JPH03261179A - Insulated gate type bipolar transistor - Google Patents

Insulated gate type bipolar transistor

Info

Publication number
JPH03261179A
JPH03261179A JP5926090A JP5926090A JPH03261179A JP H03261179 A JPH03261179 A JP H03261179A JP 5926090 A JP5926090 A JP 5926090A JP 5926090 A JP5926090 A JP 5926090A JP H03261179 A JPH03261179 A JP H03261179A
Authority
JP
Japan
Prior art keywords
region
layer
bipolar transistor
conductivity type
low resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5926090A
Other languages
Japanese (ja)
Inventor
Seiji Momota
聖自 百田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5926090A priority Critical patent/JPH03261179A/en
Publication of JPH03261179A publication Critical patent/JPH03261179A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a current of a bipolar transistor to be driven by many parallel-connection MOSFETs uniform in a semiconductor element surface by burying a slender low resistance region in an intermediate part of a thickness direction of a high resistance layer in contact with a base region to be equal potential. CONSTITUTION:A longer low resistance region 1 than a width is selectively formed at a deeper intermediate part than a plurality of first conductivity type first regions 5 in a thickness direction of a second conductivity type second layer 2. The layer 2 in contact with the base region of a bipolar transistor has a high resistance, but a slender low resistance region 11 exists therein, and the region 11 becomes the same potential at any part. Thus, an irregularity in the potential of the base region is eliminated to reduce irregular current of the transistor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一つの半導体素体の一面に多数のMO5構造
を備えた絶縁ゲート型バイポーラトランジスタ (以下
I CRTと略す)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insulated gate bipolar transistor (hereinafter abbreviated as ICRT) having multiple MO5 structures on one surface of one semiconductor body.

〔従来の技術〕[Conventional technology]

IGBTは、バイポーラトランジスタのベース電流を表
面部に形成されたMOSFETより供給する。第2図は
nチャネル型[GBTの構造を示し、pチャネル型は各
部の導電型を逆にした以外は同じ構造である。この構造
は次のようにして形成される。p゛シリコン蟇根板1上
エピタキシャル層2を形成し、n−エピタキシャル層2
の表面にゲート絶縁層3を介してゲート電極4を設ける
The IGBT supplies the base current of a bipolar transistor from a MOSFET formed on its surface. FIG. 2 shows the structure of an n-channel type GBT, and the p-channel type has the same structure except that the conductivity types of each part are reversed. This structure is formed as follows. A p゛ epitaxial layer 2 is formed on the silicon plate 1, and an n-epitaxial layer 2 is formed on the silicon plate 1.
A gate electrode 4 is provided on the surface of the substrate with a gate insulating layer 3 interposed therebetween.

このゲート電極4をマスクとしてn−エピタキシャル層
2の表面部にp−不純物拡散領域5を形成すると、この
p−不純物拡散領域5がゲート絶縁層3と接する部分が
チャネル部6となる0次いでp−不純物拡散領域5の中
にn゛不純物拡散領域7を選択的に形成する。ゲート電
極4の表面を眉間絶縁層8により選択的にマスキングし
た後、p−不純物拡散領域5とn°不純物拡散領域7に
接触するようにエミッタ電極9を形成する。一方p゛型
基板lの表面にコレクタ電極10を形成する。
When a p- impurity diffusion region 5 is formed on the surface of the n-epitaxial layer 2 using this gate electrode 4 as a mask, the portion where this p- impurity diffusion region 5 contacts the gate insulating layer 3 becomes a channel region 6. - selectively forming n impurity diffusion regions 7 in impurity diffusion regions 5; After selectively masking the surface of gate electrode 4 with glabellar insulating layer 8, emitter electrode 9 is formed so as to be in contact with p- impurity diffusion region 5 and n° impurity diffusion region 7. On the other hand, a collector electrode 10 is formed on the surface of the p' type substrate l.

