JPH0326026B2 - - Google Patents

Info

Publication number
JPH0326026B2
JPH0326026B2 JP57195746A JP19574682A JPH0326026B2 JP H0326026 B2 JPH0326026 B2 JP H0326026B2 JP 57195746 A JP57195746 A JP 57195746A JP 19574682 A JP19574682 A JP 19574682A JP H0326026 B2 JPH0326026 B2 JP H0326026B2
Authority
JP
Japan
Prior art keywords
battery
charging
voltage
specific gravity
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57195746A
Other languages
Japanese (ja)
Other versions
JPS5986432A (en
Inventor
Masahito Muto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57195746A priority Critical patent/JPS5986432A/en
Publication of JPS5986432A publication Critical patent/JPS5986432A/en
Publication of JPH0326026B2 publication Critical patent/JPH0326026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Control Of Charge By Means Of Generators (AREA)

Description

【発明の詳細な説明】 本発明は車両用バツテリの充電制御方法、特に
常に良好な充電状態を確保できる改良された車両
用バツテリの充電制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charging control method for a vehicle battery, and more particularly to an improved charging control method for a vehicle battery that can always ensure a good state of charge.

車両用バツテリは車両の各電装機器に必要な電
力を供給するために不可欠であり、特に近年のよ
うに車両の電子制御化が進みあるいはエアコンそ
の他電動機器が数多く装着された車両にあつては
バツテリに課される要求は著しく大きくなり常時
出力される電流量も従来と比較して増大の一途を
たどるのみであり、このような要望に適合するた
めに、車両用バツテリとしては、常に充分な充電
状態を保つことが必要とされている。しかしなが
ら、従来の充電制御は単にバツテリの端子電圧が
所定値以下に低下した場合にオルタネータからの
電流による充電作用が開始されるという制御を行
つているに過ぎず、これでは、充分な充電状態を
確保することが不可能であり、しばしばバツテリ
あがりが生じるという結果を招いていた。前記バ
ツテリあがりはそれ自体車両走行における大きな
問題であり、またバツテリあがりまでは至らない
までも充電不足による電装機器の作用不良あるい
はバツテリ自体の寿命低下などの種々の問題が生
じていた。
Vehicle batteries are indispensable to supply the necessary power to each electrical device in a vehicle, and especially in vehicles that have become increasingly electronically controlled in recent years or are equipped with many air conditioners and other electrically powered devices. The demands placed on batteries for vehicles have significantly increased, and the amount of current that is constantly output has only continued to increase compared to before.In order to meet these demands, vehicle batteries must always be sufficiently charged. It is necessary to maintain the condition. However, conventional charging control simply starts the charging action using the current from the alternator when the terminal voltage of the battery drops below a predetermined value. It was impossible to secure such a supply, often resulting in a breakdown. The battery failure itself is a major problem when driving a vehicle, and even if it does not lead to a battery failure, various problems have occurred, such as malfunction of electrical equipment due to insufficient charging or a shortened lifespan of the battery itself.

通常、前記バツテリを充電制御するための基準
となるバツテリ端子電圧は過充電を防止するため
に比較的低い電圧値に設定されており、このため
に、従来装置では、満充電の状態からある程度放
電が行われてバツテリ端子電圧が低下した状態で
なければ充電が開始されず、この端子電圧低下ま
での充電開始前の待ち時間内で充電量が相当量消
費され、このために、電装機器の使用状態によつ
ては、前述したある程度放電が進んだ状態ではそ
の後の充電によつてはバツテリ容量を充分に回復
できない場合が生じ前述した充電不足あるいはバ
ツテリあがりなどが生じていた。
Normally, the battery terminal voltage, which is the standard for controlling the charging of the battery, is set to a relatively low voltage value to prevent overcharging, and for this reason, in conventional devices, the battery is discharged to some extent from a fully charged state. Charging will not start unless this occurs and the battery terminal voltage has dropped, and a considerable amount of the charge will be consumed during the waiting time before charging starts until this terminal voltage drops, and this will prevent the use of electrical equipment. Depending on the state, the battery capacity may not be fully recovered by subsequent charging after the discharge has progressed to a certain extent as described above, resulting in the aforementioned insufficient charging or dead battery.

