JPH02212141A - Method of manufacturing compound ceramic substrate - Google Patents

Method of manufacturing compound ceramic substrate

Info

Publication number
JPH02212141A
JPH02212141A JP1032684A JP3268489A JPH02212141A JP H02212141 A JPH02212141 A JP H02212141A JP 1032684 A JP1032684 A JP 1032684A JP 3268489 A JP3268489 A JP 3268489A JP H02212141 A JPH02212141 A JP H02212141A
Authority
JP
Japan
Prior art keywords
dielectric
ceramic substrate
glass
blended
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1032684A
Other languages
Japanese (ja)
Other versions
JP2658356B2 (en
Inventor
Yoshinori Shinohara
篠原 義典
Haruo Hiraoka
平岡 春生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP1032684A priority Critical patent/JP2658356B2/en
Publication of JPH02212141A publication Critical patent/JPH02212141A/en
Application granted granted Critical
Publication of JP2658356B2 publication Critical patent/JP2658356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent separation, crack or warpage by mixing appropriately an inorganic material filler and two kinds or more glass frit different in their softening points, and according the concentration coefficient of the obtained inorganic material with the contraction coefficient of the used dielectric material. CONSTITUTION:Dielectric material powder is blended with an organic binder and solvent by means by a ball mill so as to produce slurry, and a green sheet is obtained through tape-molding it. While, an insulating material is blended such that inorganic filler is blended in various rates with two kinds or more glass powder having different softening points, and crushing, as a result, a green sheet is obtained in the same manner aforementioned. By employing two kinds or more glass here for forming an insulating layer, the sintering property of the insulating body is changed, and the contraction property in baking period coincided with the contraction characteristic of the dielectric.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複合セラミックス基板の1法に関し、特に人
界、喰コンデンサを基板中に内蔵した多層配線基板やセ
ラミックス・エレクトロ・ルミネッセンス基板などに用
いられる複合セラミックス基板の製法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing composite ceramic substrates, and is particularly applicable to multilayer wiring boards with built-in capacitors in the substrate, ceramic electroluminescent substrates, etc. The present invention relates to a method for manufacturing a composite ceramic substrate used.

[従来の技術] 人界tR7Jンデンサを利用する電子部品は、チップフ
ンデンljを搭載しているが、最近、誘導体と絶縁体の
一体化された複合ヒラミックス基板の開発が進められて
いる。
[Prior Art] Electronic components using the Ninkai tR7J capacitor are equipped with a chip FUNDEN LJ, and recently, a composite HIRAMIX board in which a dielectric and an insulator are integrated is being developed.

このような複合←シミックス基板においては、絶縁体材
料と誘導体材料とはまったく異なる性質の材料であり、
それらを同時に焼成するとき、体止された各材料の微妙
な収縮率の差により、界面での剥離、クラック或いは基
板の反りなどの現象が生じることが問題となっている。
In such a composite←SIMIX board, the insulator material and dielectric material are materials with completely different properties,
When these materials are fired at the same time, there is a problem in that phenomena such as peeling at the interface, cracks, or warping of the substrate occur due to the slight difference in shrinkage rate of each of the bonded materials.

複合ヒシミックス基板全体を小型化しようとjることが
盛んに行なわれてさたが、誘導体層と絶縁体層が一体化
された基板を形成するための焼成処理が問題となってい
るものである。
Efforts have been made to miniaturize the overall size of composite HISHIMIX substrates, but the firing process to form a substrate with an integrated dielectric layer and insulator layer has become a problem. be.

[発明が解決しようとする問題点] 本発明は、以[、述べた従来の複合セラミックス基板に
見られる問題を解決し、特に大容量のコンデンナを内蔵
する多層配線基板、エレクトロルミセンス基板の製造に
適する製法を提供することを目的と°孝る。
[Problems to be Solved by the Invention] The present invention solves the problems seen in the conventional composite ceramic substrates as described below, and particularly improves the production of multilayer wiring boards and electroluminescent boards incorporating large-capacity capacitors. Our aim is to provide a manufacturing method suitable for.

