JPH03260061A - Formation of boron nitride thin film-coated substrate - Google Patents

Formation of boron nitride thin film-coated substrate

Info

Publication number
JPH03260061A
JPH03260061A JP5965790A JP5965790A JPH03260061A JP H03260061 A JPH03260061 A JP H03260061A JP 5965790 A JP5965790 A JP 5965790A JP 5965790 A JP5965790 A JP 5965790A JP H03260061 A JPH03260061 A JP H03260061A
Authority
JP
Japan
Prior art keywords
thin film
boron nitride
nitride thin
substrate
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5965790A
Other languages
Japanese (ja)
Other versions
JP2513338B2 (en
Inventor
Satoru Nishiyama
哲 西山
Kiyoshi Ogata
潔 緒方
Takashi Mikami
隆司 三上
So Kuwabara
桑原 創
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2059657A priority Critical patent/JP2513338B2/en
Publication of JPH03260061A publication Critical patent/JPH03260061A/en
Application granted granted Critical
Publication of JP2513338B2 publication Critical patent/JP2513338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film of C-BN or W-BN at low temp. without being affected by a substrate by forming a BN thin film on the substrate surface through an intermediate layer of a specified element. CONSTITUTION:A thin film 12 of the cubic sphalerite-type boron nitride C-BN having extremely high hardness and thermal and chemical stability or the hexagonal wurtzite-type boron nitride W-BN having excellent chemical stability and resistance to thermal shock and wear is formed on the surface of a substrate 1 of high-speed steel, etc. In this case, the substrate 1 is supported by a holder 2, Si, for example, among groups 3a, 4a and 4b elements as the vaporization source 10 is vapor-deposited from a vaporization source 4 opposite to the substrate on the substrate 1 surface by an electron beam, etc., and the surface is irradiated by N ion 5' from an ion source 5 to form an Si-contg. intermediate layer 11 on the substrate 1. A B-based vaporization material 9 in a vaporization source 3 is vaporized by an ion beam and deposited on the intermediate layer 11, and the substrate is irradiated by N ion from the vaporization source 5. As a result, the thin film 12 of C-BN or W-BN is deposited with high adhesion without damaging the material of the substrate.

Description

【発明の詳細な説明】 (産業上の利用分野] この発明は、窒化ホウ素薄膜被覆基体の形成方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a substrate coated with a boron nitride thin film.

〔従来の技術〕[Conventional technology]

窒化ホウ素(以下rBN」という。)には、その結晶構
造によって、立方晶系閃亜鉛鉱型(以下rc−BNJと
いう。)、六方晶系グラファイト型(以下’h−BNJ
という。)および六方晶系ウルツ鉱型(以下rw−BN
Jという。)の3種類に大別される。
Depending on its crystal structure, boron nitride (hereinafter referred to as "rBN") has three types: cubic zinc blende type (hereinafter referred to as rc-BNJ), hexagonal graphite type (hereinafter referred to as 'h-BNJ).
That's what it means. ) and hexagonal wurtzite type (rw-BN
It's called J. ) are broadly classified into three types.

このなかでもc−BNは、ダイヤモンドに次ぐ高硬度を
有し、熱的および化学的安定性に優れているため、耐摩
耗性が必要とされる工具分野等に応用され、さらに絶縁
性および高熱伝導性を必要とされるヒートシンク用材料
等への応用にも期待されている。またw−BNも前述c
−BNと同様に優れた化学的安定性、熱衝撃性および高
硬度を有するため、耐摩耗性を必要とされる分野に応用
されている。
Among these, c-BN has a hardness second only to diamond and excellent thermal and chemical stability, so it is used in tools that require wear resistance, and it also has insulation and high heat resistance. It is also expected to be applied to heat sink materials that require conductivity. Also, w-BN is also
- Like BN, it has excellent chemical stability, thermal shock resistance, and high hardness, so it is applied to fields that require wear resistance.

現在、このc−BNおよびw−BN主体の薄膜を物理蒸
着法(CVD法)または化学蒸着法(PVD法)を用い
て形成する方法が盛んに研究されている。
Currently, methods of forming thin films mainly composed of c-BN and w-BN using physical vapor deposition (CVD) or chemical vapor deposition (PVD) are being actively researched.

例えば、CVD法は、膜を形成すべき基体を反応室に収
納し、この反応室内に原料ガスとして、例えばジボラン
(B、H,)等のホウ素元素を含むガスおよび例えばア
ンモニア(NH3)等の窒素元素を含むガスを導入し、
この原料ガスを約1000 ’Cの高温に加熱した基体
上で、熱分解し、反応させることによって、基体上に窒
化ホウ素薄膜を形成する方法である。
For example, in the CVD method, a substrate on which a film is to be formed is stored in a reaction chamber, and a gas containing a boron element such as diborane (B, H, Introducing a gas containing nitrogen element,
This method forms a boron nitride thin film on a substrate by thermally decomposing and reacting this raw material gas on a substrate heated to a high temperature of about 1000'C.

しかし、このCVD法では、窒化ホウ素薄膜を形成でき
る基体の種類が限定されるという問題がある。すなわち
、CVD法では、基体を約1000’Cの高温に加熱す
る必要があるが、例えば、高速度鋼は約600″Cの温
度で劣化してしまう性質があるので、上記CVD法では
、この高速度鋼上に窒化ホウ素薄膜を形成することがで
きない。
However, this CVD method has a problem in that the types of substrates on which a boron nitride thin film can be formed are limited. In other words, in the CVD method, it is necessary to heat the substrate to a high temperature of about 1000'C, but since high-speed steel, for example, has the property of deteriorating at a temperature of about 600'C, the above-mentioned CVD method It is not possible to form boron nitride thin films on high speed steel.

さらにCVD法によって、形成される窒化ホウ素薄膜は
、軟質なh−BN主体の膜になりやすく、c−BNおよ
びw−BNの優れた特性が充分に活かされない1頃向に
ある。
Furthermore, the boron nitride thin film formed by the CVD method tends to be a soft h-BN-based film, and the excellent properties of c-BN and w-BN are not fully utilized.

またPVD法には、ホウ素原子から構成されるターゲッ
トを窒素雰囲気中でスパッタすることによって、基体上
に窒化ホウ素薄膜を形成する反応性スパッタリング法等
があるが、この方法においても軟質なh−BN主体の膜
しか得ることができない。
In addition, PVD methods include reactive sputtering methods that form a boron nitride thin film on a substrate by sputtering a target composed of boron atoms in a nitrogen atmosphere, but this method also uses soft h-BN. Only the main film can be obtained.

このようにc−BNおよびw−BNの薄膜化は困難であ
り、現在のところ、それらは、高温および高圧下で人工
的に合成されるものに限られており、その結果製造コス
トが高くなり、さらに粉末または粒状のものしか合成す
ることができないため、現在その応用範囲も限定されて
いる。これらc−BNおよびw−BNを低温下で薄膜状
に形成することができれば、その応用範囲が一層拡大さ
れることは明らかである。
As described above, it is difficult to make thin films of c-BN and w-BN, and at present, they are limited to those that can be synthesized artificially at high temperatures and pressures, resulting in high manufacturing costs. Moreover, since it can only be synthesized in powder or granular form, its scope of application is currently limited. It is clear that if c-BN and w-BN can be formed into thin films at low temperatures, the range of their applications will be further expanded.

そこで近年、イオンやプラズマを用いて、高温。Therefore, in recent years, high temperature has been developed using ions and plasma.

高圧下で安定な相を低温下で形成しようという試みが活
発になってきている。
Attempts to form phases that are stable under high pressure and at low temperatures are becoming more active.

