JPH03261731A - Production of 1,1,1,2-tetrafluoroethane - Google Patents

Production of 1,1,1,2-tetrafluoroethane

Info

Publication number
JPH03261731A
JPH03261731A JP2059518A JP5951890A JPH03261731A JP H03261731 A JPH03261731 A JP H03261731A JP 2059518 A JP2059518 A JP 2059518A JP 5951890 A JP5951890 A JP 5951890A JP H03261731 A JPH03261731 A JP H03261731A
Authority
JP
Japan
Prior art keywords
tetrafluoroethane
chromium
catalyst
hydrogen fluoride
rearranging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2059518A
Other languages
Japanese (ja)
Inventor
Tsutomu Kobayashi
勉 小林
Satoru Koyama
哲 小山
Hiroichi Aoyama
博一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2059518A priority Critical patent/JPH03261731A/en
Publication of JPH03261731A publication Critical patent/JPH03261731A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject substance useful as a refrigerant in an excellent conversion and selectivity by rearranging 1,1,2,2-tetrafluoroethane in the presence of HF using a chromium (III) oxide catalyst pretreated with HF. CONSTITUTION:The subject substance is obtained by using 1,1,2,2- tetrafluoroethane and HF in [1:(0.2-10)] molar ratio and rearranging the former compound in the presence of a chromium (III) oxide catalyst pretreated with HF at 300-400 deg.C (preferably 320-380 deg.C). The reaction pressure is preferably the ordinary pressure-10kg/cm<2> and the contact time W/F (W is weight of catalyst; F is flow rate of gas at standard state) is preferably 1-100g.sec/cc. The above-mentioned method has the following merits; No expensive raw material is required. The amount of HF used is low. The catalytic life is long. Deterioration of the chromium catalyst can remarkably be prevented by coexistence of HF.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1,1.2−テトラフルオロエタンノ製造方法
、特に1,1.2.2−テトラフルオロエタン(以下、
134と呼ぶ)をクロム触媒により転位させて1,1,
1.2−テトラフルオロエタン(以下、134aと呼ぶ
)を製造する方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for producing 1,1,2-tetrafluoroethane, particularly 1,1,2,2-tetrafluoroethane (hereinafter referred to as
134) is rearranged with a chromium catalyst to produce 1,1,
The present invention relates to a method for producing 1,2-tetrafluoroethane (hereinafter referred to as 134a).

[従来の技術] 134aは冷媒として有用な物質であって、これまでに
知られている製造方法として次式の化学反応を利用する
方法がある。
[Prior Art] 134a is a substance useful as a refrigerant, and a known method for producing it is one that utilizes the following chemical reaction.

(1)CF、=CFH十HF −CF、CH,F(2)
CF、CH,CN+HF→CF、CH,Fしかし、(1
)の反応では原料のトリフルオロエチレンが高価であり
、また、(2)の反応では多量のフッ化水素が必要とさ
れ、転化率が低いなどの欠点もあるので、工業的製造の
ためには一層の検討が必要である。
(1) CF, = CFH ten HF - CF, CH, F (2)
CF, CH, CN + HF → CF, CH, F However, (1
In the reaction (2), the raw material trifluoroethylene is expensive, and in the reaction (2), a large amount of hydrogen fluoride is required, resulting in a low conversion rate. Further consideration is required.

他方、ソ連の文献ヌンヤンツ(1,L、Knunyan
ts)のイズベスティヤ・アカデミ−・ナウク(Izv
estiya Akademii Nauk) S S
 S R,1958年906頁には、テトラフルオロエ
チレンをパラジウム触媒存在下、室温で水素付加するこ
とにより134が96%の収率で得られることが報告さ
れている。PTFEの原料であるテトラフルオロエチレ
ンおよび水素は工業的に容易に入手できるので、134
を134aに転化する簡単な方法があれば、下記式に示
すような134aを合成するための工業的に画期的な方
法が得られる。
On the other hand, the Soviet literature Nunyanz (1, L, Knunyan
ts)'s Izvestiya Academy Nauk (Izv
estiya Akademii Nauk) S S
SR, 1958, p. 906, reports that 134 can be obtained in 96% yield by hydrogenating tetrafluoroethylene at room temperature in the presence of a palladium catalyst. Since tetrafluoroethylene and hydrogen, which are raw materials for PTFE, are easily available industrially, 134
If there is a simple method for converting 134a into 134a, an industrially innovative method for synthesizing 134a as shown in the following formula can be obtained.

CFt = CFt +Hx”” HCFtCFtH担
翻彊CFsCHtF[発明が解決しようとする課題] 文献■ミラー(W、 T 、 M i l 1er)、
ファガー(E。
CFt = CFt +Hx"" HCFtCFtH Converter CFsCHtF [Problem to be solved by the invention] Literature ■Miller (W, T, M i l 1er),
Fagger (E.