前述した従来の欠点は充電を開始する時のバツ
テリ端子電圧基準値を高く設定することにより解
消できるはずであるが、これは前述したように過
充電を招くこととなり、特にバツテリ液の温度に
よつて最適基準値は著しく変化し、前記基準値を
高く設定した場合には高温時期例えば夏季などに
過充電が生じ易くガス発生によるバツテリの損耗
が生じるという問題があつた。
The above-mentioned drawbacks of the conventional method can be overcome by setting the battery terminal voltage reference value high when charging starts, but this will lead to overcharging as mentioned above, and especially depending on the temperature of the battery fluid. Therefore, the optimum reference value changes significantly, and when the reference value is set high, there is a problem that overcharging tends to occur during high temperature periods, such as summer, and battery wear and tear occurs due to gas generation.

本発明は上記従来の課題に鑑みなされたもので
あり、その目的は、常に良好な充電状態を保ち、
特にバツテリを常時満充電に近い状態に保持可能
な改良された車両用バツテリの充電制御方法を提
供することにある。
The present invention was made in view of the above-mentioned conventional problems, and its purpose is to maintain a good state of charge at all times,
In particular, it is an object of the present invention to provide an improved charging control method for a vehicle battery that can maintain the battery in a nearly fully charged state at all times.

上記目的を達成するために、本発明は、バツテ
リ液の比重を検出し該液比重に相当する起電圧を
実際のバツテリ端子電圧と比較して、バツテリの
充電または放電状態を判別し、バツテリが放電状
態である場合には自動的に充電制御状態とするこ
とを特徴とする。
In order to achieve the above object, the present invention detects the specific gravity of battery liquid and compares the electromotive force corresponding to the liquid specific gravity with the actual battery terminal voltage to determine the charging or discharging state of the battery. It is characterized in that when it is in a discharging state, it is automatically put into a charging control state.

本発明によれば、従来のようにバツテリの放電
状態を端子電圧によつて検出する方法と異なり、
充電開始までの待ち時間を設けることなくバツテ
リの放電時には直ちにオルタネータからの充電作
用を開始し、この時に他の条件が適合すれば、例
えばエンジン回転数その他が充電作用を許容すれ
ば直ちにバツテリへの充電が開始され、放電によ
る充電量の低下を遅れなく補充してその性能を満
充電状態に回復することができ、従来のような充
電不足あるいはバツテリあがりの発生を確実に防
止可能である。
According to the present invention, unlike the conventional method of detecting the discharge state of a battery using terminal voltage,
When the battery is discharged, the charging action from the alternator is immediately started without any waiting time before the start of charging.If other conditions are met at this time, for example, if the engine speed and other conditions permit the charging action, the battery is immediately started charging. Charging is started, and the decrease in the amount of charge due to discharging can be replenished without delay to restore the performance to a fully charged state, and it is possible to reliably prevent the occurrence of insufficient charging or battery exhaustion as in the conventional case.

以下図面に基づいて本発明の好適な実施例を説
明する。
Preferred embodiments of the present invention will be described below based on the drawings.

第1図には一般の車両用バツテリにおけるバツ
テリ液比重とバツテリ起電圧との関係が示され、
図においてはバツテリ液温25℃の特性が示され、
この特性から明らかなように、比重の増加ととも
に起電圧が増加していることが理解される。
Fig. 1 shows the relationship between battery liquid specific gravity and battery electromotive force in a general vehicle battery.
The figure shows the characteristics at a battery liquid temperature of 25°C.
As is clear from this characteristic, it is understood that the electromotive voltage increases as the specific gravity increases.

従来、第1図の特性はバツテリ液比重とバツテ
リ容量との関係として考えられており、これを用
いて液比重からバツテリの残容量を検査判定する
装置あるいは方法が各種提案され実用化されてい
る。
Conventionally, the characteristics shown in Figure 1 have been considered as the relationship between battery liquid specific gravity and battery capacity, and various devices and methods have been proposed and put into practical use for inspecting and determining the remaining battery capacity from liquid specific gravity using this characteristic. .

しかしながら、本発明においては、この特性を
液比重対起電圧の関係として把握し、この起電圧
すなわち測定された比重から推定される起電圧を
実際のバツテリ端子電圧と比較してその時のバツ
テリが放電状態にあるかあるいは充電状態にある
かの判定を行うことを特徴とするものである。
However, in the present invention, this characteristic is understood as the relationship between liquid specific gravity and electromotive voltage, and this electromotive voltage, that is, the electromotive force estimated from the measured specific gravity, is compared with the actual battery terminal voltage to determine whether the battery is discharged at that time. It is characterized by determining whether the battery is in a charging state or a charging state.