例えば時開60−63372号において、ホウ素の真空
蒸着と同時または交互に、窒素イオンを照射して、基体
上に窒化ホウ素薄膜を形成する方法が開示されている。
For example, Jikai No. 60-63372 discloses a method of forming a boron nitride thin film on a substrate by irradiating nitrogen ions simultaneously or alternately with vacuum evaporation of boron.

この方法によれば、基体を特に加熱することなく、c−
BNやw−BNを合成することができ、かつ照射するイ
オンと蒸着原子との衝突および反問により、イオンと蒸
着原子とが基体の内部に注入され、基体と、この基体上
に形成される窒化ホウ素薄膜との界面に新たな混合層を
形成することによって、基体と窒化ホウ素薄膜との密着
性を向上させることができる。
According to this method, c-
BN and w-BN can be synthesized, and the ions and vapor deposited atoms are injected into the inside of the substrate due to the collision and counteraction between the irradiating ions and the vapor deposited atoms, and the nitride formed on the substrate and the nitride formed on the substrate By forming a new mixed layer at the interface with the boron thin film, the adhesion between the substrate and the boron nitride thin film can be improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、c−BNおよびw−BNは、特に金属と
の濡れ性が悪いという性質があり、そのため、基体とし
て金属を用いた場合、実用上充分に耐えることのできる
密着性を得ることができないという問題があった。
However, c-BN and w-BN have a property that they have particularly poor wettability with metals, and therefore, when metals are used as substrates, it is said that it is not possible to obtain adhesion that can withstand sufficiently for practical use. There was a problem.

さらにまた上述の方法で窒化ホウ素薄膜が被覆された基
体は、高温下にさらされた場合、基体と窒化ホウ素薄膜
との熱膨張係数の違いにより、膜の剥離が生じやすく、
さらにこの熱膨張係数の違いにより、膜内に生しる内部
応力が作用して膜の剥離を促進させる。また基体と窒化
ホウ素薄膜との格子定数の違いによりc−BNやw−B
Nの成長を妨げたり、または膜内の内部応力が増加する
ことにより膜がさらに剥離し易くなったりするという問
題があった。
Furthermore, when a substrate coated with a boron nitride thin film by the above method is exposed to high temperatures, the film tends to peel off due to the difference in thermal expansion coefficient between the substrate and the boron nitride thin film.
Further, due to this difference in coefficient of thermal expansion, internal stress generated within the film acts to promote peeling of the film. Also, due to the difference in lattice constant between the substrate and the boron nitride thin film, c-BN and w-B
There are problems in that the growth of N is hindered or the internal stress within the film increases, making the film more likely to peel off.

この発明の目的は、上記問題点に鑑み、基体に影響され
ることなく、低温下で基体上にc−BNおよびw−BN
主体の窒化ホウ素′fii膜を形成できる窒化ホウ素¥
il膜被覆基体の製造方法を提供するものである。
In view of the above problems, an object of the present invention is to form c-BN and w-BN on a substrate at low temperature without being affected by the substrate.
Boron nitride which can form the main boron nitride film
The present invention provides a method for manufacturing an il film-coated substrate.

〔課題を解決するための手段〕[Means to solve the problem]

請求項(1)記載の窒化ホウ素薄膜被覆基体の形成方法
は、基体上に、第IIIb族、第IVa族および第IV
b族元素のうちの少なくとも一種以上を含む物質の真空
蒸着と同時もしくは交互または華着後に、不活性ガスイ
オンおよび窒素イオンのうちの少なくとも一方を含むイ
オンを加速エネルギー1 keV以上〜40keV以下
の範囲で照射して、第IIIb族、第IVa族および第
IVb族元素のうちの少なくとも一種以上を含んだ薄膜
を形成し、この薄膜上に、ホウ素を含む物質の真空蒸着
と同時または交互に、窒素イオンを少なくとも含むイオ
ンを加速エネルギー40keV以下の範囲で照射して窒
化ホウ素薄膜を形成し、 この窒化ホウ素薄膜中に含まれるホウ素原子と窒素原子
との粒子数の割合を1以上〜60以下の範囲としたこと
を特徴とする 請求項(2)記載の窒化ホウ素薄膜被覆基体の形成方法
は、請求項(1)記載の窒化ホウ素薄膜被覆基体の形成
方法において、 窒化ホウ素薄膜の形成の際に照射するイオンの加速エネ
ルギーが2keV未満の場合、窒化ホウ素薄膜中に含ま
れるホウ素原子と窒素原子との粒子数の割合を1以上〜
6以下の範囲で一定とし、また窒化ホウ素薄膜の形成の
際に照射するイオンの加速エネルギーが2keV以上〜
5keV未満の場合、窒化ホウ素薄膜中に含まれるホウ
素原子と窒素原子との粒子数の割合を1以上〜10以下
の範囲で一定とし、 また窒化ホウ素薄膜の形成の際に照射するイオンの加速
エネルギーが5keV以上の場合、窒化ホウ素薄膜中に
含まれるホウ素原子と窒素原子との粒子数の割合を1以
上〜20以下の範囲で一定とする。
The method for forming a substrate coated with a boron nitride thin film according to claim (1) provides a method for forming a substrate coated with a boron nitride thin film.
Simultaneously or alternately with vacuum deposition of a substance containing at least one of group B elements, or after deposition, ions containing at least one of inert gas ions and nitrogen ions are accelerated at an energy range of 1 keV or more and 40 keV or less. to form a thin film containing at least one of group IIIb, group IVa, and group IVb elements, and on this thin film, nitrogen is irradiated simultaneously or alternately with the vacuum deposition of a substance containing boron. A boron nitride thin film is formed by irradiating ions containing at least ions at an acceleration energy of 40 keV or less, and the ratio of the number of particles of boron atoms to nitrogen atoms contained in this boron nitride thin film is in the range of 1 or more and 60 or less. The method for forming a substrate coated with a boron nitride thin film according to claim (2) is characterized in that, in the method for forming a substrate coated with a boron nitride thin film according to claim (1), irradiation is performed during formation of the boron nitride thin film. When the acceleration energy of the ions is less than 2 keV, the ratio of the number of particles of boron atoms to nitrogen atoms contained in the boron nitride thin film is 1 or more.
6 or less, and the acceleration energy of the ions irradiated when forming the boron nitride thin film is 2 keV or more.
In the case of less than 5 keV, the ratio of the number of particles of boron atoms and nitrogen atoms contained in the boron nitride thin film is constant in the range of 1 or more and 10 or less, and the acceleration energy of the ions irradiated when forming the boron nitride thin film is is 5 keV or more, the ratio of the number of particles of boron atoms and nitrogen atoms contained in the boron nitride thin film is kept constant in the range of 1 or more and 20 or less.

請求項(3)記載の窒化ホウ素薄膜被覆基体の形成方法
は、請求項(1)記載の窒化ホウ素薄膜被覆基体の形成
方法において、 窒化ホウ素薄膜の形成の際に照射するイオンの加速エネ
ルギーに関係なく、 窒化ホウ素薄膜中に含まれるホウ素原子と窒素原子との
粒子数の割合を、窒化ホウ素薄膜と、第IIIb族、第
IVa族および第IVb族元素のうちの少なくとも一種
以上を含んだ薄膜との界面では、4以上〜60以下の範
囲とし、 かつ窒化ホウ素薄膜の表面では、窒化ホウ素薄膜中に含
まれるホウ素原子と窒素原子との粒子数の割合を1以上
〜10以下の範囲とし、窒化ホウ素薄膜中で、表面方向
にホウ素原子と窒素原子との粒子数の割合を連続的また
は段階的に減少させる。
The method for forming a substrate coated with a thin boron nitride film according to claim (3) is the method for forming a substrate coated with a thin boron nitride film according to claim (1), in which: Rather, the ratio of the number of particles of boron atoms and nitrogen atoms contained in the boron nitride thin film is determined by comparing the ratio of the number of particles of boron atoms and nitrogen atoms contained in the boron nitride thin film to the thin film containing at least one of the group IIIb, group IVa, and group IVb elements. At the interface, the number of particles is in the range of 4 or more and 60 or less, and on the surface of the boron nitride thin film, the ratio of the number of particles between boron atoms and nitrogen atoms contained in the boron nitride thin film is in the range of 1 or more and 10 or less. In the boron thin film, the ratio of the number of particles of boron atoms to nitrogen atoms is decreased continuously or stepwise in the direction of the surface.

