JPH03261634A - Glass ceramic substrate - Google Patents

Glass ceramic substrate

Info

Publication number
JPH03261634A
JPH03261634A JP5988190A JP5988190A JPH03261634A JP H03261634 A JPH03261634 A JP H03261634A JP 5988190 A JP5988190 A JP 5988190A JP 5988190 A JP5988190 A JP 5988190A JP H03261634 A JPH03261634 A JP H03261634A
Authority
JP
Japan
Prior art keywords
glass
dielectric constant
ceramic substrate
glass powder
mechanical strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5988190A
Other languages
Japanese (ja)
Inventor
Kenichiro Abe
健一郎 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5988190A priority Critical patent/JPH03261634A/en
Publication of JPH03261634A publication Critical patent/JPH03261634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the subject substrate having improved mechanical strength by forming a mixture of mullite powder, porous quartz glass powder and borosilicate glass powder. CONSTITUTION:A powdery mixture produced by mixing mullite powder, porous quartz glass powder and borosilicate glass powder at specific weight ratios is mixed with a binder such as an acrylic resin and a plasticizer. The obtained mixture is kneaded and formed in the form of a green sheet. Conductor patterns and vias are formed on the sheet and multiple sheets are laminated to obtain a multi-layered sheet. The product is baked in N2 atmosphere to obtain a ceramic substrate having low dielectric constant and high mechanical strength.

Description

【発明の詳細な説明】[Detailed description of the invention] 【概要】【overview】

ガラスセラミック基板に関し、 比誘電率が低く、かつ機械的強度の高いガラスセラミッ
ク基板を提供することを目的とし、ムライト、石英ガラ
ス、ホウケイ酸ガラスの粉体を含む混合体で形成される
ガラスセラミック基板において、 前記石英ガラスに多孔質粉体を使用して構成す
Regarding glass-ceramic substrates, the purpose is to provide glass-ceramic substrates that have a low dielectric constant and high mechanical strength, and are made of a mixture containing powders of mullite, quartz glass, and borosilicate glass. In the above, the quartz glass is constructed using porous powder.

【産業上の利用分野】[Industrial application field]

本発明は、ガラスセラミック基板に関するものである。 近年エレクトロニクス機器の配線板として、熱伝導率、
熱放散性が良好で、高密度実装に適している点が着目さ
れてセラミック基板が多用されている。 一方、コンピュータ等の信号の伝播速度が大きく性能に
影響を与える製品に関しては、基板の比誘電率が問題と
なる。
The present invention relates to a glass ceramic substrate. In recent years, thermal conductivity,
Ceramic substrates are widely used because they have good heat dissipation properties and are suitable for high-density packaging. On the other hand, for products such as computers where signal propagation speed is high and performance is affected, the dielectric constant of the substrate becomes an issue.

【従来の技術】[Conventional technology]

一般にセラミックは樹脂よりも比誘電率が高く、低誘電
率基板として、従来、セラミックに石英ガラスを混合さ
せたガラスセラミック基板が提案されている。
Ceramics generally have a higher dielectric constant than resins, and glass-ceramic substrates made by mixing ceramic with quartz glass have been proposed as low-dielectric constant substrates.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、上述したガラスセラミック基板においては、比
誘電率を低下させるべく石英ガラスの比率を多くすると
、ガラスの結晶化が進行するため、機械的強度は向上す
るもののガラスの結晶化が進行し、比誘電率が高くなる
上に、結晶化の制御が円舞なため、焼成過程における収
縮率のコントロールが不可能となるという欠点を有する
ものであった。 一方、上記石英ガラスの結晶化を抑制するために、ガラ
ス材にムライトを添加することも提案されているが、か
かる組成においても、ムライト添加量を減少させると比
誘電率は低減されるものの、機械的強度は低下するとい
う欠点を有するものであった。 本発明は、以上の欠点を解消すべくなされたものであっ
て、比誘電率が低く、かつ機械的強度の高いガラスセラ
ミック基板を提供することを目的とする。
However, in the above-mentioned glass-ceramic substrate, when the ratio of quartz glass is increased to lower the dielectric constant, the crystallization of the glass progresses, so although the mechanical strength improves, the crystallization of the glass progresses and the ratio increases. In addition to having a high dielectric constant, it has the drawback that the control of crystallization is uneven, making it impossible to control the shrinkage rate during the firing process. On the other hand, it has been proposed to add mullite to the glass material in order to suppress the crystallization of the silica glass, but even in such compositions, although the dielectric constant is reduced by reducing the amount of mullite added, This had the disadvantage of reduced mechanical strength. The present invention was made in order to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a glass ceramic substrate having a low dielectric constant and high mechanical strength.