第2図には充電及び放電時におけるバツテリ端
子電圧の時間的変化特性が示されており、またこ
の特性に充放電開始時における比重相当起電圧が
破線にて示されている。
FIG. 2 shows the temporal change characteristics of the battery terminal voltage during charging and discharging, and in this characteristic, the electromotive force corresponding to the specific gravity at the start of charging and discharging is shown by a broken line.

第2図から明らかなように、充電時には時間経
過とともにその端子電圧が順次所定の特性に従つ
て増加することが示され、また充電開始時の端子
電圧は必ず比重相当起電圧より大きな値を示すこ
とが理解される。これは比重相当起電圧が比重か
ら推定される静的な端子電圧を示すのみであり、
これに対して実際の充電時にはこの静的な推定起
電圧に加えて充電作用に基づく電気化学的起電力
が加味されるために常に充電端子電圧が比重相当
起電圧を上回る結果となるものである。
As is clear from Figure 2, during charging, the terminal voltage increases sequentially in accordance with a predetermined characteristic over time, and the terminal voltage at the start of charging always shows a value larger than the electromotive force equivalent to specific gravity. That is understood. This only shows the static terminal voltage where the electromotive force equivalent to specific gravity is estimated from the specific gravity.
On the other hand, during actual charging, in addition to this static estimated electromotive force, electrochemical electromotive force based on the charging action is taken into account, so the charging terminal voltage always exceeds the electromotive force equivalent to specific gravity. .

一方、放電時の端子電圧は時間経過とともに順
次低下傾向を示し、また放電開始時の電圧は必ず
比重相当起電圧より低い値を示すことが理解され
る。すなわち、放電時には各種の電気損失があり
このような動的端子電圧は前述した静的な比重相
当起電圧より必ず下回ることが容易に理解され
る。
On the other hand, it is understood that the terminal voltage during discharge shows a tendency to decrease gradually over time, and the voltage at the start of discharge always shows a value lower than the electromotive voltage equivalent to specific gravity. That is, it is easily understood that there are various electrical losses during discharge, and such a dynamic terminal voltage is always lower than the static electromotive force equivalent to the specific gravity mentioned above.

従来、第2図のごとき一般的な特性は一応理論
的には解明されていたが、これをバツテリの充電
制御に利用しようとする試みは全く成されていな
かつた。
Conventionally, the general characteristics shown in FIG. 2 have been theoretically clarified, but no attempt has been made to utilize them for battery charging control.

本発明は正しくこの点に鑑み第2図のような理
論的な特徴事項を巧みに充電制御に利用したもの
であり、すなわち、比重相当起電圧とバツテリの
実端子電圧とを直接比較することにより極めて容
易に充電あるいは放電状態の判別を行い、これに
より放電状態においては直ちに所定の充電制御を
開始させ、これによつて充電不足を確実に解消可
能としたものである。
The present invention correctly takes this point into consideration and skillfully utilizes the theoretical features shown in Figure 2 for charging control. That is, by directly comparing the electromotive voltage equivalent to specific gravity and the actual terminal voltage of the battery, The charging or discharging state can be determined very easily, and predetermined charging control can be started immediately in the discharging state, thereby reliably resolving insufficient charging.

本発明においては、単に比重相当起電圧と実端
子電圧との直接比較のみで充電、放電の判定が行
われ、比重あるいはこれに相当する起電圧の値そ
のものあるいは外気温その他の外的要因に何ら影
響されることなく、単純にバツテリの放電時には
直ちにこれを補う充電作用を開始させ、バツテリ
電気量が大きく低下する前にこれを迅速し回復さ
せようとするものであり、複雑な制御を必要とす
ることなく単純簡単な構成にて最適制御を可能と
するものである。
In the present invention, charging or discharging is determined simply by direct comparison of the electromotive voltage equivalent to specific gravity and the actual terminal voltage, and there is no need to consider the specific gravity or the value of the electromotive voltage equivalent to this, the outside temperature, or other external factors. When the battery is discharged, it simply starts a charging action to compensate for it, and quickly recovers the amount of electricity before the battery's electricity drops significantly. This does not require complex control. Optimum control is possible with a simple and simple configuration without any additional effort.

