both zero, tilt the 3-component force detection probe at an angle that is more than twice the friction angle between the object to be measured and the 3-component force detection probe, and then adjust the normal line using the same operation as above. A method for measuring the normal direction of the surface of an object, characterized in that the normal direction of the surface of the object to be measured is obtained by obtaining the direction and correcting the tilt angle. 2 x, which forms the orthogonal three-dimensional coordinate system of the acting force,
A three-component force detection probe to which a strain gauge is attached so that the components in the y and z axis directions can be detected independently, and the x, y, and z components of the force acting by the output signals from the three component force detection probe. a three-component force detection circuit that calculates an axial component; a discrimination/command/calculation means; and a control command output from the discrimination/command/calculation means, which allows the position and orientation of the three-component force detection probe to be freely adjusted. and a positioning device that performs drive control at the same time. After the force detection probe is moved in the Z-axis direction and the three-component force detection probe comes into contact with the object to be measured, one of the three-component force values x 1 , y 1 , and z 1 acting on the three-component force detection probe is set to a predetermined value. a first three-component force value discriminating means and a control command generating means for determining that the value has reached the value of , and outputting a control command to the positioning device to stop the movement in the z-axis direction based on the determination result; If the 3-component force values x 1 and y 1 are both negative, first detect the 3-component force while measuring the 3-component force values acting on the 3-component force detection probe using the output signals of the 3-component force detection circuit. probe
The probe is moved in the direction of the angle θ 1 given by tanθ 1 = y 1 /x 1 , and it is determined that all three component force values acting on the three component force detection probe have become zero. Stop movement in one direction,
Next, the 3-component force detection probe is moved in the opposite direction of the angle θ 1 , and the 3-component force detection probe is applied to the 3-component force detection probe.
It is determined whether any of the component force values x 2 , y 2 , or z 2 has reached a predetermined value, and based on the determination result, a control command is issued to the positioning device to stop movement in the opposite direction of the angle θ 1 . A second 3-component force value determining means and a control command generating means to output the 3-component force value output from the 3-component force detection circuit based on the positioning control of the 3-component force detection probe.
From x 1 , y 1 , z 1 and x 2 , y 2 , z 2 , the above x, y, z
If the unit vectors in the axial direction are i, j, k, then
The normal vector l = l x i + l y j + l z k to the surface of the object to be measured, and the components in the x, y, and z axis directions are l x = (x 1 + x 2 ) / √ ( 1 + 2 ) 2 +
( 1 + 2 ) 2 + ( 1 + 2 ) 2 , l y = (y 1 + y 2 ) / √ ( 1 + 2 ) 2 +
( 1 + 2 ) 2 + ( 1 + 2 ) 2 , l z = (z 1 + z 2 ) / √ ( 1 + 2 ) 2 +
( 1 + 2 ) 2 + ( 1 + 2 ) 2 , a first normal direction calculating means for calculating the normal direction of the surface of the object to be measured; and the three component force values x1 , y1 . If both are zero, then
control command generating means for outputting a posture control command to a positioning device to tilt the three-component force detection probe at an angle of at least twice the friction angle between the object to be measured and the three-component force detection probe; later,
The normal direction is calculated using the normal direction calculation formula based on the positioning control of the three-component force detection probe similar to the above, and the normal direction of the surface of the object to be measured is calculated by correcting the tilted angle by the attitude control. The second to calculate
A device for measuring the normal direction of an object surface, comprising normal direction calculating means.
JP24513783A 1983-12-28 1983-12-28 Method and apparatus for measuring normal line direction of surface of object Granted JPS60140110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24513783A JPS60140110A (en) 1983-12-28 1983-12-28 Method and apparatus for measuring normal line direction of surface of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24513783A JPS60140110A (en) 1983-12-28 1983-12-28 Method and apparatus for measuring normal line direction of surface of object

Publications (2)

Publication Number Publication Date
JPS60140110A JPS60140110A (en) 1985-07-25
JPH0352809B2 true JPH0352809B2 (en) 1991-08-13

Family

ID=17129177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24513783A Granted JPS60140110A (en) 1983-12-28 1983-12-28 Method and apparatus for measuring normal line direction of surface of object

Country Status (1)

Country Link
JP (1) JPS60140110A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212646A (en) * 1987-12-19 1993-05-18 Renishaw Plc Method of using a mounting for surface-sensing stylus
US5152072A (en) * 1988-02-18 1992-10-06 Renishaw Plc Surface-sensing device
GB8803847D0 (en) * 1988-02-18 1988-03-16 Renishaw Plc Mounting for surface-sensing device
US5189806A (en) * 1988-12-19 1993-03-02 Renishaw Plc Method of and apparatus for scanning the surface of a workpiece
JP2899809B2 (en) * 1989-04-28 1999-06-02 前澤工業株式会社 Automatic water supply method and device
DE69108817T2 (en) * 1990-08-17 1995-10-05 Toshiba Kawasaki Kk Displacement measuring device.
US5611147A (en) * 1993-02-23 1997-03-18 Faro Technologies, Inc. Three dimensional coordinate measuring apparatus
DE4309082A1 (en) * 1993-03-20 1994-09-22 Pietzsch Automatisierungstech Measuring device for measuring the shape of cylinders
GB0506158D0 (en) * 2005-03-24 2005-05-04 Renishaw Plc Measurement probe
CZ302109B6 (en) * 2006-12-04 2010-10-20 CVUT v Praze - Fakulta strojní CENTRUM AUTOMOBILU A SPALOVACÍCH MOTORU JOSEFA BOŽKA II Multiaxial variable force sensor
DE102009020533C5 (en) * 2009-05-08 2015-12-17 SIOS Meßtechnik GmbH Device for force component measurement

Also Published As

Publication number Publication date
JPS60140110A (en) 1985-07-25

Similar Documents

Publication Publication Date Title
US5125261A (en) Analogue probe calibration
JP2988588B2 (en) Position measuring device
JPH02220106A (en) Digitization controller containing measuring function
US11009414B2 (en) Sensor system for calculating pressing force or moment based on signals output by kinesthetic-sense sensors, robot hand including the sensor system, and method for calibrating the sensor system
JP3827548B2 (en) Scanning probe calibration method and calibration program
JP2005507495A (en) Probe calibration method
JP2009512836A5 (en)
GB1597842A (en) Indexing mechanism
CN108712943B (en) Calibration device and method
JPH0352809B2 (en)
EP0599513A1 (en) A method of measuring workpieces using a surface contacting measuring probe
US11002529B2 (en) Robot system with supplementary metrology position determination system
EP0902345A2 (en) Probe coordinate system driving apparatus
EP1491287B1 (en) Self-centring sensing device
JPH0127364B2 (en)
WO1992020996A1 (en) A method of measuring workpieces using a surface contacting measuring probe
Burdekin et al. Contisure—A computer aided system for assessing the contouring accuracy of NC machine tools
JPS6322526B2 (en)
WO1985004706A1 (en) Probe for measuring workpieces
WO1989011631A1 (en) Test bar for position determination apparatus
US11092422B2 (en) Measuring apparatus and measuring method
JPS6256444B2 (en)
JP2579726B2 (en) Contact probe
JP2009288227A (en) Three-dimensional measuring machine
JPH07111339B2 (en) Measuring method