[発明の構成] [問題点を解決4゛るための手段] 本発明の要旨とするものは、誘導体層と絶縁体層とから
なる複合セラミックス基板において、無機材料フィラー
と2種類以上の軟化点の異なるガラスソリッドを適当に
混合し、得られる無機材料の収縮率を、使用した誘導体
材料の収縮率に一致させたことを特徴とす−る複合セラ
ミックス基板の製法である。そして、その2種類以りの
ガラスフノット材料は、その軟化点が、650〜950
”Cの範囲のものから選択されたものが好適である。
[Structure of the Invention] [Means for Solving the Problems] The gist of the present invention is to provide a composite ceramic substrate comprising a dielectric layer and an insulator layer with an inorganic filler and two or more types of softening points. This is a method for manufacturing a composite ceramic substrate, which is characterized in that glass solids of different types are appropriately mixed, and the shrinkage rate of the resulting inorganic material is made to match the shrinkage rate of the dielectric material used. The two or more types of glass knot materials have a softening point of 650 to 950.
A material selected from the range ``C'' is preferred.

[作用] 本発明の複合トラミックス基板の製法によると、誘導体
と絶縁体の一体化した構造を有Cる複合トラミックス基
板において、誘導体材料と絶縁体材料の焼成時の収縮率
の差を改善する方法により、上記の問題を解決するもの
である。
[Function] According to the method for manufacturing a composite TRAMIX board of the present invention, the difference in shrinkage rate during firing between a dielectric material and an insulator material is improved in a composite TRAMIX board having a structure in which a dielectric and an insulator are integrated. This method solves the above problem.

本発明の製法の1例によると、誘導体原料粉末に有機バ
インダーと溶剤をボールミルにより混合し、スラリーを
作製し、それをテープ成形することにより、グリーンシ
ートを得る。一方、絶縁材料は、無機フィラーに軟化点
の異なる2種類以上のガラス粉末を種々の割合で混合し
、粉砕し、上記と同様にグリーンシートを得た。ここで
、絶縁体層形成のために、2種類以上のガラスを使用す
ることにより、絶縁体の焼結性を変化させ、焼成時の収
縮特性を誘導体の収縮特性と一致させることができる。
According to one example of the production method of the present invention, a green sheet is obtained by mixing a derivative raw material powder with an organic binder and a solvent using a ball mill to prepare a slurry, and tape-molding the slurry. On the other hand, the insulating material was prepared by mixing an inorganic filler with two or more types of glass powders having different softening points in various proportions, and pulverizing the mixture to obtain a green sheet in the same manner as above. Here, by using two or more types of glass to form the insulator layer, the sinterability of the insulator can be changed and the shrinkage characteristics during firing can be matched with the shrinkage characteristics of the dielectric.

即ら、誘導体の種類が変化するとその収縮特性は変化−
るが、この場合軟化点の異なるガラスフノット材料を混
合し、絶縁体層を形成し、そのガラスフリット材料の混
合割合を変化させることにより、得られる絶縁体層の収
縮特性を制御し、その収縮特性を誘導体層のものと一致
さけることができる。
That is, when the type of derivative changes, its contractile properties change.
However, in this case, glass frit materials with different softening points are mixed to form an insulator layer, and the shrinkage characteristics of the resulting insulator layer are controlled by changing the mixing ratio of the glass frit material. can be avoided to match that of the dielectric layer.

このようにして収縮特性を一致させた誘導体層及び絶縁
体層のためのグリーンシートを互いに加熱圧着し、焼成
することにより、剥離、クラック、或いは反り等の問題
のない複合セラミックス基板が得られる。
By heat-pressing the green sheets for the dielectric layer and the insulating layer, which have matched shrinkage characteristics in this way, and firing them, a composite ceramic substrate free from problems such as peeling, cracking, or warping can be obtained.

また、誘導体セラミックス材料としては、厚さ30〜1
20Itmのアルミナを主成分とする誘電体磁器材料で
あることが好適である。利用するセラミックス基板の実
用上から、この範囲の厚さのセラミックス基板が好適で
ある。
In addition, as a dielectric ceramic material, the thickness is 30 to 1
A dielectric ceramic material containing 20 Itm alumina as a main component is preferable. From the practical point of view of the ceramic substrate to be used, a ceramic substrate having a thickness within this range is suitable.