第1図はこの発明の窒化ホウ素薄膜被覆基体の形成方法
に用いられる薄膜形成装置の一例を示す概念図である。
FIG. 1 is a conceptual diagram showing an example of a thin film forming apparatus used in the method of forming a boron nitride thin film coated substrate of the present invention.

第1図に示すように〜膜を形成すべき基体1を基体ホル
ダ2に保持する。基体1に対向した位置には、舊発源3
.蒸発源4およびイオン源5を配置する。また基体1の
近傍には、膜厚計6およびイオン電流測定器7を配置す
る。
As shown in FIG. 1, a substrate 1 on which a film is to be formed is held in a substrate holder 2. As shown in FIG. At a position facing the base 1, there is a power source 3.
.. An evaporation source 4 and an ion source 5 are arranged. Further, near the substrate 1, a film thickness meter 6 and an ion current measuring device 7 are arranged.

なお基体l、基体ホルダ2.華発源3.蒸発源4、イオ
ン#5.膜厚計6およびイオン電流測定器7は図示しな
い真空装置内に収容する。
Note that the base 1, the base holder 2. Flower origin 3. Evaporation source 4, ion #5. The film thickness meter 6 and the ion current measuring device 7 are housed in a vacuum device (not shown).

蒸発s3.4は、蒸発物質9.・10を例えば電子ビー
ム、レーザ線または高周波等によって、蒸発させるもの
であり、特に限定されない。
Evaporation s3.4 is the evaporation substance 9. - 10 is evaporated by, for example, an electron beam, a laser beam, a high frequency wave, etc., and is not particularly limited.

またイオン源5は、例えばカラスマン型またはプラズマ
閉し込めにカプス磁場を用いたバケット型等であり、特
に限定されない。
Further, the ion source 5 is, for example, a Karasman type or a bucket type using a Kaps magnetic field for plasma confinement, and is not particularly limited.

また膜厚計6は、基体1上に蒸着する蒸発物質9.10
の膜厚および粒子数を計測するものであり、例えば水晶
振動子を使用した振動型膜厚計等を用いる。
Further, the film thickness gauge 6 indicates the evaporated material 9.10 that is deposited on the substrate 1.
The film thickness and number of particles are measured using, for example, a vibrating film thickness meter using a crystal oscillator.

またイオン電流測定器7は、基体1上に照射するイオン
の個数を計測するものであり、例えばファラデーカップ
のような2次電子抑制電極をもつカップ型構造のもので
ある。
The ion current measuring device 7 measures the number of ions irradiated onto the substrate 1, and has a cup-shaped structure such as a Faraday cup having a secondary electron suppressing electrode.

また蒸発fi3より蒸発させる蒸発物質9は、ホウ素元
素を含む物質であり、例えばホウ素単体、ホウ素酸化物
またはホウ素窒化物等である。
Further, the evaporation substance 9 evaporated by the evaporation fi3 is a substance containing the element boron, such as elemental boron, boron oxide, or boron nitride.

また蒸発源4より蒸発させる蒸発物質10は、第III
b族、第rVa族および第IVb族元素のうちの少なく
とも一種以上を含んだ物質であり、例えば各々の単体、
酸化物または窒化物、またはこれらの混合物1合金等で
ある。また第IIIb族元素としては、例えばB、AP
であり、第IVa族元素としては、例えばTi、Zr等
であり、第IVb族元素としては、例えばSi等である
Further, the evaporation substance 10 evaporated from the evaporation source 4 is
A substance containing at least one of group b, group rVa, and group IVb elements, for example, each element,
These include oxides, nitrides, mixtures thereof, alloys, etc. Further, as group IIIb elements, for example, B, AP
Examples of group IVa elements include Ti and Zr, and examples of group IVb elements include Si.

またイオン5゛は、例えば窒素イオン、窒素イオンと不
活性ガスイオンまたは窒素イオンと不活性ガスと水素イ
オンとからなるイオン種である。
The ions 5' are, for example, nitrogen ions, nitrogen ions and inert gas ions, or ion species consisting of nitrogen ions, inert gas, and hydrogen ions.

このような薄膜形成装置を用いて、第2図に示すように
、基体1上に第■b族、第TVa族および第IVb族元
素のうちの少なくとも一種以上を含んだ薄膜(以下「中
間層11」という。)を形成し、この中間層11上に窒
化ホウ素薄膜12を形成する。
Using such a thin film forming apparatus, as shown in FIG. A boron nitride thin film 12 is formed on the intermediate layer 11.

また基体1と中間層11との界面には、基体1と中間F
illとの構成原子からなる混合層13中間層11と窒
化ホウ素薄膜12との界面には、中間層11と窒化ホウ
素W!i12との構成原子からなる混合層14を形成す
る。
Further, at the interface between the base body 1 and the intermediate layer 11, the base body 1 and the intermediate layer F
At the interface between the intermediate layer 11 and the boron nitride thin film 12, the intermediate layer 11 and the boron nitride W! A mixed layer 14 consisting of constituent atoms of i12 is formed.

以下この中間層11および窒化ホウ素薄膜12の形成方
法を説明する。
The method of forming intermediate layer 11 and boron nitride thin film 12 will be explained below.

第1図に示す薄膜形成装置を用い、真空装置内をlXl
0−’(Torr)以下に維持し、基体1上に、蒸発源
4による第IIIb族、第IVa族および第IVb族元
素のうちの少なくとも一種以上を含む蒸発物質lOの蒸
着と同時もしくは交互または蒸着後に、イオン源5によ
り、不活性ガスイオンおよび窒素イオンのうちの少なく
とも一方を含むイオンを加速エネルギー1 keV以上
〜40keVの範囲で照射して、厚み10人〜5000
人の中間層11を形成する。
Using the thin film forming apparatus shown in Figure 1, the inside of the vacuum apparatus is lXl.
0-' (Torr) or less, on the substrate 1 simultaneously or alternately with the deposition of an evaporation substance IO containing at least one of Group IIIb, Group IVa, and Group IVb elements by the evaporation source 4. After vapor deposition, the ion source 5 irradiates ions containing at least one of inert gas ions and nitrogen ions at an acceleration energy of 1 keV or more to 40 keV to form a film with a thickness of 10 to 5,000 keV.
A middle class 11 of people is formed.

この際、基体1と中間層11との界面には、照射するイ
オンと蒸着原子との衝突および反問により、イオンと華
着原子とが基体lの内部に侵入することによって、基体
lの構成原子と、中間層11の構成原子との混合層13
が形成される。
At this time, the constituent atoms of the substrate 1 are formed at the interface between the substrate 1 and the intermediate layer 11 by collisions and counterattacks between the irradiated ions and the vapor-deposited atoms, causing the ions and the deposited atoms to enter the inside of the substrate 1. and the constituent atoms of the intermediate layer 11.
is formed.

但し、蒸発物質10として、第IIIb族元素のホウ素
単体を用いた場合は、イオンt1.5により、不活性ガ
スイオンのみを照射する。
However, when boron alone, which is a group IIIb element, is used as the evaporative substance 10, only inert gas ions are irradiated with ions t1.5.