W、 F ager)、グリスヴアルト(P 、 H、
G riswald)のジャーナル・オフ・ジ・アメリ
カン・ケミカル・ソサエティ(Journal of 
the A@erican Chemical 5oc
iety)第72巻、705頁(1950年)または■
ハトリッキー(N、 Hudlicky)のコレクショ
ン・オフ・チェコスロバーク・ケミカル・コミュニケー
ションズ(Collection or Czecho
sl。
W, Fager), Griswald (P, H,
Griswald's Journal of the American Chemical Society
the A@erican Chemical 5oc
iety) Vol. 72, p. 705 (1950) or ■
Collection of Czechoslovak Chemical Communications (N, Hudlicky)
sl.

vak Chemical Commumicatio
ns)第28巻、2455Jm(1963年)に見られ
るようにフッ素と塩素(または臭素)間のハロゲン交換
による転位反応の例はいくつかあるが、フッ素と水素間
の転位反応の例は現在のところ見当らない。
vak Chemical Communicatio
ns) Volume 28, 2455 Jm (1963), there are some examples of rearrangement reactions between fluorine and chlorine (or bromine) by halogen exchange, but the current examples of rearrangement reactions between fluorine and hydrogen are I can't find it anywhere.

CCl23 ■ CFyC12CCI2tF      CF3CC
(!3gCff3 ■ CF、BrCHFCI2      CFsCHB
rC12[課題を解決するための手段] 本発明者らは134の転位反応による134aの工業的
製造方法を求めて種々研究を重ねた結果、フッ化水素で
処理した酸化クロム(III)の存在下に134を反応
させると転位反応により134aが生成し、さらにフッ
化水素を共存させるとクロム触媒の劣化が著しく抑えら
れることを見出した。
CCl23 ■ CFyC12CCI2tF CF3CC
(!3gCff3 ■ CF, BrCHFCI2 CFsCHB
rC12 [Means for Solving the Problems] The present inventors have conducted various studies in search of an industrial production method for 134a by rearrangement reaction of 134, and as a result, in the presence of chromium (III) oxide treated with hydrogen fluoride, It has been found that when 134 is reacted with 134, 134a is produced by a rearrangement reaction, and that when hydrogen fluoride is allowed to coexist, the deterioration of the chromium catalyst is significantly suppressed.

本発明は上記の知見に基づくものであって、その要旨は
、134をフッ化水素の存在下、酸化クロム触媒により
転位させることを特徴とする134aの製造方法である
The present invention is based on the above findings, and its gist is a method for producing 134a, which is characterized by rearranging 134 using a chromium oxide catalyst in the presence of hydrogen fluoride.

本発明において、原料134に対するフッ化水素の使用
量は触媒寿命に影響を与える。フッ化水素が134に対
して0.2モル以下の場合、または全く共存しない場合
には、クロム触媒表面が炭素で被われ、転化率が急激に
減少し、触媒寿命が非常に短くなる。これは、中間体と
して考えられるトリフルオロエチレンにより炭化したも
のであると考えられる。他方、フッ化水素が0.2モル
より多く共存すると触媒表面への炭化が起こりにくくな
り、触媒寿命が長くなる。フッ化水素の上限は特に限定
されないが、多すぎると原料134の濃度が低下し接触
時間が短縮され、転化率が低くなるので、10モルを越
えることは工業的には好ましくない。
In the present invention, the amount of hydrogen fluoride used with respect to the raw material 134 affects the catalyst life. When hydrogen fluoride is less than 0.2 mole per 134, or when it does not coexist at all, the chromium catalyst surface is covered with carbon, the conversion rate decreases rapidly, and the catalyst life becomes extremely short. This is thought to be carbonized by trifluoroethylene, which is considered as an intermediate. On the other hand, if more than 0.2 mol of hydrogen fluoride coexists, carbonization on the catalyst surface becomes difficult to occur and the catalyst life becomes longer. There is no particular upper limit to the amount of hydrogen fluoride, but if it is too large, the concentration of the raw material 134 will be reduced, the contact time will be shortened, and the conversion rate will be low, so it is industrially unfavorable to exceed 10 moles.