更に、利用する誘導体セラミックス体には、鉛系複合ぺ
11プス力イト化合物及びその固溶体からなる、850
℃〜1100°Cで焼成可能な誘電体からなる群より選
択される少なくとも1つの誘電体化合物を主成分とする
誘電体により形成される誘電体層がある。また、絶縁体
層としては、5iO8又はA1.O,を無機フィラーと
して利用し、それにガラスフリットとして、ホウケイ酸
ガラス、ホウケイ酸鉛ガラス、結晶化ガラスを利用でき
る。混合するガラスフリットとして、2種類以上の軟化
点の異なるものを適宜選択して用いる。その2種類以上
のガラスフリット材料は、その軟化点が、650〜95
0℃の範囲のものから選択されたものが好適である。即
ち、軟化点が6506C未満では、ガラスの溶融温度が
低すぎ、誘電体との反応を起しやすい、950℃を超え
ると高すぎ、焼結に寄り、せず望ましくない。
Further, the dielectric ceramic body to be used includes 850, which is made of a lead-based composite compound and its solid solution.
There is a dielectric layer formed of a dielectric material whose main component is at least one dielectric compound selected from the group consisting of dielectric materials that can be fired at temperatures ranging from .degree. C. to 1100.degree. Further, as the insulating layer, 5iO8 or A1. O, can be used as an inorganic filler, and borosilicate glass, lead borosilicate glass, or crystallized glass can be used as a glass frit. As the glass frit to be mixed, two or more types having different softening points are appropriately selected and used. The two or more types of glass frit materials have a softening point of 650 to 95.
Those selected from the range of 0°C are preferred. That is, if the softening point is less than 6506C, the melting temperature of the glass is too low and tends to cause a reaction with the dielectric, while if it exceeds 950C, it is too high and tends to cause sintering, which is not desirable.

本発明に利用するグリーンシートの製法は、特に限定さ
れるものではないが、上記に説明したヒシミックスシー
トの形成方法、セラミックス板を形成し、焼成する方法
などがあり、他は特に限定されるものではない。
The method for manufacturing the green sheet used in the present invention is not particularly limited, but includes the method for forming a Hishimix sheet as described above, the method for forming and firing a ceramic plate, and other methods are not particularly limited. It's not a thing.

史に、本発明による複合セラミックス基板の製法は、特
に、大V¥情のコンデンサを含む多層配線基板、エレク
トロルミネセンス基板の製造に利用すると特に好適であ
る。
Historically, the method for manufacturing a composite ceramic substrate according to the present invention is particularly suitable for use in manufacturing multilayer wiring boards and electroluminescent substrates containing large VV capacitors.

次に、本発明の複合セラミックス基板の製法について具
体的な実施例により、説明するが、零発明はその説明に
より限定されるものではない。
Next, the method for manufacturing a composite ceramic substrate of the present invention will be explained using specific examples, but the invention is not limited by the explanation.

[実施例] 誘電体材料として、所望組成の鉛系複合ペロプスカイト
化合物の比表面積5m”7gを有する粉末材料を用いて
、この原料粉末100gに対して、ポリビニルブチラー
ル4gとエタノール・ブタノール混合溶剤50gと可塑
剤、分散剤をボールミルに入れ、混合し、スラリーを作
製し、スラリーからテープに成形し、グリーンシートを
得た。
[Example] Using a powder material having a specific surface area of 5 m''7 g of a lead-based composite perovskite compound with a desired composition as a dielectric material, 4 g of polyvinyl butyral and 50 g of an ethanol/butanol mixed solvent were added to 100 g of this raw material powder. , a plasticizer, and a dispersant were placed in a ball mill and mixed to prepare a slurry, and the slurry was molded into a tape to obtain a green sheet.

−・方、絶縁体材料としては、アルミナ粉末に軟化点7
00℃のホウケイ酸ガラス粉末と軟化点900℃のホウ
ケイ酸ガラス粉末を種々の割合で混合し、比表面積が5
m”/Hになるように、粉砕し、この原料粉末100に
に対して、ポリビニルブチラール8g、溶/1180g
、可塑剤、分散剤を加え、混合した後に、スラリーにし
、成形し、グリーンシートを得た。
- On the other hand, as an insulator material, alumina powder has a softening point of 7.
Borosilicate glass powder at 00℃ and borosilicate glass powder with a softening point of 900℃ were mixed in various proportions, and the specific surface area was 5.
m”/H, and 8 g of polyvinyl butyral and 1180 g of molten polyvinyl butyral were added to 100 g of this raw material powder.
, a plasticizer, and a dispersant were added and mixed, and then made into a slurry and molded to obtain a green sheet.

得られた各々の成形グリーンシート体の収縮特性は、第
1図に示すように変化するものであった。従って、ここ
で用いた誘導体の収縮特性とほぼ一致rるように絶縁体
層を得ることができる。
The shrinkage characteristics of each of the obtained molded green sheet bodies varied as shown in FIG. Therefore, it is possible to obtain an insulating layer whose shrinkage characteristics almost match those of the dielectric used here.

これにより、収縮特性の一致した2種類のグリンシート
、即ち・で示す誘導体材料のグリーンシートと、閣で示
4°絶縁体材料、即ち、アルミナと軟化点900℃と7
00℃のガラスフリットを9対1の割合の混合物よりな
る材料のグリーンシートとを温度70″C1圧力300
kg/cm”T積層圧着し、980°Cで焼成したとこ
ろ、剥離、クシツク、或いは反りなどの問題がない複合
セラミックス基板が得られた。
As a result, two types of green sheets with matching shrinkage characteristics were obtained, namely, a green sheet made of a dielectric material shown by
00℃ glass frit with a green sheet of material consisting of a 9:1 ratio mixture at a temperature of 70''C1 pressure of 300℃.
When the composite ceramic substrates were laminated and pressure-bonded with a kg/cm" T and fired at 980°C, a composite ceramic substrate was obtained that had no problems such as peeling, clumping, or warping.

以[ユのように、2種類の軟化点(即ち900″Cと7
00℃)の異なるガラスを用いて、作製した絶縁体基板
は、誘導率7〜Bであり、誘導H1失1O−S以ト”C
I’、絶縁抵抗1014Ω以[二の電気特性を有−るも
のであり、絶縁材料として使用できるものであった。
Therefore, there are two types of softening points (i.e. 900"C and 7"C).
The insulator substrates prepared using glasses with different temperatures (00°C) have a dielectric constant of 7 to B, and an inductive H1 loss of 1O-S or more.
I', insulation resistance of 1014 Ω or more [2], and it could be used as an insulating material.

[発明の効果] 本発明の複合ヒラミ/クス基板の製法は、その方法によ
り、 第1に、収縮特性を一致きせたグリーンシートを加熱圧
着し、焼成することにより、剥離、クラック、或いは反
り等のない複合セラミックス基板がIIられること、 第2に、大容槍のコンデンサを内蔵した多層配線基板、
セラミックスJレクトロルミネッセンス基板等の製造に
利用できる製法を提供したこと、第3に、複合ヒラミッ
クス基板の製造技術として有用なものを提供したこと、 などの技術的な効果が得られた。
[Effects of the Invention] The method for manufacturing a composite Hirami/kusu board of the present invention is as follows: First, green sheets with matched shrinkage characteristics are heat-pressed and fired, thereby eliminating peeling, cracking, warping, etc. Second, a multilayer wiring board with built-in large capacitors,
The following technical effects were obtained: We provided a manufacturing method that can be used to manufacture ceramic J rectroluminescent substrates, etc., and thirdly, we provided a technology that is useful as a manufacturing technology for composite HIRAMIX substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の複合セラミックス基板の製々アルミ
ブ士’70C)℃Vσど勲ガ″叙ガラス混合物の収縮率
の変化を示すグラフである。
FIG. 1 is a graph showing the change in the shrinkage rate of the composite ceramic substrate of the present invention manufactured by the aluminum glass mixture.