この中間層11の形成により、基体1を構成する原子と
、後に中間層11の表面に形成する窒化ホウ素薄膜12
との熱膨張係数の違いおよび格子定数の違いによって生
しる基体1と窒化ホウ素薄膜12との密着性の悪化を防
くことができ、かつ窒化ホウ素薄膜12の形成時におけ
るc−BN。
By forming this intermediate layer 11, the atoms constituting the base 1 and the boron nitride thin film 12 that will be formed later on the surface of the intermediate layer 11 are removed.
It is possible to prevent deterioration of the adhesion between the substrate 1 and the boron nitride thin film 12 due to the difference in thermal expansion coefficient and lattice constant between the c-BN and the boron nitride thin film 12 when forming the boron nitride thin film 12.

w−BNの成長の妨げをなくすことができる。そしてさ
らに、基体1、と中間層11との界面には、γ昆合層1
3を形成することにより、基体1と中間層11との密着
性を向上させることができる。
Obstacles to the growth of w-BN can be eliminated. Furthermore, at the interface between the base body 1 and the intermediate layer 11, a γ-combined layer 1 is formed.
3, the adhesion between the base 1 and the intermediate layer 11 can be improved.

なお中間層11の厚みは、10大〜5000大の範囲が
好ましい。この範囲を逸脱して10人より薄くなると、
前述中間層11の効果が明確に出現せず、5000人よ
り厚くなると、基体1が高温下にさらされた場合、中間
層11と、後に中間層11上に形成する窒化ホウ素薄膜
12との熱伝導率の違いにより、膜内に熱勾配が生し、
膜が剥離しやすくなる。
Note that the thickness of the intermediate layer 11 is preferably in the range of 10 to 5,000. If you deviate from this range and become thinner than 10 people,
If the effect of the intermediate layer 11 described above does not clearly appear and the thickness exceeds 5,000, when the substrate 1 is exposed to high temperatures, the heat between the intermediate layer 11 and the boron nitride thin film 12 that will be formed on the intermediate layer 11 later will be reduced. The difference in conductivity creates a thermal gradient within the membrane,
The film will peel off easily.

またイオン源5により、基体l上に照射する不活性ガス
イオンおよび窒素イオンのうちの一方を含むイオンの加
速エネルギーは、1keV以上〜40keV以下の範囲
が好ましい。この範囲を逸脱して、1keVより小さく
すると、基体1と中間層11との界面での混合層13の
形成が不充分となり、40keVより大きくすると、中
間層11に生しる欠陥の数が多くなる。
Further, the acceleration energy of ions including one of inert gas ions and nitrogen ions irradiated onto the substrate 1 by the ion source 5 is preferably in the range of 1 keV or more and 40 keV or less. If it deviates from this range and becomes smaller than 1 keV, the formation of the mixed layer 13 at the interface between the substrate 1 and the intermediate layer 11 will be insufficient, and if it becomes larger than 40 keV, a large number of defects will occur in the intermediate layer 11. Become.

次にこの中間層ll上に、蒸発2114により、ホウ素
を含む蒸発物質7の蒸着と同時または交互に、イオン源
5により、少なくとも窒素イオンを含むイオンを加速エ
ネルギー40keV以下の範囲で照射して、窒化ホウ素
薄膜12を形成する。
Next, ions containing at least nitrogen ions are irradiated onto the intermediate layer 11 by the ion source 5 at an acceleration energy of 40 keV or less, simultaneously or alternately with the evaporation material 7 containing boron, by evaporation 2114, A boron nitride thin film 12 is formed.

この際、形成する窒化ホウ素薄膜12中に含まれるホウ
素原子と窒素原子との粒子数の割合(以下rB/N!u
tc比」という、)は1以上〜60以下の範囲とする。
At this time, the ratio of the number of particles of boron atoms and nitrogen atoms contained in the boron nitride thin film 12 to be formed (rB/N!u
(referred to as "tc ratio") is in the range of 1 or more and 60 or less.

このB/Ntlltc比は、窒化ホウ素薄膜12全体で
一定にしても、または窒化ホウ素薄膜12中で、基体1
から表面方向に、B/N組成比を減少させても良い(す
なわち窒化ホウ素薄膜12中で、ホウ素の原子密度を基
体1から表面方向に、段階的または連続的に減少させる
)。
This B/Ntlltc ratio may be constant throughout the boron nitride thin film 12 or within the boron nitride thin film 12.
The B/N composition ratio may be decreased from the substrate 1 toward the surface (that is, the boron atomic density in the boron nitride thin film 12 is decreased stepwise or continuously from the substrate 1 toward the surface).

窒化ホウ素薄膜12全体でB/N組威組酸比定とする場
合、窒化ホウ素薄膜12の形成時に照射するイオンの加
速エネルギーが2keV未満では、B/N組威組酸比以
上〜6以下の範囲で一定とし、同様に加速エネルギ−2
keV以上〜5keVでは、B/N&lI威比を1以上
〜10以下の範囲で一定、加速エネルギ−5keV以上
では、B/N組戒比を1以上〜20以下の範囲で一定と
することが好ましい。
When the B/N ratio is determined for the entire boron nitride thin film 12, if the acceleration energy of the ions irradiated during the formation of the boron nitride thin film 12 is less than 2 keV, the B/N ratio will be between 6 and below. Similarly, acceleration energy −2
At keV or higher to 5 keV, it is preferable to keep the B/N&lI power ratio constant in the range of 1 or higher and 10 or lower, and at acceleration energy of -5 keV or higher, it is preferable to keep the B/N pair ratio constant in the range of 1 or higher and 20 or lower. .

この範囲を逸脱すると、窒化ホウ素薄膜12の表面での
c−BNまたはw−BNの含有量が少なくなり、c−B
Nおよびw−BNの高硬度、化学的安定性等の優れた特
性に悪影響を及ぼす恐れがある。
Outside this range, the c-BN or w-BN content on the surface of the boron nitride thin film 12 decreases, and the c-B
This may have an adverse effect on the excellent properties of N and w-BN, such as high hardness and chemical stability.

また窒化ホウ素薄膜12中のB/N組成比を段階的また
は連続的に減少させる場合は、窒化ホウ素薄膜12の表
面では、B/N&u成比を1酸比〜10以下の範囲とし
、中間層11と窒化ホウ素薄膜12との界面では、B/
Nu成比を酸比上〜60以下の範囲とすることが好まし
い。
In addition, when decreasing the B/N composition ratio in the boron nitride thin film 12 stepwise or continuously, the surface of the boron nitride thin film 12 should have a B/N & u composition ratio in the range of 1 acid ratio to 10 or less, and the intermediate layer 11 and the boron nitride thin film 12, B/
It is preferable that the Nu composition ratio is in the range from the acid ratio to 60 or less.

窒化ホウ素fj1膜12の表面でのB/N&[l酸比が
1以上〜10以下の範囲を逸脱すると、膜表面でのc−
BNまたはw−BNの含有量が少なくなり、このc−B
Nおよびw−BNが有する高硬度、化学的安定性等の優
れた特性に悪影響を及ぼし、また中間層11と窒化ホウ
素薄膜12との界面でのB/N組威組酸比以上〜60以
下の範囲を逸脱すると、中間層11による窒化ホウ素薄
膜12と、基体1との熱膨張係数および格子定数の違い
を緩和する作用が不充分となる。
If the B/N&[l acid ratio on the surface of the boron nitride fj1 film 12 deviates from the range of 1 or more and 10 or less, c-
The content of BN or w-BN decreases, and this c-B
The excellent properties of N and w-BN, such as high hardness and chemical stability, are adversely affected, and the B/N ratio at the interface between the intermediate layer 11 and the boron nitride thin film 12 ranges from more than 60 to less than 60. Outside the range, the effect of the intermediate layer 11 to alleviate the difference in thermal expansion coefficient and lattice constant between the boron nitride thin film 12 and the substrate 1 will be insufficient.