【課題を解決するための手段】[Means to solve the problem]

本発明によれば上記目的は、 ムライト、石英ガラス、ホウケイ酸ガラスの粉体を含む
混合体で形成されるガラスセラミック基板において、 前記石英ガラスに多孔質粉体を使用したガラスセラごツ
タ基板を提供することにより達成される。
According to the present invention, the above object is to provide a glass-ceramic substrate formed of a mixture containing powders of mullite, quartz glass, and borosilicate glass, in which a porous powder is used for the silica glass. This is achieved by

【作用】[Effect]

セラミック材料として多用されるアルミナの比誘電率は
、樹脂材に比較して略倍の9程度と高く、石英ガラスの
比誘電率は、上記ムライトの比誘電率に比べて低いこと
は広く知られており、従来のガラスセラミックは、アル
ミナと石英ガラスとの中間の比誘電率値を目標値として
製造されているものであった。 一方、空気の比誘電率は、石英ガラスの比誘電率よりも
著しく低く、石英ガラスと空気との混合により得られる
ものの比誘電率は、石英ガラスの比誘電率よりもさらに
低い値を示すこととなり、上記従来例における石英ガラ
スに代えて石英ガラスと空気との混合物質を使用するこ
とにより、比誘電率の下限値を更に低下させることがで
きる。 さらに、ムライトは、石英ガラスの結晶化を抑制する効
果が大である上に、針状結晶を有するため強度向上への
寄与も大きいという性質を有する。 本発明は、以上の点に着目してなされたものであって、
アル逅すに代えてムライトを使用することにより石英ガ
ラスの結晶化を効果的に抑制すると同時に機械的強度も
向上させ、さらに石英ガラスの代わりに多孔質石英ガラ
スを使用することにより比誘電率の下限値を低下させる
ものである。 すなわち、本発明によるムライトは、多孔質石英ガラス
の結晶化を抑制する上に全体の機械的強度も向上させ、
軟化点が800℃と比較的低いホウケイ酸ガラスは、低
温焼成におけるバインダの役割を果たす。
It is widely known that the dielectric constant of alumina, which is often used as a ceramic material, is approximately 9 times higher than that of resin materials, and that the dielectric constant of silica glass is lower than that of mullite. Conventional glass ceramics have been manufactured with a target dielectric constant value between that of alumina and quartz glass. On the other hand, the dielectric constant of air is significantly lower than that of silica glass, and the dielectric constant of the mixture of silica glass and air shows an even lower value than that of silica glass. Therefore, by using a mixture of quartz glass and air in place of the quartz glass in the conventional example, the lower limit value of the dielectric constant can be further lowered. Furthermore, mullite has the property of not only being highly effective in suppressing crystallization of silica glass, but also having needle-like crystals, which makes a large contribution to improving strength. The present invention has been made focusing on the above points, and includes:
By using mullite instead of aluminum, we can effectively suppress the crystallization of silica glass and at the same time improve its mechanical strength.Furthermore, by using porous quartz glass instead of silica glass, we can improve the dielectric constant. This lowers the lower limit. That is, the mullite according to the present invention not only suppresses the crystallization of porous quartz glass but also improves the overall mechanical strength,
Borosilicate glass, which has a relatively low softening point of 800° C., plays the role of a binder during low-temperature firing.