このようなI GBTを駆動するには、エミッタ電極9
を接地し、コレクタ電極10に正の電圧を印加し、ゲー
ト電極4に正の入力信号を加える。これによりチャネル
部6はp型からn型へ反転し、MOSFETが動作して
電子電流1eがエミッタ電極9.n゛不純物拡散領域7
.チャネル部6を通じてn−エピタキシャル層2へ流れ
込む、このn−エピタキシャル層2は、p゛基板1とp
−不純物拡散領域5とからなるPNP型バイポーラトラ
ンジスタのベース領域にあたり、この電子電流Ieによ
ってベース領域の電位はエミッタ電極9の電位に落ちる
ことによりPNP型バイポーラトランジスタは動作し、
ホール電流1hがコレクタ電極10.p”基板1+n−
エピタキシャル層2゜p−不純物拡散領域5を通じてエ
ミッタ電極9へ流れる。
To drive such an IGBT, the emitter electrode 9
is grounded, a positive voltage is applied to the collector electrode 10, and a positive input signal is applied to the gate electrode 4. As a result, the channel portion 6 is inverted from p-type to n-type, the MOSFET operates, and the electron current 1e is transferred to the emitter electrode 9. n゛Impurity diffusion region 7
.. This n-epitaxial layer 2 flows into the n-epitaxial layer 2 through the channel part 6, and the n-epitaxial layer 2 flows between the p'substrate 1 and the p'
- This corresponds to the base region of the PNP type bipolar transistor consisting of the impurity diffusion region 5, and the potential of the base region falls to the potential of the emitter electrode 9 due to this electron current Ie, so that the PNP type bipolar transistor operates,
Hall current 1h is the collector electrode 10. p” substrate 1+n-
It flows through the epitaxial layer 2°p- impurity diffusion region 5 to the emitter electrode 9.

I GBTの電流容量を大きくするためには電子電流I
sを半導体素体全面において供給する必要があり、その
ために一つの半導体素体の一面に多数のMO3構造を形
成し、各MOS F ETセルを並列接続する。
I In order to increase the current capacity of GBT, the electron current I
It is necessary to supply s over the entire surface of the semiconductor element, and for this purpose, a large number of MO3 structures are formed on one surface of one semiconductor element, and the MOS FET cells are connected in parallel.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一つの半導体素体に形成された多数のMOSFETセル
の特性が、n−不純物拡散層2の半導体結晶のばらつき
、p−不純物拡散領域5.ゲート絶縁層3形戒のための
ウェーハプロセスのばらつきあるいは個々のセルの構造
や配置などの設計上の理由からばらついた場合、Ieの
みでなくIhも一つの半導体素体内で不均一となり、双
方の電流の和による全体の電流のばらつきが助長される
The characteristics of a large number of MOSFET cells formed in one semiconductor body are determined by variations in the semiconductor crystal of the n- impurity diffusion layer 2, p- impurity diffusion region 5. If there are variations in the wafer process for the gate insulating layer, or variations in the structure or arrangement of individual cells due to design reasons, not only Ie but also Ih will become non-uniform within a single semiconductor element, causing both Variation in the overall current due to the sum of the currents is promoted.

n−エピタキシャル層2は素子の耐圧を出すため高抵抗
にされているので、この層の回内における電位のばらつ
きは緩和されにくい、このような電流のばらつきは、素
体の面積を有効に使用していないことになるばかりでな
く、素子の劣化や破壊の原因となるおそれがある。
Since the n-epitaxial layer 2 is made to have a high resistance in order to provide the withstand voltage of the element, it is difficult to alleviate variations in potential in the pronation of this layer.Such variations in current can be prevented by effectively using the area of the element body. Not only will this result in failure, but it may also cause deterioration or destruction of the device.

本発明の目的は、上述の欠点を除き、並列接続のMOS
FETセルの特性にばらつきがあっても、バイポーラト
ランジスタ部のベース領域の面内における電流のばらつ
きの少ないI GBTを提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks and to solve the problem of parallel-connected MOS
An object of the present invention is to provide an IGBT in which the current in the plane of the base region of a bipolar transistor section has little variation even if the characteristics of FET cells vary.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は第一導電型の第
−層の一側に第二導電型の第二層が隣接し、その第二層
の反第−層側の表面部に複数の第一導電型の第一領域が
選択的に形成され、その第一領域の表面部に第二導電型
の第二領域が選択的に形成され、第二層の表面への露出
部と第二領域にはさまれた第一領域上に絶縁層を介して
ゲート電極が設けられ、第一、第二領域に共通にエミッ
タ電極が、第−層にコレクタ電極がそれぞれ接触し、各
エミッタ電極が並列接続されるI C,BTにおいて、
第二層の庫さ方向における第−領域より深い中間部に幅
に比して長さの長い低抵抗領域が選択的に形成されたも
のとする。
In order to achieve the above object, the present invention has a second layer of a second conductivity type adjacent to one side of the first layer of the first conductivity type, and a surface portion of the second layer on the side opposite to the second layer. A plurality of first regions of the first conductivity type are selectively formed, and a second region of the second conductivity type is selectively formed on the surface portion of the first region, and the exposed portion of the second layer is formed on the surface of the second layer. A gate electrode is provided on the first region sandwiched between the second regions via an insulating layer, an emitter electrode is in common contact with the first and second regions, and a collector electrode is in common contact with the second layer. In IC and BT where electrodes are connected in parallel,
It is assumed that a low resistance region having a longer length than width is selectively formed in an intermediate portion deeper than the -th region in the storage direction of the second layer.