前述した本発明の制御方法を実現する好適な実
施例が第3図のフローチヤート図に示されてお
り、この実施例においては、充電制御方法は電子
制御システムに組込まれており、メインコンピユ
ータにより各種の車両走行制御、補機制御及び診
断制御のルーチン内の一部に属する。
A preferred embodiment for realizing the above-described control method of the present invention is shown in the flowchart of FIG. It belongs to a part of the routines of various vehicle running control, auxiliary equipment control, and diagnostic control.

第3図に示した充電制御方法が開始されると、
まず各種の検出情報がデジタル信号に変換され
る。
When the charging control method shown in FIG. 3 is started,
First, various detection information is converted into digital signals.

本実施例においては、放電状態判定後のバツテ
リの充電制御をバツテリ液温から求まる充電終期
電圧に基づいて制御するため、本発明に必要なバ
ツテリ液比重及びバツテリ端子電圧、オルタネー
タ発生電圧ばかりでなくバツテリ液温情報も取込
まれる。
In this embodiment, since the charging control of the battery after the discharge state is determined is controlled based on the final charge voltage determined from the battery liquid temperature, not only the battery liquid specific gravity, battery terminal voltage, and alternator generated voltage necessary for the present invention are also controlled. Battery liquid temperature information is also taken in.

前記AD変換終了後まずバツテリ液の比重情報
が取込まれ、更にこの比重から第1図に示されて
いる比重相当起電圧VRの換算が行われる。
After the AD conversion is completed, the specific gravity information of the battery liquid is first taken in, and furthermore, the electromotive voltage V R corresponding to the specific gravity shown in FIG. 1 is converted from this specific gravity.

次に、前述した実際の充電制御のためのバツテ
リ液温取込及びこれに関連する充電終期電圧VE
の換算が行われ、更に前記充電終期電圧VEから
所定の係数k(0>k>1)によつて充電制御時
の充電末期検出値Vthが求められる。
Next, we will take the battery liquid temperature for the actual charging control mentioned above and the related end-of-charging voltage V E
Then, the end-of-charging detected value V th during charging control is determined from the end-of-charging voltage VE using a predetermined coefficient k (0>k>1).

そして更にオルタネータ発生電圧VA、バツテ
リ端子電圧VBの取込が行われる。
Further, the alternator generated voltage V A and the battery terminal voltage V B are taken in.

本発明において特徴的なことは、前記各情報の
入力が完了した後比重相当起電圧VRとバツテリ
端子電圧VBとの比較が行われ、これによつてバ
ツテリの充電または放電状態の判定が成されるこ
とである。
A characteristic feature of the present invention is that after the input of each of the above-mentioned information is completed, a comparison is made between the electromotive voltage V R corresponding to specific gravity and the battery terminal voltage V B , and thereby the charging or discharging state of the battery can be determined. It is to be accomplished.

すなわち、バツテリ端子電圧VBが比重相当起
電圧VRより大きい場合には第2図から明らかな
ように充電状態であり、この状態では次の充電制
御ステツプに移行する。
That is, when the battery terminal voltage V B is larger than the electromotive voltage V R corresponding to specific gravity, the battery is in a charging state as is clear from FIG. 2, and in this state, the process moves to the next charging control step.

一方、バツテリ端子電圧VBが比重相当起電圧
VRよりも小さい場合には第2図から明らかなよ
うに放電状態であると判定され所望の充電作用が
開始される。
On the other hand, the battery terminal voltage V B is the electromotive force equivalent to the specific gravity.
If it is smaller than V R , as is clear from FIG. 2, it is determined that the battery is in a discharging state and a desired charging action is started.

実施例においては、この充電作用はアイドル状
態におけるエンジンのアイドリング回転数を増加
させる手段あるいはオルタネータの励磁電流を増
加させる手段の両方またはいずれかが採用され、
これによつて、オルタネータからのバツテリへの
充電が強要される。もちろん、このような充電強
要作用によつても、オルタネータあるいはバツテ
リの状態、特にオルタネータの回転数によつては
直ちに充電が開始されない場合もあり得るが、本
発明においては、他の条件が整えば直ちに充電が
開始され、放電による電流量の回復を迅速に行う
ことが可能となる。
In the embodiment, this charging action is performed by increasing the idling speed of the engine in an idling state and/or by increasing the excitation current of the alternator.
This forces the alternator to charge the battery. Of course, even with such charging force action, charging may not start immediately depending on the condition of the alternator or battery, especially the alternator rotation speed, but in the present invention, if other conditions are met, charging may not start immediately. Charging starts immediately, and it becomes possible to quickly recover the amount of current due to discharging.