本発明において反応温度が低下すると、134aへの反
応速度が小さくなり生産性が低下する。その下限は30
0’Cである。他方、400’C以上の高温になると、
原料の熱分解が始まり触媒表面が炭化され、触媒能力が
低下し、経時変化とともに転化率が減少し、さらに13
4aの選択率も92%程度まで低下し、実用性に欠ける
。従って、反応温度範囲は300’C〜400°Cで、
好ましくは320’C〜380°Cである。
In the present invention, when the reaction temperature decreases, the reaction rate to 134a decreases and productivity decreases. The lower limit is 30
It is 0'C. On the other hand, when the temperature reaches 400'C or higher,
Thermal decomposition of the raw material begins and the surface of the catalyst becomes carbonized, the catalytic ability decreases, and the conversion rate decreases over time.
The selectivity of 4a also decreases to about 92%, making it impractical. Therefore, the reaction temperature range is 300'C to 400°C,
Preferably it is 320'C to 380C.

反応圧力は特に制限されないか、生産効率の点から通常
大気圧〜10 kg/cm’がよい。接触時間は反応温
度によるが、通常1〜1009・sec/ccである。
The reaction pressure is not particularly limited, and from the viewpoint of production efficiency, it is usually atmospheric pressure to 10 kg/cm'. The contact time depends on the reaction temperature, but is usually 1 to 1009·sec/cc.

ここていう接触時間は触媒重量(W)を標準状態でのガ
ス重速(F)で割ったもの(W/F)である。
The contact time here is the catalyst weight (W) divided by the gas velocity (F) under standard conditions (W/F).

次に実施例を挙げてさらに具体的に本発明を説明する。Next, the present invention will be explained in more detail with reference to Examples.

[発明の効果] 本発明の方法は、高価な原料を用いる必要がなく、フッ
化水素の使用量が少なく、転化率、選択率に優れ、また
触媒寿命が長いという利点を有する。
[Effects of the Invention] The method of the present invention has the advantages that it is not necessary to use expensive raw materials, the amount of hydrogen fluoride used is small, the conversion rate and selectivity are excellent, and the catalyst life is long.

[実施例] 以下に実施例を挙げて本発明をさらに具体的に説明する
[Example] The present invention will be described in more detail with reference to Examples below.

硝酸クロム水溶液にアンモニア水を加えて沈澱させた水
酸化クロムを110°Cで9時間風乾した後、1〜2.
81IIの粒径に調製し、その30yを直径2011M
のハステロイCパイプに充填した。窒素を200 yz
Q/’分で流しながら400℃で6時間加熱した後、さ
らにフッ化水素を200 ytQ1分で通しながら、4
00℃で2時間加熱した。このようにして得られた触媒
をフッ化水素処理酸化クロム(III)として使用した
After air-drying the chromium hydroxide precipitated by adding ammonia water to the chromium nitrate aqueous solution at 110°C for 9 hours, 1 to 2.
The particle size of 81II was prepared, and the 30y was made into a diameter of 2011M.
filled into Hastelloy C pipe. 200 yz nitrogen
After heating at 400°C for 6 hours while flowing at Q/' min, hydrogen fluoride was further heated at 200 ytQ1 min for 4 hours.
Heated at 00°C for 2 hours. The catalyst thus obtained was used as hydrogen fluoride treated chromium (III) oxide.

実施例1〜12 上記触媒をハステロイC製反応管(長さ1000 zx
’)に充填し、電気炉で昇温し、接触時間W/Fを28
〜48g・sec/11Qとし、大気圧下、134とフ
ッ化水素を第1表に示すモル比で通じ、生成ガスを水洗
塔、アルカリ水洗塔および塩化カルシウム乾燥塔に順次
通した。塩化カルシウム乾燥塔通過後のガスをガスクロ
マトグラフィーで分析した。反応条件と分析結果を第1
表に示す。
Examples 1 to 12 The above catalyst was heated in a reaction tube made of Hastelloy C (length 1000 zx
'), heated in an electric furnace, and set the contact time W/F to 28
134 and hydrogen fluoride were passed under atmospheric pressure at a molar ratio shown in Table 1, and the resulting gas was sequentially passed through a water washing tower, an alkaline water washing tower, and a calcium chloride drying tower. The gas after passing through the calcium chloride drying tower was analyzed by gas chromatography. The reaction conditions and analysis results are the first
Shown in the table.

比較例1〜3 反応条件を第1表に示す値に変更したこと以外は実施例
1〜12と同様にして反応および分析を行った。結果を
第1表に示す。
Comparative Examples 1 to 3 Reactions and analyzes were carried out in the same manner as Examples 1 to 12, except that the reaction conditions were changed to the values shown in Table 1. The results are shown in Table 1.