〔作用〕[Effect]

バイポーラトランジスタのベース領域に当たる第二層は
高抵抗であるが、その中に細長い低抵抗領域が存在し、
その領域はどの部分も同電位になるため、ベース領域の
電位のばらつきがなくなり、バイポーラトランジスタの
電流の不均一性が低減できる。しかし、この低抵抗領域
を全面的な低抵抗層として形成すると、エミッタ・コレ
クタ電極間への電圧印加時に、その位置で空乏層が伸び
なくなり、耐圧劣化をおこすことがある。低抵抗領域を
選択的に形成すれば、空乏層は低抵抗領域の存在しない
高抵抗の部分で広がり易いので先へ伸び、やがて低抵抗
領域を囲んでしまうとその個所での耐圧劣化は起こらな
い。
The second layer, which corresponds to the base region of the bipolar transistor, has high resistance, but there is an elongated low resistance region within it.
Since all parts of that region have the same potential, variations in the potential of the base region are eliminated, and non-uniformity in the current of the bipolar transistor can be reduced. However, if this low-resistance region is formed as a low-resistance layer over the entire surface, the depletion layer will not grow at that position when voltage is applied between the emitter and collector electrodes, which may cause deterioration in breakdown voltage. If a low-resistance region is selectively formed, the depletion layer will spread easily in high-resistance areas where there is no low-resistance region, so it will extend further and eventually surround the low-resistance region, and no breakdown voltage deterioration will occur at that location. .

〔実施例〕〔Example〕

第1図は本発明の一実施例のI GBTの断面構造を示
し、第2図と共通の部分には同一の符号が付されている
。第2図と興なる点は明らかで、nエピタキシャル層2
の厚さ方向の中間位置に条状のn゛低抵抗領域11が埋
込まれている。第3図fa)(bl、(C1はこのよう
な耐圧1200Vの低抵抗領域11の形成過程の一例を
示す、先ず、p゛シリコン基板1の上に厚さ50Jfl
Iのn−エピタキシャル・シリコン層21を成長させる
。n−層21の抵抗率は1000国である0次に第3図
ta+に示すように、表面から不純物イオン13をドー
ズ量1xIh/−で注入する。不純物イオンとしては、
後の拡散工程での広がりを抑えるためにひ素を用いるこ
とが望ましい。
FIG. 1 shows a cross-sectional structure of an IGBT according to an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals. The difference with Fig. 2 is obvious; the n epitaxial layer 2
A strip-shaped low resistance region 11 is embedded at an intermediate position in the thickness direction. Fig. 3 fa) (bl, (C1 shows an example of the formation process of such a low resistance region 11 with a breakdown voltage of 1200V.
1. Grow an n-epitaxial silicon layer 21 of I. The resistivity of the n- layer 21 is 1000, and as shown in FIG. As impurity ions,
It is desirable to use arsenic to suppress spreading in the subsequent diffusion step.

次いで第3図(blに示すように、n−層21の上に同
じ不純物濃度のn−エピタキシャル層22を積み、全体
の層2の厚さを100−にする、注入された不純物13
は、このあとのp−Ml域5あるいはn″領域7形威の
ための不純物拡散プロセスで若干拡散するが、必要に応
じてこの時点で熱拡散あるいはアニールを行って、第3
図telに示すようにn゛低抵抗領域11を形成しても
よい。
Next, as shown in FIG. 3 (bl), an n- epitaxial layer 22 with the same impurity concentration is deposited on the n- layer 21, and the implanted impurity 13 is deposited to make the total thickness of the layer 2 100-.
will be slightly diffused in the subsequent impurity diffusion process for forming the p-Ml region 5 or n'' region 7, but if necessary, thermal diffusion or annealing may be performed at this point to form the third
As shown in FIG. 1, an n low resistance region 11 may be formed.

低抵抗領域11は、半導体素体面内をすべて同電位にす
ることが望ましいので、できるだけ長いパターンにする
。そのために、第4図にハンチングして示すように条状
パターン、あるいはそれを連結して第5図に示すような
格子状パターンなどにする。
Since it is desirable that the entire surface of the semiconductor element be at the same potential, the low resistance region 11 is formed into a pattern as long as possible. For this purpose, a strip pattern is formed as shown by hunting in FIG. 4, or a grid pattern is formed by connecting strip patterns as shown in FIG. 5.

第6図はnチャネルI CRTにおける別の実施例を示
し、この場合は、n−エピタキシャル層2の中間に形成
される低抵抗領域12はp°不純物拡散領域である。し
かし、同電位化効果は第1図の場合と同じであった。こ
の実施例かられかるように、本発明はpチャネルIGB
Tでも同様に実施できる。
FIG. 6 shows another embodiment in an n-channel ICRT, in which the low resistance region 12 formed in the middle of the n-epitaxial layer 2 is a p° impurity diffusion region. However, the potential equalization effect was the same as in the case of FIG. As can be seen from this embodiment, the present invention is applicable to p-channel IGB
The same can be done with T.

〔発明の効果〕〔Effect of the invention〕

本発明は、IGBTのバイポーラトランジスタ部のベー
ス領域に当たる高抵抗層の厚さ方向の中間部に細長い低
抵抗領域を埋め込んで同電位化を図ることにより、多数
の並列接続MO3FETで駆動されるバイポーラトラン
ジスタの電流を半導体素体面内で均一にすることができ
、耐圧を低下させないで素体面積の有効な活用ができた
。さらに、一部分への電流集中が抑えられるので、素子
の劣化や破壊の防止にも有効である。
The present invention provides a bipolar transistor driven by a large number of parallel-connected MO3FETs by embedding an elongated low-resistance region in the middle part of the high-resistance layer in the thickness direction, which corresponds to the base region of the bipolar transistor part of the IGBT, to achieve equal potential. The current can be made uniform within the plane of the semiconductor element, and the area of the element can be used effectively without reducing the withstand voltage. Furthermore, since concentration of current in one part is suppressed, it is effective in preventing deterioration and destruction of the element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のI GBTの斜視断面図、
第2図は従来のIGETの斜視断面図、第3図は第1図
のI GBTの製造工程の一部を(a)。 (bl、telの順に示す断面図、第4図、第5図は本
発明による低抵抗領域のパターンの二つの例を示す平面
図、第6図半導体本発明の異なる実施例のICBTの斜
視断面図である。 1:p゛基板2;n−エピタキシャル層、3:ゲート絶
縁層、4:ゲート電極、5;p−不純物拡散領域、7:
n゛不純物拡散領域、9:エミッタ電極、10:コレク
タ電極、11,12:低抵抗領域。 イiJx人frJヱ士 山 ロ  直 重1月 lθ 第2吊 11↓ … Iト/3 第3固 第4図 1 第5図
FIG. 1 is a perspective sectional view of an IGBT according to an embodiment of the present invention;
FIG. 2 is a perspective sectional view of a conventional IGET, and FIG. 3 (a) shows a part of the manufacturing process of the IGBT shown in FIG. (Cross-sectional views shown in the order of bl and tel, Figures 4 and 5 are plan views showing two examples of patterns of low resistance regions according to the present invention, and Figure 6 is a perspective cross-section of semiconductor ICBTs of different embodiments of the present invention. 1: p-substrate 2: n-epitaxial layer; 3: gate insulating layer; 4: gate electrode; 5; p- impurity diffusion region; 7:
n゛impurity diffusion region, 9: emitter electrode, 10: collector electrode, 11, 12: low resistance region. IiJx人frJヱ 山 ロ Naoshige January lθ 2nd hanging 11 ↓ ... Ito/3 3rd solid Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1)第一導電型の第一層の一側に第二導電型の第二層が
隣接し、その第二層の反第一層側の表面部に複数の第一
導電型の第一領域が選択的に形成され、その第一領域の
表面部に第二導電型の第二領域が選択的に形成され、第
二層の表面への露出部と第二領域にはさまれた第一領域
上に絶縁層を介してゲートが設けられ、第一、第二領域
に共通にエミッタ電極が、第一層にコレクタ電極がそれ
ぞれ接触し、各エミッタ電極が並列接続されるものにお
いて、第二層の厚さ方向における第一領域より深い中間
部に幅に比して長さの長い低抵抗領域が選択的に形成さ
れたことを特徴とする絶縁ゲート型バイポーラトランジ
スタ。
1) A second layer of a second conductivity type is adjacent to one side of the first layer of the first conductivity type, and a plurality of first regions of the first conductivity type are provided on the surface of the second layer on the side opposite to the first layer. is selectively formed, a second region of the second conductivity type is selectively formed on the surface of the first region, and a first region sandwiched between the exposed portion of the second layer and the second region is selectively formed. A gate is provided on the region via an insulating layer, an emitter electrode is in common contact with the first and second regions, a collector electrode is in contact with the first layer, and each emitter electrode is connected in parallel. An insulated gate bipolar transistor characterized in that a low resistance region that is longer than its width is selectively formed in an intermediate portion deeper than the first region in the thickness direction of the layer.
JP5926090A 1990-03-09 1990-03-09 Insulated gate type bipolar transistor Pending JPH03261179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5926090A JPH03261179A (en) 1990-03-09 1990-03-09 Insulated gate type bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5926090A JPH03261179A (en) 1990-03-09 1990-03-09 Insulated gate type bipolar transistor