従つて、本発明によれば、従来のようなバツテ
リ端子電圧の低下を待つことなく迅速な回復作用
を達成することができる。
Therefore, according to the present invention, a quick recovery action can be achieved without waiting for the battery terminal voltage to drop as in the conventional case.

一方、前述したバツテリ端子電圧VBが比重相
当起電圧VRより大きいことにより充電状態と判
定された後においては、本発明において通常の充
電制御を行うことができるが、本実施例において
は、更にこの充電制御もできる限り満充電が得ら
れるための制御となつている。
On the other hand, after it is determined that the battery terminal voltage V B is larger than the electromotive voltage V R equivalent to specific gravity and the charging state is determined, normal charging control can be performed in the present invention, but in this embodiment, Furthermore, this charging control is also performed to obtain as full a charge as possible.

すなわち、第2図に示した充電特性は時間の経
過とともに所定値に収束し、これは充電終期電圧
として把握することができ、この充電終期電圧は
満充電状態におけるバツテリ端子電圧を示し、バ
ツテリを満充電させるためにはこの充電終期電圧
をオルタネータからバツテリに印加しなければな
らないことが理解される。しかしながら、一方に
おいて、この充電終期電圧より高い電圧をバツテ
リに印加した場合には周知のようにガスの発生な
ど種々の弊害が生じバツテリの寿命を著しく低下
させる。そして、前記充電終期電圧はバツテリ液
温度によつて著しく変化し、第4図にはこの特性
が例示されている。第4図から明らかなように、
周囲温度の低い冬季においてはバツテリに高い電
圧を供給しなければ満充電が得られないことが理
解され、一方、周囲温の高い夏季においては供給
電圧を低下させないと容易にガスの発生を招くこ
とが理解される。
In other words, the charging characteristics shown in Figure 2 converge to a predetermined value over time, and this can be understood as the final charge voltage.This final charge voltage indicates the battery terminal voltage in a fully charged state, and it It is understood that in order to fully charge the battery, this end-of-charge voltage must be applied to the battery from the alternator. However, on the other hand, if a voltage higher than this charging end voltage is applied to the battery, various problems such as gas generation occur, as is well known, and the life of the battery is significantly shortened. The voltage at the end of charging changes significantly depending on the battery fluid temperature, and this characteristic is illustrated in FIG. As is clear from Figure 4,
It is understood that in winter when the ambient temperature is low, a full charge cannot be obtained unless a high voltage is supplied to the battery, while in summer when the ambient temperature is high, gas generation can easily occur unless the supply voltage is lowered. is understood.

そこで、従来装置においては、充電開始電圧を
ガス発生のない比較的低い一定値に設定しており
例えば第4図において14.4ボルトの電圧を設定
し、バツテリ端子電圧がこの電圧値以下に低下し
た時にのみ充電作用が行われていた。この従来方
法によれば、バツテリ液が高温の場合においても
ガス発生のない比較的おとなしい安定した充電が
行われバツテリの寿命を長く保つことを可能とす
る。
Therefore, in conventional devices, the charging start voltage is set to a relatively low constant value that does not cause gas generation. For example, in Figure 4, the voltage is set at 14.4 volts, and when the battery terminal voltage drops below this voltage value, Only the charging action was performed. According to this conventional method, even when the battery liquid is at a high temperature, relatively quiet and stable charging without gas generation is performed, making it possible to maintain a long battery life.