Claims (2)

【特許請求の範囲】[Claims] (1)誘導体層と絶縁体層とからなる複合セラミックス
基板において、 無機材料フィラーと2種類以上の軟化点の異なるガラス
フリットを適当に混合し、得られる無機材料の収縮率を
、使用した誘導体材料の収縮率に一致させたことを特徴
とする複合セラミックス基板の製法。
(1) In a composite ceramic substrate consisting of a dielectric layer and an insulator layer, an inorganic material filler and two or more types of glass frit with different softening points are appropriately mixed, and the shrinkage rate of the obtained inorganic material is calculated as the dielectric material used. A method for producing a composite ceramic substrate characterized by matching the shrinkage rate of.
(2)前記の2種類以上のガラスフリット材料は、その
軟化点が、650〜950℃の範囲のものから選択され
たものであることを特徴とする請求項第1項記載の複合
セラミックス基板の製法。
(2) The composite ceramic substrate according to claim 1, wherein the two or more types of glass frit materials have softening points in the range of 650 to 950°C. Manufacturing method.
JP1032684A 1989-02-14 1989-02-14 Manufacturing method of composite ceramics substrate Expired - Lifetime JP2658356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032684A JP2658356B2 (en) 1989-02-14 1989-02-14 Manufacturing method of composite ceramics substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032684A JP2658356B2 (en) 1989-02-14 1989-02-14 Manufacturing method of composite ceramics substrate

Publications (2)

Publication Number Publication Date
JPH02212141A true JPH02212141A (en) 1990-08-23
JP2658356B2 JP2658356B2 (en) 1997-09-30

Family

ID=12365703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032684A Expired - Lifetime JP2658356B2 (en) 1989-02-14 1989-02-14 Manufacturing method of composite ceramics substrate

Country Status (1)

Country Link
JP (1) JP2658356B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217990B1 (en) 1997-05-07 2001-04-17 Denso Corporation Multilayer circuit board having no local warp on mounting surface thereof
JP2006321715A (en) * 2006-06-19 2006-11-30 Kyocera Corp Unbaked laminated sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217990B1 (en) 1997-05-07 2001-04-17 Denso Corporation Multilayer circuit board having no local warp on mounting surface thereof
JP2006321715A (en) * 2006-06-19 2006-11-30 Kyocera Corp Unbaked laminated sheet
JP4502977B2 (en) * 2006-06-19 2010-07-14 京セラ株式会社 Unsintered laminated sheet

Also Published As

Publication number Publication date
JP2658356B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP2906282B2 (en) Glass-ceramic green sheet, multilayer substrate, and manufacturing method thereof
JPH0159232B2 (en)
US5102719A (en) Ceramic, circuit substrate and electronic circuit substrate by use thereof and process for producing ceramic
JPH05243423A (en) Manufacture of multilayer ceramic substrate
JP5071559B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JPS5914203B2 (en) dielectric composition
JPH0629664A (en) Multilayered ceramic wiring board
JPH02212141A (en) Method of manufacturing compound ceramic substrate
JPH04369509A (en) Manufacture of multilayer ceramic board
CN103748048A (en) Compositions for low K, low temperature co-fired composite (LTCC) tapes and low shrinkage, multi-layer LTCC structures formed therefrom
JP2000211969A (en) Porcelain fired at lower temperature and electronic parts equipped therewith
JP2964725B2 (en) Composition for ceramic substrate
JPS6021854A (en) Manufacture of alumina sintered substrate
JPS63112473A (en) Manufacture of ceramic substrate
JPH05148009A (en) Production of ceramic base plate
JPS59156960A (en) Manufacture of alumina sintered substrate
JP2000063182A (en) Production of ceramic raw material capable of being sintered at low temperature
JPH07277791A (en) Ceramic composition for insulating base and ceramic multilayer wiring circuit board
JPH0579941B2 (en)
JP2005179117A (en) Dielectric porcelain composition and laminated ceramic components using the same
JPH01290280A (en) Glazed ceramic substrate and manufacture thereof
JPH04355999A (en) Multilayer ceramic board
JP2642390B2 (en) Thick film capacitors
JPS6117656B2 (en)
JPH0571537B2 (en)