Publications (1)

Publication Number Publication Date
JPH03261179A true JPH03261179A (en) 1991-11-21

Family

ID=13108228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5926090A Pending JPH03261179A (en) 1990-03-09 1990-03-09 Insulated gate type bipolar transistor

Country Status (1)

Country Link
JP (1) JPH03261179A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444271A (en) * 1992-08-15 1995-08-22 Kabushiki Kaisha Toshiba Conductivity-modulated semiconductor device with high breakdown voltage
JP2001523895A (en) * 1997-11-13 2001-11-27 エービービー リサーチ リミテッド Semiconductor device and SiC transistor
JP2002246597A (en) * 2001-02-14 2002-08-30 Fuji Electric Co Ltd Semiconductor device
WO2015111177A1 (en) * 2014-01-24 2015-07-30 株式会社日立製作所 Semiconductor device, power module, power conversion device, and railway vehicle
CN105390536A (en) * 2015-09-30 2016-03-09 深圳市可易亚半导体科技有限公司 Insulated gate bipolar transistor and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444271A (en) * 1992-08-15 1995-08-22 Kabushiki Kaisha Toshiba Conductivity-modulated semiconductor device with high breakdown voltage
JP2001523895A (en) * 1997-11-13 2001-11-27 エービービー リサーチ リミテッド Semiconductor device and SiC transistor
JP2002246597A (en) * 2001-02-14 2002-08-30 Fuji Electric Co Ltd Semiconductor device
WO2015111177A1 (en) * 2014-01-24 2015-07-30 株式会社日立製作所 Semiconductor device, power module, power conversion device, and railway vehicle
CN105390536A (en) * 2015-09-30 2016-03-09 深圳市可易亚半导体科技有限公司 Insulated gate bipolar transistor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5698454A (en) Method of making a reverse blocking IGBT
US4639762A (en) MOSFET with reduced bipolar effects
JPH03270273A (en) Semiconductor device and its manufacture
JP2002158348A (en) Semiconductor device
US4952991A (en) Vertical field-effect transistor having a high breakdown voltage and a small on-resistance
JPH08264764A (en) Semiconductor device
CN1677664B (en) Device for electrostatic discharge protection and method of manufacturing the same
US11393901B2 (en) Cell layouts for MOS-gated devices for improved forward voltage
JPH0354868A (en) Mos type semiconductor device
JPH0512868B2 (en)
JP2877408B2 (en) Conduction modulation type MOSFET
JP7127389B2 (en) Silicon carbide semiconductor device
JPH03261179A (en) Insulated gate type bipolar transistor
JP2002299622A (en) Semiconductor element for power
US5912491A (en) MOS device
WO2000062345A1 (en) High-voltage semiconductor device
JPH0888357A (en) Lateral igbt
GB2084397A (en) Semiconductor integrated circuit
JPH01238174A (en) Vertical mosfet
JP2001274414A (en) Power semiconductor element and drive method thereof
JPH04196174A (en) Insulated-gate bipolar
JP2002141505A (en) Field-effect transistor
JP2768362B2 (en) MOS type semiconductor device
JPH08167715A (en) High breakdown voltage semiconductor device
JPS6373670A (en) Conductive modulation type mosfet