このように窒化ホウ素薄膜12中で、基体1から表面方
向にB/Nl威比を段階的または連続的に減少させる場
合の窒化ホウ素薄膜12の形成方法は、中間層11の表
面に到達するホウ素原子と窒素原子との粒子数を制御す
ることにより、中間Jifllと窒化ホウ素薄膜12と
の界面でのB/N組成比を4以上〜60以下の範囲とし
、その後堆積する窒化ホウ素薄膜12のB/N組威組酸
比少させるように、膜に到達するホウ素原子と窒素原子
との粒子数を制御し、最終的に窒化ホウ素薄膜12の表
面付近でのB/N組成比が1以上〜10以下の範囲とな
るようにする。
In this way, the method for forming the boron nitride thin film 12 in which the B/Nl ratio is decreased stepwise or continuously from the substrate 1 toward the surface is as follows: By controlling the number of particles of atoms and nitrogen atoms, the B/N composition ratio at the interface between the intermediate Jifll and the boron nitride thin film 12 is set in the range of 4 or more and 60 or less, and the B/N composition ratio of the boron nitride thin film 12 to be deposited thereafter is controlled. The number of boron atoms and nitrogen atoms that reach the film is controlled so as to reduce the ratio of B/N and nitrogen atoms, and the final B/N composition ratio near the surface of the boron nitride thin film 12 is 1 or more. It should be within the range of 10 or less.

またこの際に照射するイオンの加速エネルギーは、一定
であっても、随時変化させても良く、例えば、基体1と
の密着性を向上させるため、基体lの表面付近は、比較
的高い加速エネルギ−2keν以上〜40keV以下の
範囲のイオンを照射し、一定の膜厚を有する窒化ホウ素
薄膜を形成した後、膜の表面付近では、内部に欠陥等の
少ない窒化ホウ素薄膜を形成するために、照射するイオ
ンの加速エネルギー2keV以下に下げても良い。
Further, the acceleration energy of the ions irradiated at this time may be constant or may be changed at any time. For example, in order to improve the adhesion with the substrate 1, a relatively high acceleration energy is applied near the surface of the substrate 1. After forming a boron nitride thin film with a certain thickness by irradiating ions in the range of -2 kev or more to 40 keV or less, irradiation is performed near the surface of the film in order to form a boron nitride thin film with few internal defects. The acceleration energy of the ions may be lowered to 2 keV or less.

なお基体1は、各種金属、セラミック、ガラスまたは高
分子により構成される物質等の任意のものを用いること
ができる。
Note that the base 1 can be made of any material such as various metals, ceramics, glass, or substances made of polymers.

〔作用〕[Effect]

この発明の構成によれば、基体と窒化ホウ素薄膜との間
に形成する第IIIb族、第IVa族および第IVb族
のうちの少なくとも一種以上を含んだ薄膜によって、基
体と窒化土つ素薄膜との熱膨張率の違いおよび格子定数
の違いにより生しる窒化ホウ素薄膜の密着性の悪化およ
び窒化ホウ素薄膜の形成時におけるc−BN、w−BN
(D成長の妨げ等をなくすことができる。
According to the configuration of the present invention, the thin film containing at least one of Group IIIb, Group IVa, and Group IVb formed between the substrate and the boron nitride thin film allows the thin film to be bonded between the substrate and the boron nitride thin film. Deterioration of the adhesion of boron nitride thin films caused by differences in thermal expansion coefficients and lattice constants of c-BN and w-BN during formation of boron nitride thin films.
(D. Obstacles to growth can be eliminated.

〔実施例] 尖施班上 第1図に示す薄膜形成装置を用いて、真空装置内の真空
度をlXl0−’(Torr:l以下に維持し、基体1
上に、電子ビームの蒸発′l14により、蒸発物質10
として、第IVb族元素単体の純度99、999%のケ
イ素原子(Si)の蒸着と同時に、イオン源5に窒素ガ
スを導入することにより、窒素イオンを加速エネルギー
2keVで照射することによって、中間層11を形成し
た。また中間Jitll中のSi原子と窒素原子との粒
子数の割合(Si/N組威比組酸比となるように、基体
1上に到達するSi原子と窒素原子との粒子数を制御し
た。
[Example] Using the thin film forming apparatus shown in FIG.
Above, the evaporated substance 10 is evaporated by the evaporation of the electron beam
At the same time as the vapor deposition of silicon atoms (Si) having a purity of 99.999% as a simple substance of group IVb element, nitrogen gas is introduced into the ion source 5 to irradiate nitrogen ions with an acceleration energy of 2 keV, thereby forming an intermediate layer. 11 was formed. Further, the number of particles of Si atoms and nitrogen atoms reaching the substrate 1 was controlled so that the ratio of the number of particles of Si atoms and nitrogen atoms in the intermediate JITll (Si/N ratio) was achieved.

またこの中間層11の厚みは、500人とした。Further, the thickness of this middle class 11 was set to 500 people.

次にこの中間層11の表面に、華発源3により、純度9
9.7%のホウ素原子(B)の蒸着と同時に、イオン源
5に窒素ガスを導入することにより、窒素イオンを加速
エネルギー2keVで照射し、窒化ホウ素薄膜12を形
成した。また窒化ホウ素薄膜12中のホウ素原子と窒素
原子との粒子数の割合(B/N組成比)は、膜全体で一
定の3とした。
Next, the surface of this intermediate layer 11 is coated with purity 9.
Simultaneously with the vapor deposition of 9.7% boron atoms (B), nitrogen gas was introduced into the ion source 5, and nitrogen ions were irradiated with an acceleration energy of 2 keV to form a boron nitride thin film 12. Further, the ratio of the number of particles of boron atoms to nitrogen atoms (B/N composition ratio) in the boron nitride thin film 12 was set to be constant 3 throughout the film.

また窒化ホウ素薄膜I2の膜厚は5000大とした。Further, the thickness of the boron nitride thin film I2 was set to 5000 mm.

なお基体1として、高速度鋼(ハイス綱:5KHIO1
寸法20mmX20mmX1mmtである。)を用いた
Note that the base body 1 is made of high speed steel (high speed steel: 5KHIO1).
The dimensions are 20 mm x 20 mm x 1 mm. ) was used.

そして、さらに実施例1における中間Nllの形成時の
蒸発物110.照射イオン種、照射イオンの加速エネル
ギー(]keV以上〜40keV以下の範囲)および中
間層の&[l酸比、また窒化ホウ素yt膜12の形成時
の照射イオン種、照射イオンの加速エネルギーおよびB
/N&[l酸比(1以上〜60以下の範囲)を変化させ
、他の条件および形成プロセスは実施例1と同様にして
、窒化ホウ素薄膜被覆基体を形成し、実施例2〜1日と
した。
Further, the evaporated material 110 during the formation of intermediate Nll in Example 1. The irradiation ion species, the acceleration energy of the irradiation ions (in the range from keV to 40keV), the &[l acid ratio of the intermediate layer, and the irradiation ion species, acceleration energy of the irradiation ions, and B during the formation of the boron nitride YT film 12.
A boron nitride thin film coated substrate was formed by changing the /N&[l acid ratio (in the range from 1 to 60) and using the same conditions and formation process as in Example 1, and from Examples 2 to 1 day. did.

この実施例2〜18および実施例1の諸条件を表1に示
す。
Table 1 shows the conditions of Examples 2 to 18 and Example 1.

なお実施例1〜18において、形成した窒化ホウ素薄膜
12のB /N&fl或比は、膜中で一定である。
In Examples 1 to 18, the B/N&fl ratio of the formed boron nitride thin film 12 was constant within the film.