Claims (1)

【特許請求の範囲】 1、1,1,2,2−テトラフルオロエタンをフッ化水
素の存在下、酸化クロム触媒により転位させることを特
徴する1,1,2,2−テトラフルオロエタンの製造方
法。 2、1,1,2,2−テトラフルオロエタンとフッ化水
素のモル比が1:0.2〜20である請求項1記載の1
,1,2,2−テトラフルオロエタンの製造方法。 3、反応温度を300〜400℃とする請求項1または
2記載の1,1,2,2−テトラフルオロエタンの製造
方法。 4、酸化クロム触媒があらかじめフッ化水素で処理され
ている請求項1〜3のいずれか1項に記載の1,1,2
,2−テトラフルオロエタンの製造方法。
[Claims] Production of 1,1,2,2-tetrafluoroethane, characterized by rearranging 1,1,1,2,2-tetrafluoroethane using a chromium oxide catalyst in the presence of hydrogen fluoride. Method. 1 according to claim 1, wherein the molar ratio of 2,1,1,2,2-tetrafluoroethane and hydrogen fluoride is 1:0.2 to 20.
, 1,2,2-Tetrafluoroethane manufacturing method. 3. The method for producing 1,1,2,2-tetrafluoroethane according to claim 1 or 2, wherein the reaction temperature is 300 to 400°C. 4. 1, 1, 2 according to any one of claims 1 to 3, wherein the chromium oxide catalyst is previously treated with hydrogen fluoride.
, 2-Tetrafluoroethane manufacturing method.
JP2059518A 1990-03-09 1990-03-09 Production of 1,1,1,2-tetrafluoroethane Pending JPH03261731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059518A JPH03261731A (en) 1990-03-09 1990-03-09 Production of 1,1,1,2-tetrafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059518A JPH03261731A (en) 1990-03-09 1990-03-09 Production of 1,1,1,2-tetrafluoroethane

Publications (1)

Publication Number Publication Date
JPH03261731A true JPH03261731A (en) 1991-11-21

Family

ID=13115565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059518A Pending JPH03261731A (en) 1990-03-09 1990-03-09 Production of 1,1,1,2-tetrafluoroethane

Country Status (1)

Country Link
JP (1) JPH03261731A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995015300A1 (en) * 1993-12-03 1995-06-08 Imperial Chemical Industries Plc Production of 1,1,1,2-tetrafluoroethane
US6232513B1 (en) 1997-01-17 2001-05-15 Elf Atochem S.A. Isomerization of hydrofluorocarbon
JP2012515215A (en) * 2009-01-16 2012-07-05 ハネウェル・インターナショナル・インコーポレーテッド Isomerization of 1,1,3,3-tetrafluoropropene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995015300A1 (en) * 1993-12-03 1995-06-08 Imperial Chemical Industries Plc Production of 1,1,1,2-tetrafluoroethane
US6232513B1 (en) 1997-01-17 2001-05-15 Elf Atochem S.A. Isomerization of hydrofluorocarbon
JP2012515215A (en) * 2009-01-16 2012-07-05 ハネウェル・インターナショナル・インコーポレーテッド Isomerization of 1,1,3,3-tetrafluoropropene

Similar Documents

Publication Publication Date Title
JP2843693B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2510127B2 (en) Fluorination method of perchloroethylene or pentachloroethane
GB2030981A (en) Process for the preparation of tetrafluorethane
EP1819651A2 (en) Direct one-step synthesis from cf3-i
KR101331766B1 (en) Process for producing catalyst for use in producing unsaturated aldehyde and unsaturated carboxylic acid, and process for producing unsaturated aldehyde and unsaturated carboxylic acid
JPH04226927A (en) Process for producing 1,1,1,2-tetrafluorochloroethane and pentafluoroethane
US3959383A (en) Two-stage converson of methanol to formaldehyde
JP2020132585A (en) Method for producing halogenated butene compound
CZ280000B6 (en) Process for preparing 1,1,1,2-tetrafluoroethane
US3865885A (en) Catalytic chlorofluorination of isopropyl fluoride to 1,1,2-trichlorotrifluoropropene-1
JPH03261731A (en) Production of 1,1,1,2-tetrafluoroethane
JPS6315254B2 (en)
JP2005254064A (en) Catalyst for fluorination reaction
RU2072975C1 (en) Method of synthesis of 1,1,1-trifluorochloroethane and 1,1,1,2-tetrafluoroethane
JP3300120B2 (en) Method for producing 1,1,1-trifluoro-2-chloroethane
JP2894620B2 (en) Method for producing hydrogen cyanide
US2399361A (en) Manufacture of cyanogen
JPH04235146A (en) Process for preparing n-vinylamide
JPS5841829A (en) Preparation of octafuoropropane
JP4667674B2 (en) Method for producing oxidation or ammoxidation catalyst
JPS59118751A (en) Preparation of fluoroalkylnitrile
JPH0317035A (en) Production of trifluorochloroethylene
JPH02131438A (en) Production of hexafluoroethane
JPS6129332B2 (en)
KR950014215B1 (en) Preparation of 1,1,1,2-tetrafluoro ethane