しかしながら、第4図から明らかなように、バ
ツテリ液温度に拘わらず従来では斜線を施した端
子電圧領域でのみ充電が行われ、これによれば、
相当高いバツテリ液温例えば70〜80℃程度の温度
においてのみバツテリは満充電され、これよりバ
ツテリ液温が低くなればなるほどバツテリの充電
割合が低下することが理解される。このことは、
冬季などにおいては、バツテリはそれ自体ほとん
ど満充電されることなくその容量の一部しか利用
できないという欠点を生じ、充電不足、バツテリ
あがりの大きな原因となつており、またこのよう
な冬季の状態を考慮して不必要に大きな容量のバ
ツテリを車両に搭載しなければならないという問
題を生じていた。
However, as is clear from FIG. 4, charging is conventionally performed only in the shaded terminal voltage region regardless of the battery fluid temperature;
It is understood that the battery is fully charged only at a fairly high battery temperature, for example, about 70 to 80° C., and that the lower the battery temperature is, the lower the charging rate of the battery is. This means that
During winter, batteries have the disadvantage that they are rarely fully charged and only a portion of their capacity can be used, which is a major cause of insufficient charging and dry batteries. Taking this into account, a problem arises in that a battery with an unnecessarily large capacity must be mounted on the vehicle.

本実施例においては、前述した課題に鑑み、充
電開始電圧を充電終期電圧に対応させて制御する
ことにより、バツテリ液温に拘らず常に最適な満
充電あるいはこれに近い充電作用を得ることを可
能とする。
In this embodiment, in view of the above-mentioned problem, by controlling the charging start voltage in accordance with the charging end voltage, it is possible to always obtain the optimal full charge or a charging effect close to this regardless of the battery liquid temperature. shall be.

第5図には本実施例における充電作用が示さ
れ、斜線を施した部分が各バツテリ液温時におけ
る充電開始電圧を示し、図から明らかなように、
充電開始電圧VAは充電終期電圧VEと等しく設定
されている。従つて、この実施例においては、バ
ツテリ液温に対応して常に充電終期電圧での充電
作用が行われ、季節などの変動に拘らず常に満充
電あるいはこれに近い充電を可能とする。
FIG. 5 shows the charging action in this example, and the shaded area shows the charging start voltage at each battery liquid temperature, and as is clear from the figure,
The charging start voltage V A is set equal to the charging end voltage V E . Therefore, in this embodiment, the charging operation is always performed at the final charging voltage in accordance with the battery liquid temperature, and it is possible to always perform full charging or charging close to this regardless of seasonal fluctuations.

実施例では、第3図におけるバツテリ端子電圧
VBと充電終期電圧VEとの比較を行い、両者が一
致するまですなわち満充電となるまで所望の充電
作用を行う。
In the example, the battery terminal voltage in FIG.
A comparison is made between V B and the end-of-charge voltage VE , and a desired charging action is performed until the two match, that is, until full charge is achieved.

この実施例によれば、夏季のようなガスの発生
が生じ易い場合には充電終期電圧VEが低い値と
なるのでこのガス発生を確実に防止して満充電あ
るいはこれに近い充電が得られ、一方冬季におい
ては充電終期電圧VEを高く設定し、これにより
所望の満充電あるいはこれに近い充電を得ること
ができる。
According to this embodiment, when gas is likely to be generated, such as in the summer, the final charge voltage V E will be a low value, so this gas generation can be reliably prevented and a full charge or a charge close to this can be obtained. On the other hand, in winter, the final charge voltage V E is set high, thereby achieving the desired full charge or a charge close to this.

第3図の実施例は更にバツテリの充電が進んで
満充電近くになつた時更にオルタネータ発生電圧
VAの設定値を更に一定量増加させ最後の一押し
を行つて満充電を効果的に可能としている。
In the embodiment shown in Fig. 3, when the charging of the battery progresses further and it approaches full charge, the alternator generated voltage increases.
The set value of V A is further increased by a certain amount and a final push is performed to effectively enable full charging.

一般的に、バツテリが満充電に近づくとオルタ
ネータ発生電圧VAを充電終期電圧VEに等しく設
定している場合には100%の満充電を得るために
は極端に長い時間を必要とし、このために、100
%満充電を効果的に得るためには、第5図の破線
で示されるようにオルタネータ発生電圧VAを充
電終期電圧VEより更に所定量αだけ高めること
により短時間に100%の満充電が達成される。こ
のような最後の一押しはバツテリ端子電圧が満充
電に近づくまでは不要でありまたもちろん満充電
に達した後にも不要であるから満充電近傍の特定
の狭いバツテリ電圧範囲にのみこの最後の一押し
を行うための追加αを設定すればよい。
Generally, when the battery approaches full charge, if the alternator generated voltage V A is set equal to the end-of-charge voltage V E , it will take an extremely long time to reach 100% full charge. for 100
In order to effectively obtain 100% full charge, as shown by the broken line in Figure 5, the alternator generated voltage V A is increased by a predetermined amount α above the end-of-charge voltage V E to achieve 100% full charge in a short time. is achieved. This final push is not necessary until the battery terminal voltage approaches full charge, and of course it is also unnecessary after reaching full charge, so this last push is only required in a specific narrow battery voltage range near full charge. What is necessary is to set an additional α for pushing.

第3図から明らかなように、バツテリ端子電圧
VBが充電終期電圧VEと等しくなつた時には満充
電であると判定され、オルタネータ発生電圧VA
は充電終期電圧VEそのものに設定される。
As is clear from Figure 3, the battery terminal voltage
When V B becomes equal to the end-of-charge voltage V E , it is determined that the charge is fully charged, and the alternator generated voltage V A
is set to the final charge voltage V E itself.

そして、満充電に達する以前においては、バツ
テリ端子電圧VBは前述した充電末期検出値Vth
比較され、バツテリ端子電圧VBがこれより小さ
い場合には充電末期に到達していないので、依然
としてオルタネータ発生電圧VAは充電終期電圧
VEに設定されるが、バツテリ端子電圧VBが充電
末期検出値Vthに到達するとオルタネータ発生電
圧VAには充電終期電圧VEに加えて追加αが加え
られ、これにてバツテリは最後の一押しによる充
電が行われ、極めて短時間に容易に満充電に達
し、この後直ちにオルタネータ発生電圧VAは通
常の充電終期電圧VEに復帰する。
Before reaching full charge, the battery terminal voltage V B is compared with the end-of-charging detection value V th described above, and if the battery terminal voltage V B is smaller than this, it means that the end-of-charging stage has not been reached. The alternator generated voltage V A is the final charging voltage
However , when the battery terminal voltage V B reaches the end-of-charge detection value V th , an additional α is added to the alternator generated voltage V A in addition to the end-of-charge voltage V E , and the battery is finally Charging is performed by pressing the button once, and full charge is easily reached in an extremely short period of time. Immediately thereafter, the alternator generated voltage V A returns to the normal charging end voltage V E.

以上のようにして、本実施例によれば、オルタ
ネータの発生電圧をバツテリ液温から定まる充電
終期電圧に設定できるので、バツテリは常に満充
電状態に制御可能な状態となり、他の条件が許す
範囲で最適な満充電が達成され、また、特定の充
電末期に最後の一押しをすることによつて短時間
に効率よく満充電を達成することが可能となる。
As described above, according to this embodiment, the voltage generated by the alternator can be set to the final charge voltage determined from the battery liquid temperature, so that the battery can always be controlled to a fully charged state, and within the range permitted by other conditions. Optimum full charging is achieved in this manner, and full charging can be achieved efficiently in a short period of time by giving the final push at a specific end of charging.

なお、前述した実施例においては充電制御が満
充電制御により行われているが、本発明における
バツテリの放電状態検出後の充電制御は他の任意
の充電制御も利用可能である。
Note that in the embodiments described above, the charging control is performed by full charge control, but any other charging control can be used for the charging control after the discharge state of the battery is detected in the present invention.

以上説明したように、本発明によれば、バツテ
リの充電または放電状態の判定がバツテリ液の比
重に対応した起電圧とバツテリの実端子電圧との
比較により容易に判定され、放電時には直ちに充
電制御が行われることから、良好な充電状態を得
ることが可能となる。
As explained above, according to the present invention, the charging or discharging state of the battery can be easily determined by comparing the electromotive force corresponding to the specific gravity of the battery liquid and the actual terminal voltage of the battery, and when discharging, charging is immediately controlled. Since this is performed, it is possible to obtain a good state of charge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は車両用バツテリの比重対起電圧特性
図、第2図は車両用バツテリの充電及び放電特性
図、第3図は本発明に係る充電制御方法の好適な
実施例を示すフローチヤート図、第4図は車両用
バツテリのバツテリ液温対充電終期電圧特性図、
第5図は第3図に示した実施例の充電制御作用を
示す説明図である。 VR……比重相当起電圧、VE……充電終期電圧、
Vth……充電末期検出値、VA……オルタネータ発
生電圧、VB……バツテリ端子電圧、α……追加。
Fig. 1 is a specific gravity versus electromotive voltage characteristic diagram of a vehicle battery, Fig. 2 is a charging and discharging characteristic diagram of a vehicle battery, and Fig. 3 is a flowchart showing a preferred embodiment of the charging control method according to the present invention. , Figure 4 is a characteristic diagram of the battery fluid temperature versus the voltage at the end of charging for a vehicle battery.
FIG. 5 is an explanatory diagram showing the charging control action of the embodiment shown in FIG. 3. V R : Electromotive voltage equivalent to specific gravity, V E : End-of-charge voltage,
V th ...Detected value at the end of charging, V A ...Alternator generated voltage, V B ...Battery terminal voltage, α...Additional.