また表1において、 実施例18におけるArイオンと窒素イオンの混合比は
(Arイオンの個数比/窒素イオンの個数比)は30%
である。
Further, in Table 1, the mixing ratio of Ar ions and nitrogen ions in Example 18 (number ratio of Ar ions/number ratio of nitrogen ions) is 30%.
It is.

aは蒸発物質 すは照射イオン種 Cは中間層の組成比 づは照射イオンの加速エネルギー(keV)eはB/N
組成比 fは照射イオン種 gは照射イオンの加速エネルギー[k e V)(表1
:B/N紐威比一定の場合) 次に実施例1と同様の形成プロセスで、基体1上に中間
層11を形成した後、この中間層11上に窒化ホウ素薄
膜12を形成する際、窒化ホウ素薄膜12の硬度および
密着性を高、めるため、窒素原子とホウ素原子との粒子
数を制御することにより、基体1から表面方向にB/N
&I威比を段酸比または連続的に減少させ(B/N組成
比を一定としない、)、他の形成プロセスは実施例1と
同様にして、窒化ホウ素薄膜12を形成し、さらに中間
層11の形成時の蒸発物質、照射イオン種および照射イ
オンの加速エネルギー、また窒化ホウ素薄Wi!、12
の形成時のB/N組威組酸比射イオン種。
a is the evaporated substance, C is the irradiated ion species, C is the composition ratio of the intermediate layer, is the acceleration energy of the irradiated ions (keV), and e is B/N.
The composition ratio f is the irradiated ion species g is the acceleration energy of the irradiated ions [k e V] (Table 1
: When the B/N ratio is constant) Next, after forming the intermediate layer 11 on the substrate 1 in the same formation process as in Example 1, when forming the boron nitride thin film 12 on this intermediate layer 11, In order to increase the hardness and adhesion of the boron nitride thin film 12, the number of nitrogen atoms and boron atoms is controlled to increase the B/N from the substrate 1 toward the surface.
The boron nitride thin film 12 is formed by reducing the &I ratio stepwise or continuously (the B/N composition ratio is not constant), and the other formation processes are the same as in Example 1, and further an intermediate layer is formed. The evaporated substance, the irradiated ion species, and the acceleration energy of the irradiated ions during the formation of No. 11, as well as the boron nitride thin Wi! , 12
B/N group weight group acid specific ionic species at the time of formation.

照射イオンの加速エネルギーおよびB/N&ll威比を
変化酸比、実施例19〜24とした。
The acceleration energy of the irradiated ions and the B/N&ll ratio were changed to different acid ratios, and Examples 19 to 24 were used.

この実施例19〜24の諸条件を表2に示す。Table 2 shows the conditions of Examples 19 to 24.

なお表2において、 表2の項目eで示す窒化ホウ素薄膜中のB/N組域比に
おいて、上層は窒化ホウ素′Fji膜の表面および下層
は中間層と窒化ホウ素薄膜との界面付近のB /Nil
威比を酸比。
In Table 2, in the B/N composition area ratio in the boron nitride thin film shown in item e of Table 2, the upper layer is the surface of the boron nitride 'Fji film, and the lower layer is the B/N ratio near the interface between the intermediate layer and the boron nitride thin film. Nil
Power ratio to acid ratio.

また実施例24におけるArイオンと窒素イオンの混合
比は(Arイオンの個数比/窒素イオンの個数比)は3
0%である。
In addition, the mixing ratio of Ar ions and nitrogen ions in Example 24 (number ratio of Ar ions/number ratio of nitrogen ions) was 3.
It is 0%.

(表2 : BlNMi威比が一酸比ない場合〉旦1浬
[し二i 次に中間層の形成時に、基体1上に照射するイオンの加
速エネルギーを1 keV以上40keVの範囲から逸
脱したイオンを照射し、他の条件および形成プスセスは
、実施例1と同様にして窒化ホウ素薄膜被覆基体を形成
し、さらに中間層の形成時の蒸発物質、照射イオン種お
よび照射イオンの加速エネルギー、また窒化ホウ素薄膜
の形成時のB/NM威比、酸比イオン種、照射イオンの
加速エネルギーおよびB/N紐域比を変化させ、比較例
1〜5とし、また中間層を形成せず、基体上に直接窒化
ホウ素薄膜を形成したものを比較例6〜8とした。
(Table 2: When the ratio of BlNMi to mono-acid is not equal to that of mono-acid)> Next, when forming the intermediate layer, the acceleration energy of the ions irradiated onto the substrate 1 is set to 1 keV or more, and ions that deviate from the range of 40 keV. A boron nitride thin film-coated substrate was formed using the same conditions and formation process as in Example 1, and the evaporation substance, irradiated ion species, and acceleration energy of the irradiated ions during the formation of the intermediate layer, as well as the nitridation Comparative Examples 1 to 5 were obtained by changing the B/NM power ratio, acid ratio ion species, acceleration energy of irradiated ions, and B/N string area ratio during formation of the boron thin film, and without forming an intermediate layer. Comparative Examples 6 to 8 were those in which a boron nitride thin film was directly formed on the substrate.

この比較例1〜8の諸条件を表3に示す。Table 3 shows the conditions of Comparative Examples 1 to 8.

また表3において、 比較例8におけるArイオンと窒素イオンの組混合比は
(Arイオンの個数比/窒素イオンの個数比)は30%
である。
In addition, in Table 3, the combined mixing ratio of Ar ions and nitrogen ions in Comparative Example 8 (number ratio of Ar ions/number ratio of nitrogen ions) is 30%.
It is.

C以下余白) (表37 B/N組威組酸比の場合) aは蒸発物質 すは照射イオン種 Cは中間層の組成化 dは照射イオンの加速エネルギー(keV〕eはB/N
紐威比 酸比照射イオン種 gは照射イオンの加速エネルギー(keV)走較拠主二
上i 次に窒化ホウ素薄膜の形成時に、窒素原子とホウ素原子
との粒子数の割合(B/N組戒比)を段階的または連続
的に変化させ、かつ請求項(3)記載の範囲から逸脱し
、他の条件および形成プロセスは実施例1と同様にして
、窒化ホウ素薄膜被覆基体を形成し、さらに中間層の形
成時の華発物質。
(Margin below C) (Table 37 B/N combination acid ratio) a is the evaporated substance, irradiated ion species C is the composition of the intermediate layer d is the acceleration energy of the irradiated ion (keV) e is B/N
The ratio of the irradiated ion species g to the acid ratio is the acceleration energy (keV) of the irradiated ions. a boron nitride thin film-coated substrate is formed by changing the ratio (prevention ratio) stepwise or continuously, and departing from the scope of claim (3), with other conditions and formation process being the same as in Example 1, In addition, it is an effervescent substance during the formation of the intermediate layer.

照射イオン種および照射イオンの加速エネルギーまた窒
化ホウ素FIMの形成時のB/N組成比、照射イオン種
、照射イオンの加速エネルギーおよびB/N組成比を変
化させ、比較例9〜13.15とし、また中間層を形成
せず、基体上に直接窒化ホウ素薄膜を形成したものを比
較例14とした。
The irradiation ion species, the acceleration energy of the irradiation ions, the B/N composition ratio during formation of the boron nitride FIM, the irradiation ion species, the acceleration energy of the irradiation ions, and the B/N composition ratio were varied, and Comparative Examples 9 to 13.15 were prepared. Comparative Example 14 was prepared in which a boron nitride thin film was directly formed on the substrate without forming an intermediate layer.

この比較例9〜15の諸条件を表4に示す。Table 4 shows the conditions of Comparative Examples 9 to 15.

また表4において、 比較例13におけるArイオンと窒素イオンの混合比は
(Arイオンの個数比/窒素イオンの個数比)は30%
である。
In addition, in Table 4, the mixing ratio of Ar ions and nitrogen ions in Comparative Example 13 (number ratio of Ar ions/number ratio of nitrogen ions) is 30%.
It is.