【実施例】【Example】

以下、本発明によるガラスセラミック基板の製造、およ
び試験結果を説明する。 まず、ムライト、石英ガラス、ホウケイ酸ガラスを重量
比で1:1:1に計量し、これにアクリル樹脂を結合剤
として加え、さらにジブチルフタレートを可塑剤として
溶剤CMEK:メチルエチルケトン)を混合する。上記
石英ガラスは、孔径約40人程度の孔を多数有する粒径
約2μmの多孔質粉体が使用されている。この混合物は
、ボールミルにより約20時間混練してスラリー状とさ
れ、シート状に底型してグリーンシートが形成される。 このグリーンシートに導体パターンとヴイアを形成して
多層化した後、窒素雰囲気で坑底してガラスセラミック
基板が得られる。 以上の工程により形成されたガラスセラミック基板の比
誘電率を測定すると、4.Oとなり、6ないし8の比誘
電率を有する従来のガラスセラミック基板より低い値が
得られる上に、曲げ強度は従来のガラスセラミック基板
の略2倍に達した。
Hereinafter, the production and test results of the glass ceramic substrate according to the present invention will be explained. First, mullite, quartz glass, and borosilicate glass are weighed in a weight ratio of 1:1:1, an acrylic resin is added as a binder, and a solvent (CMEK: methyl ethyl ketone) is mixed with dibutyl phthalate as a plasticizer. The quartz glass used is a porous powder having a particle size of about 2 μm and having a large number of pores with a pore size of about 40 pores. This mixture is kneaded in a ball mill for about 20 hours to form a slurry, which is then shaped into a bottom mold to form a green sheet. After forming a conductor pattern and vias on this green sheet to form a multilayer structure, the green sheet is drilled to the bottom in a nitrogen atmosphere to obtain a glass ceramic substrate. When measuring the dielectric constant of the glass ceramic substrate formed by the above steps, 4. O, a value lower than that of conventional glass ceramic substrates having a dielectric constant of 6 to 8 was obtained, and the bending strength reached approximately twice that of conventional glass ceramic substrates.

【発明の効果】【Effect of the invention】

以上の説明から明らかなように、本発明によるガラスセ
ラミック基板によれば、樹脂製基板と同等以下の比誘電
率を得ることができる上に、機械的強度も向上させるこ
とができる。
As is clear from the above description, according to the glass ceramic substrate of the present invention, it is possible to obtain a dielectric constant equal to or lower than that of a resin substrate, and also to improve mechanical strength.

Claims (1)

【特許請求の範囲】 ムライト、石英ガラス、ホウケイ酸ガラスの粉体を含む
混合体で形成されるガラスセラミック基板において、 前記石英ガラスに多孔質粉体を使用したガラスセラミッ
ク基板。
[Scope of Claims] A glass-ceramic substrate formed of a mixture containing powders of mullite, quartz glass, and borosilicate glass, wherein a porous powder is used for the silica glass.
JP5988190A 1990-03-13 1990-03-13 Glass ceramic substrate Pending JPH03261634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5988190A JPH03261634A (en) 1990-03-13 1990-03-13 Glass ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5988190A JPH03261634A (en) 1990-03-13 1990-03-13 Glass ceramic substrate

Publications (1)

Publication Number Publication Date
JPH03261634A true JPH03261634A (en) 1991-11-21

Family

ID=13125931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5988190A Pending JPH03261634A (en) 1990-03-13 1990-03-13 Glass ceramic substrate

Country Status (1)

Country Link
JP (1) JPH03261634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073728A (en) * 2005-09-07 2007-03-22 Murata Mfg Co Ltd Multilayer ceramic substrate, method of manufacturing same, and electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073728A (en) * 2005-09-07 2007-03-22 Murata Mfg Co Ltd Multilayer ceramic substrate, method of manufacturing same, and electronic component

Similar Documents

Publication Publication Date Title
US4812422A (en) Dielectric paste and method of manufacturing the paste
JPS6115532B2 (en)
JP3021586B2 (en) Method for producing low dielectric constant ceramic substrate and green sheet
JPS63107838A (en) Glass-ceramic sintered body
JPS62278145A (en) Sintered material of glass ceramic
JPH03261634A (en) Glass ceramic substrate
JPH04369509A (en) Manufacture of multilayer ceramic board
JPH0532455A (en) Inorganic composition having low dielectric constant and sinterable at low temperature
JPH03261635A (en) Glass ceramic substrate
JPS6379739A (en) Sintered glass ceramic body
JPS6049149B2 (en) Manufacturing method of white alumina/ceramic for electronic parts
JPH01179740A (en) Glass-ceramic conjugate material
JP3510945B2 (en) Manufacturing method of green sheet for ceramic substrate
JP2710311B2 (en) Ceramic insulation material
JPS62209895A (en) Insulating paste for ceramic multilayer interconnection board
JPH01317164A (en) Ceramic composition
JPS62246202A (en) Low temperature sintered ceramic
JPH01179777A (en) Production of low-dielectric ceramics
JPS63109050A (en) Ceramic substrate
JPH03197355A (en) Composition for ceramic substrate
JPH03112856A (en) Composition for ceramic base board
JPH02212141A (en) Method of manufacturing compound ceramic substrate
JPS62283860A (en) Alumina ceramics
JPH01290556A (en) Ceramic sintered body calcined at low temperature
JPH0372594B2 (en)