Claims (1)

【特許請求の範囲】[Claims] 1 バツテリ液の比重を検出し該液比重に相当す
る起電圧を実際のバツテリ端子電圧と比較して、
バツテリの充電または放電状態を判別し、バツテ
リが放電状態である場合には自動的に充電制御状
態とすることを特徴とする車両用バツテリの充電
制御方法。
1 Detect the specific gravity of the battery liquid and compare the electromotive force corresponding to the liquid specific gravity with the actual battery terminal voltage,
A charging control method for a battery for a vehicle, characterized by determining whether the battery is charged or discharged, and when the battery is in a discharged state, automatically puts the battery into a charging control state.
JP57195746A 1982-11-08 1982-11-08 Method of controlling charge of battery for vehicle Granted JPS5986432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195746A JPS5986432A (en) 1982-11-08 1982-11-08 Method of controlling charge of battery for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195746A JPS5986432A (en) 1982-11-08 1982-11-08 Method of controlling charge of battery for vehicle

Publications (2)

Publication Number Publication Date
JPS5986432A JPS5986432A (en) 1984-05-18
JPH0326026B2 true JPH0326026B2 (en) 1991-04-09

Family

ID=16346272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195746A Granted JPS5986432A (en) 1982-11-08 1982-11-08 Method of controlling charge of battery for vehicle

Country Status (1)

Country Link
JP (1) JPS5986432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447013B1 (en) * 2014-04-15 2014-10-13 이장우 Unit for Control Flow Having Closing Prevention Member
KR101481423B1 (en) * 2014-03-05 2015-01-13 이장우 Unit for Controling Flow Having Stopper
KR101481420B1 (en) * 2014-03-05 2015-01-13 이장우 Unit for Controling Flow with Pieces for Regulating Flow Having Different Slope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481423B1 (en) * 2014-03-05 2015-01-13 이장우 Unit for Controling Flow Having Stopper
KR101481420B1 (en) * 2014-03-05 2015-01-13 이장우 Unit for Controling Flow with Pieces for Regulating Flow Having Different Slope
KR101447013B1 (en) * 2014-04-15 2014-10-13 이장우 Unit for Control Flow Having Closing Prevention Member

Also Published As

Publication number Publication date
JPS5986432A (en) 1984-05-18

Similar Documents

Publication Publication Date Title
JP3271730B2 (en) Power generation system charge control device
US20100289452A1 (en) Power supply apparatus for vehicles
US20160009194A1 (en) Power supply apparatus
CN111433076B (en) Electrical device for an electrically drivable motor vehicle and method for controlling the same
JPH10174297A (en) Discharge control method for storage battery, and its device
JP3311505B2 (en) How to charge a battery pack containing multiple secondary batteries
JP3669153B2 (en) Lead-acid battery charging method
JPH0326026B2 (en)
JPH06296302A (en) Controller for engine-driven generator for electirc vehicle
JP2002058175A (en) Independent power supply system
JP4565771B2 (en) Battery charge control device
JPS5986431A (en) Method of controlling charge of battery for vehicle
JPH05137275A (en) Power supply equipment for vehicle
JPS5987381A (en) Battery warning method for vehicle
CN114320703B (en) Auxiliary ignition device for vehicle and ignition device for vehicle
JP3858673B2 (en) Load leveling system and control method thereof
JPH09261882A (en) Charging method and charging apparatus
KR20010076946A (en) Auto charging mode enerhy recovery type power generating structure
JPH09331637A (en) Charger
JP3070629B2 (en) Charging method
JPH09163620A (en) Charger
JP2569795B2 (en) Battery charge control device
JP3216180B2 (en) Method for recovering capacity of nickel-cadmium battery
JPH05236666A (en) Battery charger
JPS6116767Y2 (en)