(以下余白) 以上実施例1〜24および比較例1〜15の膜の密着力
と硬度とを測定した結果を表5および表6に示す。
(Left below) Tables 5 and 6 show the results of measuring the adhesion and hardness of the films of Examples 1 to 24 and Comparative Examples 1 to 15.

密着力は、AEセンサ付自動スクラ・ンチ試験機を使用
して、1〜5ONの連続荷重を一定速度かけて、スフラ
ンチし、AE倍信号急激に立ち上めくる荷重を臨界荷重
しとして、その値の大きさしこまって、密着力を評価し
た6 また硬度は、微小ビ・ノカース硬度計を用いて、10g
f荷重でダイヤモンド圧子を押しつけた時の圧痕の大き
さより求めた。
The adhesion strength is determined by using an automatic scratch/punch tester equipped with an AE sensor, applying a continuous load of 1 to 5 ON at a constant speed, and then performing a scrubbing process.The critical load is the load that causes the AE double signal to suddenly rise. The adhesion was evaluated by compressing the size of
It was determined from the size of the indentation when a diamond indenter was pressed under f load.

(以下余白) (表4 : B/N&[l酸比が一定でない場合)(表5) (表6) (以下余白) 以上表5に示す実施例1〜24は、全ての実施例におい
て、臨界荷重Lc(N)の値が25以上となり、これは
実施例の中間層11(第IIIb族第Na族および第I
Vb族のうち少なくとも一種以上を含む薄膜)の形成に
よって、基体1と窒化ホウ素薄膜12との密着性に高い
ものが得られていることがわかる。また硬度(Kg/c
+fl)においては、全て4000Kg/cJ以上の値
が得られており、中間層11の形成によって、窒化ホウ
素薄膜12は、基体1の影響すなわち基体1との格子定
数の違い等によって生しるc−BN、w−BNの成長の
妨げを受けなくなっていることがわかる。
(Space below) (Table 4: When B/N & [l acid ratio is not constant) (Table 5) (Table 6) (Space below) In Examples 1 to 24 shown in Table 5 above, in all Examples, The value of the critical load Lc (N) is 25 or more, which means that the intermediate layer 11 of the embodiment (group IIIb group Na and group I
It can be seen that high adhesion between the substrate 1 and the boron nitride thin film 12 can be obtained by forming a thin film containing at least one type of Vb group. Also, hardness (Kg/c
+fl), values of 4000 Kg/cJ or more were obtained in all cases, and due to the formation of the intermediate layer 11, the boron nitride thin film 12 is free from the c It can be seen that the growth of -BN and w-BN is no longer hindered.

一方、比較例1〜5は、硬度は4000 (Kg/ c
rA 、)以上得られているが、中間層を形成する際に
照射するイオンの加速エネルギーを40keVより大き
くしたため、このイオンの照射により、中間層中に生し
る欠陥が多くなり、その結果、臨界荷重LcO値が、実
施例1〜25より、小さくなり膜の密着性が劣ったと考
えられる。
On the other hand, in Comparative Examples 1 to 5, the hardness was 4000 (Kg/c
rA, ) or more was obtained, but since the acceleration energy of the ions irradiated when forming the intermediate layer was made larger than 40 keV, the irradiation of these ions caused more defects to be generated in the intermediate layer, and as a result, It is considered that the critical load LcO value was smaller than in Examples 1 to 25, and the adhesion of the film was inferior.

また比較例6〜8は、中間層を形成せず、基体上に直接
窒化ホウ素薄膜を形成したため、実施例1〜25より、
臨界荷重Lcの値が小さくなり、c−BNN骨分少なく
なったことにより硬度が小さくなったものと考えられる
Moreover, in Comparative Examples 6 to 8, the boron nitride thin film was directly formed on the substrate without forming an intermediate layer, so that
It is thought that the hardness decreased because the value of the critical load Lc decreased and the amount of c-BNN bone decreased.

また比較例9〜13は、臨界荷重Lcの値は25〔N3
以上得られているが、窒化ホウ素薄膜中のB/N組戒比
が、請求項(3)記載の範囲を逸脱したため、実施例1
〜25より硬度が小さくなったものと考えられる。
Further, in Comparative Examples 9 to 13, the value of critical load Lc was 25 [N3
However, since the B/N combination ratio in the boron nitride thin film deviated from the range stated in claim (3), Example 1
It is considered that the hardness was smaller than ~25.

また比較例14は、中間層を形成せず、基体上に直接窒
化ホウ素薄膜を形成したため、実施例1〜24より、臨
界荷重Lcの値および硬度の値が小さくなり、密着性お
よび硬度ともに劣ったと考えられる。
In addition, in Comparative Example 14, the boron nitride thin film was formed directly on the substrate without forming an intermediate layer, so the critical load Lc value and hardness value were smaller than those in Examples 1 to 24, and both adhesion and hardness were inferior. It is thought that

また比較例15は、中間層の厚みが10人〜5000人
の範囲から逸脱したため、実施例1〜24より、臨界荷
重り、の値および硬度の値が小さくなり、密着性および
硬度ともに劣ったと考えられる。
In Comparative Example 15, the thickness of the intermediate layer deviated from the range of 10 to 5,000 layers, so the critical load and hardness values were smaller than those of Examples 1 to 24, and both adhesion and hardness were inferior. Conceivable.

〔発明の効果〕〔Effect of the invention〕

この発明の構成によれば、基体と窒化ホウ素薄膜との間
に形成する第IIIb族、第]Va族および第rVb族
のうちの少なくとも一種以上を含んだ薄膜によって、基
体と窒化ホウ素薄膜との熱膨張率の違いおよび格子定数
の違いにより生しる窒化ホウ素薄膜の密着性の悪化およ
び窒化ホウ素薄膜の形成時のc−BN、w−BHの成長
の妨げ等をなくすことができる。その結果、基体に影響
されることなく、低温下でc−BNおよびw−BN主体
の窒化ホウ素薄膜を形成することができる。
According to the configuration of the present invention, the thin film containing at least one of Group IIIb, Va, and rVb formed between the base and the boron nitride thin film allows the thin film to be formed between the base and the boron nitride thin film. It is possible to eliminate deterioration in the adhesion of a boron nitride thin film and hindrance to the growth of c-BN and w-BH during formation of a boron nitride thin film caused by differences in thermal expansion coefficients and lattice constants. As a result, a boron nitride thin film mainly composed of c-BN and w-BN can be formed at low temperatures without being affected by the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の窒化ホウ素薄膜被覆基体の形成方法
に用いられる薄膜形成装置の一例を示す概念図、第2図
はこの発明の窒化ホウ素y!膜被覆基体の一例を示す概
念図である。
FIG. 1 is a conceptual diagram showing an example of a thin film forming apparatus used in the method for forming a boron nitride thin film coated substrate of the present invention, and FIG. FIG. 2 is a conceptual diagram showing an example of a membrane-coated substrate.

Claims (3)

【特許請求の範囲】[Claims] (1)基体上に、第IIIb族,第IVa族および第IVb族
元素のうちの少なくとも一種以上を含む物質の真空蒸着
と同時もしくは交互または蒸着後に、不活性ガスイオン
および窒素イオンのうちの少なくとも一方を含むイオン
を加速エネルギー1keV以上〜40keV以下の範囲
で照射して、前記第IIIb族,第IVa族および第IVb族
元素のうちの少なくとも一種以上を含んだ薄膜を形成し
、 この薄膜上に、ホウ素を含む物質の真空蒸着と同時また
は交互に、窒素イオンを少なくとも含むイオンを加速エ
ネルギー40keV以下の範囲で照射して窒化ホウ素薄
膜を形成し、 この窒化ホウ素薄膜中に含まれるホウ素原子と窒素原子
との粒子数の割合を1以上〜60以下の範囲とすること
を特徴とする窒化ホウ素薄膜被覆基体の形成方法。
(1) At least one of inert gas ions and nitrogen ions is applied to the substrate simultaneously or alternately with or after the vacuum deposition of a substance containing at least one of Group IIIb, Group IVa, and Group IVb elements. A thin film containing at least one of the group IIIb, group IVa, and group IVb elements is formed by irradiating ions containing one of the elements at an acceleration energy of 1 keV or more and 40 keV or less, and on this thin film. Simultaneously or alternately with the vacuum deposition of a substance containing boron, ions containing at least nitrogen ions are irradiated at an acceleration energy of 40 keV or less to form a boron nitride thin film, and the boron atoms and nitrogen contained in this boron nitride thin film are A method for forming a substrate coated with a boron nitride thin film, characterized in that the ratio of the number of particles to atoms is in the range of 1 or more and 60 or less.
(2)前記窒化ホウ素薄膜の形成の際に照射するイオン
の加速エネルギーが2keV未満の場合、前記窒化ホウ
素薄膜中に含まれるホウ素原子と窒素原子との粒子数の
割合を1以上〜6以下の範囲で一定とし、 また前記窒化ホウ素薄膜の形成の際に照射するイオンの
加速エネルギーが2keV以上〜5keV未満の場合、
前記窒化ホウ素薄膜中に含まれるホウ素原子と窒素原子
との粒子数の割合を1以上〜10以下の範囲で一定とし
、 また前記窒化ホウ素薄膜の形成の際に照射するイオンの
加速エネルギーが5keV以上の場合、前記窒化ホウ素
薄膜中に含まれるホウ素原子と窒素原子との粒子数の割
合を1以上〜20以下の範囲で一定とする請求項(1)
記載の窒化ホウ素薄膜被覆基体の形成方法。
(2) When the acceleration energy of the ions irradiated during the formation of the boron nitride thin film is less than 2 keV, the ratio of the number of particles of boron atoms and nitrogen atoms contained in the boron nitride thin film is set to a range of 1 to 6. and when the acceleration energy of the ions irradiated during the formation of the boron nitride thin film is 2 keV or more and less than 5 keV,
The ratio of the number of particles of boron atoms and nitrogen atoms contained in the boron nitride thin film is constant in the range of 1 or more and 10 or less, and the acceleration energy of the ions irradiated when forming the boron nitride thin film is 5 keV or more. In the case of (1), the ratio of the number of particles of boron atoms and nitrogen atoms contained in the boron nitride thin film is constant in the range of 1 or more and 20 or less.
A method of forming a boron nitride thin film coated substrate as described.
(3)前記窒化ホウ素薄膜の形成の際に照射するイオン
の加速エネルギーに関係なく、 前記窒化ホウ素薄膜中に含まれるホウ素原子と窒素原子
との粒子数の割合を、前記窒化ホウ素薄膜と、前記第I
IIb族,第IVa族および第IVb族元素のうちの少なくと
も一種以上を含んだ薄膜との界面では、4以上〜60以
下の範囲とし、 かつ前記窒化ホウ素薄膜の表面では、前記窒化ホウ素薄
膜中に含まれるホウ素原子と窒素原子との粒子数の割合
を1以上〜10以下の範囲とし、前記窒化ホウ素薄膜中
で、表面方向にホウ素原子と窒素原子との粒子数の割合
を連続的または段階的に減少させる請求項(1)記載の
窒化ホウ素薄膜被覆基体の形成方法。
(3) Regardless of the acceleration energy of ions irradiated during the formation of the boron nitride thin film, the ratio of the number of particles of boron atoms and nitrogen atoms contained in the boron nitride thin film to the boron nitride thin film and the Chapter I
At the interface with the thin film containing at least one of group IIb, group IVa, and group IVb elements, the range is from 4 to 60, and on the surface of the boron nitride thin film, the boron nitride thin film contains The ratio of the number of particles of boron atoms and nitrogen atoms contained is in the range of 1 to 10, and the ratio of the number of particles of boron atoms and nitrogen atoms is adjusted continuously or stepwise in the surface direction in the boron nitride thin film. The method for forming a substrate coated with a boron nitride thin film according to claim 1, wherein the substrate is coated with a boron nitride thin film.
JP2059657A 1990-03-09 1990-03-09 Method for forming boron nitride thin film coated substrate Expired - Fee Related JP2513338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059657A JP2513338B2 (en) 1990-03-09 1990-03-09 Method for forming boron nitride thin film coated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059657A JP2513338B2 (en) 1990-03-09 1990-03-09 Method for forming boron nitride thin film coated substrate

Publications (2)

Publication Number Publication Date
JPH03260061A true JPH03260061A (en) 1991-11-20
JP2513338B2 JP2513338B2 (en) 1996-07-03

Family

ID=13119493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059657A Expired - Fee Related JP2513338B2 (en) 1990-03-09 1990-03-09 Method for forming boron nitride thin film coated substrate

Country Status (1)

Country Link
JP (1) JP2513338B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320870A (en) * 1992-05-20 1993-12-07 Nissin Electric Co Ltd Substrate coated with boron nitride containing film and its manufacture
US7264883B2 (en) 2002-12-27 2007-09-04 Kobe Steel, Ltd. Hard coating film excellent in adhesion and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164869A (en) * 1986-01-16 1987-07-21 Nissin Electric Co Ltd High hardness coating material and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164869A (en) * 1986-01-16 1987-07-21 Nissin Electric Co Ltd High hardness coating material and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320870A (en) * 1992-05-20 1993-12-07 Nissin Electric Co Ltd Substrate coated with boron nitride containing film and its manufacture
US7264883B2 (en) 2002-12-27 2007-09-04 Kobe Steel, Ltd. Hard coating film excellent in adhesion and manufacturing method thereof

Also Published As

Publication number Publication date
JP2513338B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
Flink et al. Influence of Si on the microstructure of arc evaporated (Ti, Si) N thin films; evidence for cubic solid solutions and their thermal stability
Oliveira et al. High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness
Ji et al. Metastable tetragonal zirconia formation and transformation in reactively sputter deposited zirconia coatings
Cheviot et al. Monitoring tantalum nitride thin film structure by reactive RF magnetron sputtering: Influence of processing parameters
Perrone State-of-the-art reactive pulsed laser deposition of nitrides
JPH03260061A (en) Formation of boron nitride thin film-coated substrate
EP4159354A1 (en) Method for atomic diffusion bonding and bonded structure
Ensinger et al. Ion beam-assisted deposition of nitrides of the 4th group of transition metals
JP2770650B2 (en) Boron nitride-containing film-coated substrate and method for producing the same
JP3254727B2 (en) Method for forming boron nitride-containing film
Aita et al. Sputter deposited zirconia-alumina nanolaminate coatings
JP3491288B2 (en) Boron nitride-containing film-coated substrate and method for producing the same
JPH07150337A (en) Production of nitride film
JP3473089B2 (en) Boron nitride-containing film-coated substrate
JP2504255B2 (en) Method of forming boron nitride thin film
JP2611633B2 (en) Method for producing chromium nitride film-coated substrate
JP2526698B2 (en) Substrate coated with boron nitride thin film and method for manufacturing the same
Ensinger et al. Ion beam assisted deposition of nitrogen-containing chromium films: A comparison of argon vs nitrogen ions
JPH07258822A (en) Boron nitride containing film and its production
JPH05247626A (en) Sintered compact incorporating silicon nitride coated with boron nitride containing film and/or silicon carbide and manufacture therefor
Nenadović Atomic collision on surfaces and material implementation
Gurskih et al. The Effect of Copper Content in Sputtered Powder Cathodes on the Characteristics of Vacuum Arc Nanostructured Coatings1
JPH06172967A (en) Boron nitride-containing film-coated base and its production
JP2861753B2 (en) Substrate coated with boron nitride containing film
Ramamurthy et al. Interaction of silicate liquid with sapphire surfaces

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees