JPH0325765B2 - - Google Patents
Info
- Publication number
- JPH0325765B2 JPH0325765B2 JP5662384A JP5662384A JPH0325765B2 JP H0325765 B2 JPH0325765 B2 JP H0325765B2 JP 5662384 A JP5662384 A JP 5662384A JP 5662384 A JP5662384 A JP 5662384A JP H0325765 B2 JPH0325765 B2 JP H0325765B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- light
- waveguide layer
- substrate
- optical waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 49
- 230000005284 excitation Effects 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 15
- 230000010355 oscillation Effects 0.000 claims description 11
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F3/00—Optical logic elements; Optical bistable devices
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Optical Integrated Circuits (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、光論理回路等に応用可能な、新規な
光双安定素子に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel optical bistable device that can be applied to optical logic circuits and the like.
従来例の構成とその問題点
従来より光を用いた論理演算や記憶を行う光双
安定回路の1つに、ELECTRONICS
LETTERS1981年第17巻4号第167〜168頁に掲
載の論文に記された半導体レーザがある。この半
導体レーザでは、ストライプ電極上に励起領域と
非励起領域を共振器方向に形成しており、非励起
領域が可飽和吸収領域として動作するので、励起
電流に対して双安定光特性(即ち一つの励起電流
値に対して2つの光出力状態を持つ)を得ること
が実験的に示されている。この動作原理は次のよ
うに説明される。励起領域への注入電流を増加さ
せてゆくと、励起領域から可飽和吸収領域である
非励起領域への光注入が強くなる。そしてある光
注入レベルに達すると、可飽和吸収領域での吸収
係数がゼロとなり、レーザ発振が開始する。Conventional structure and its problems ELECTRONICS is one of the conventional optical bistable circuits that perform logical operations and storage using light.
There is a semiconductor laser described in an article published in LETTERS, Vol. 17, No. 4, pp. 167-168, 1981. In this semiconductor laser, an excitation region and a non-excitation region are formed on a stripe electrode in the direction of the cavity, and since the non-excitation region operates as a saturable absorption region, it has bistable optical characteristics (i.e., one It has been experimentally shown that it can be obtained with two optical output states for one excitation current value. This operating principle is explained as follows. As the current injected into the excitation region increases, the light injection from the excitation region into the non-excitation region, which is a saturable absorption region, becomes stronger. When a certain light injection level is reached, the absorption coefficient in the saturable absorption region becomes zero, and laser oscillation begins.
一方、注入電流の値をしきい値電流以上より減
少させてゆくと、励起領域から非励起領域への光
注入は弱くなる。そしてある光注入レベルまで低
下すると非励起領域では透明でなくなりレーザ発
振を停止する。この時注入電流の値は発振しきい
値より小さい値をとるため、光出力と注入電流の
関係はヒステリシスを示す。このような特性は、
注入電流を一定にしておき外部より光を入射して
も得られる。 On the other hand, when the value of the injection current is decreased from the threshold current or more, the light injection from the excitation region to the non-excitation region becomes weaker. When the light injection level decreases to a certain level, the non-excited region becomes no longer transparent and laser oscillation is stopped. At this time, the value of the injected current takes a value smaller than the oscillation threshold, so the relationship between the optical output and the injected current exhibits hysteresis. Such characteristics are
It can also be obtained by inputting light from the outside while keeping the injection current constant.
すなわち非励起領域の吸収端よりも波長の短い
光を入射させ、活性領域内に励起した電力と正孔
を得、光強度を増加させることにより発振に必要
な負温度状態をつくり出すものである。 That is, light with a wavelength shorter than the absorption edge of the non-excited region is incident, electric power and holes are excited in the active region, and the light intensity is increased to create the negative temperature state necessary for oscillation.
このような方法によれば、光信号によつて光の
スイツチング等の動作を行い得ると共に、電気系
はバイアスのみであるから極めて高速の信号処理
の可能性がある。このような光によつて光素子を
動作させる単位を多数組合せて光演算回路を考え
る場合、最も問題となるのは素子間の光のやりと
りである。このような演算回路は当然のことなが
ら集積化されたものであるから光をあらゆる方向
に放出し得る単位素子が必要となる。ところが従
来のレーザでは、2方向の光出力が得られるのみ
であり集積化のための大きな壁となつている。 According to such a method, operations such as light switching can be performed using optical signals, and since the electrical system is only a bias, it is possible to perform extremely high-speed signal processing. When considering an optical arithmetic circuit that combines a large number of units that operate optical elements using light, the most important problem is the exchange of light between the elements. Since such arithmetic circuits are naturally integrated, unit elements that can emit light in all directions are required. However, conventional lasers can only provide optical output in two directions, which poses a major barrier to integration.
発明の目的
本発明は、上記の光双安定機能をもつ半導体レ
ーザであると共に、その光出力を8方向に得るこ
とを可能とし、特に光演算回路等の集積化に極め
て有効な素子を提供することを目的としたもので
ある。Purpose of the Invention The present invention provides a semiconductor laser having the above-mentioned optical bistable function, and also makes it possible to obtain optical output in eight directions, and provides an extremely effective element particularly for integrating optical arithmetic circuits, etc. It is intended for this purpose.
発明の構成
本発明は、半導体基板の表面及び裏面にそれぞ
れ第1、第2の光導波層を設け、前記第1、第2
の光導波層のそれぞれ両端部に、前記導波層に対
して45゜に加工され前記導波層を導波する光が前
記基板内に反射される反射面を形成し、前記反射
面間の前記第1および第2の光導波層ならびに基
板で構成される光経路にて共振器を形成し、前記
光経路の一部分である前記第1又は第2の光導波
層を励起領域とし前記光経路の他の部分を非励起
領域とし、前記反射面に、前記光経路の光を前記
光導波層方向および前記基板の表裏方向に出射さ
せる出射面が形成され、注入電流をレーザ発振し
きい値より低くした状態で前記光導波層に前記非
励起領域の吸収端よりも短い波長の光を注入する
ものである。このような構造では、一つの反射面
から基板方向からの光と光導体路方向からの光と
の2方向の光を出射し、本発明のレーザでは4ケ
所の反射面で、表面及び裏面の導波路を結合させ
ているので、8方向へ光出力を得ることが可能で
ある。尚、外部への光出力を必要としない反射面
では、極力反射率を上げればよいことは勿論であ
る。このような構造の半導体レーザへの注入電流
をレーザ発振しきい値よりわずかに低く抑えた状
態でたとえば非励起領域の光導波路へ光を注入す
る。この場合光の波長は、非励起の導波路層の吸
収端より短いものとする。このような条件下で、
入射光の光強度を上げていきあるレベル(光しき
い値と呼ぶ)におくと、非励起導波路中の吸収係
数が殆んどゼロになりレーザ発振を開始すると共
に、入射光の方向までを含め8方向から光出力を
得ることが可能となる。Structure of the Invention The present invention provides first and second optical waveguide layers on the front and back surfaces of a semiconductor substrate, respectively, and
A reflective surface is formed at each end of the optical waveguide layer at an angle of 45 degrees with respect to the waveguide layer so that the light guided through the waveguide layer is reflected into the substrate, and a surface between the reflective surfaces is formed. A resonator is formed in an optical path composed of the first and second optical waveguide layers and the substrate, and the first or second optical waveguide layer, which is a part of the optical path, is used as an excitation region in the optical path. The other part is set as a non-excitation region, and an output surface is formed on the reflection surface to output the light of the optical path in the direction of the optical waveguide layer and the front and back sides of the substrate, and the injected current is lower than the laser oscillation threshold. Light having a wavelength shorter than the absorption edge of the non-excitation region is injected into the optical waveguide layer in a state where the absorption edge is lowered. In such a structure, one reflective surface emits light in two directions, light from the substrate direction and light from the light guide path, and in the laser of the present invention, four reflective surfaces emit light from the front and back surfaces. Since the waveguides are coupled, it is possible to obtain optical output in eight directions. It goes without saying that for reflective surfaces that do not require light output to the outside, the reflectance may be increased as much as possible. Light is injected into the optical waveguide in the non-excitation region, for example, while the current injected into the semiconductor laser having such a structure is kept slightly lower than the laser oscillation threshold. In this case, the wavelength of the light is assumed to be shorter than the absorption edge of the non-excited waveguide layer. Under such conditions,
When the light intensity of the incident light is increased until it reaches a certain level (called the optical threshold), the absorption coefficient in the non-excited waveguide becomes almost zero, and laser oscillation begins, and the light intensity increases in the direction of the incident light. It is possible to obtain optical output from eight directions, including the
実施例の説明
以下に図面を参照して本発明を詳しく説明す
る。第1図は、本発明の一実施例の半導体レーザ
の断面図である。厚さ約360μmの(100)n−非
励起領域であるInP基板1上に、n−InP2、n
−InGaAsP3(Eg0.95eV)、p−InP4、p−
InGaAsP5(Eg1eV)を順次液相エピタキシ
ヤル法により成長させる。この成長層をストライ
プ状にエツチングしメサを形成後電流阻止層を第
2のエピタキシヤル法により成長させる。次に基
板1を、100μm前後の厚さになるまで研磨し、
研磨面に第3のエピタキシヤル成長によつてn−
InP6、n−InGaAsP7(Eg〜0.95eV)、n−InP
8、n−InGaAsP9を順次成長させる。DESCRIPTION OF EMBODIMENTS The present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view of a semiconductor laser according to an embodiment of the present invention. n-InP2, n
-InGaAsP3 (E g 0.95eV), p-InP4, p-
InGaAsP5 (E g 1eV) is sequentially grown by liquid phase epitaxial method. This grown layer is etched into stripes to form mesas, and then a current blocking layer is grown by a second epitaxial method. Next, the substrate 1 is polished until it has a thickness of around 100 μm,
n− by a third epitaxial growth on the polished surface.
InP6, n-InGaAsP7 (E g ~0.95eV), n-InP
8. Sequentially grow n-InGaAsP9.
なお、p−InGaAsP5及び、n−InGaAsP9
はオーム性電極をとりやすくするためのものでな
くてもよい。第3の成長層形成後、既に形成の終
つた表面ストライプに合わせてエツチングにより
メサを形成し、第4の成長により、n−InP層で
埋め込む。裏面の埋め込みは光のみを閉じ込めれ
ばよいので、前流阻止層である必要はない。第2
図は第1図における成長層のA−A′面の断面図
である。光導波路層3及び7は精度よく位置合わ
せが行われている。このようなエピタキシヤル成
長ウエハーにオーミツク電極10及び11をとり
つけ、さらにエツチングによつて、活性層からの
光が基板1を介して侵入しあうように約45゜の角
度にエツチングし、さらに、反射コート膜を蒸着
する。反射コート膜は、SiO212、14、16、18及
びSi13、15、17、19によつて形成され、各々の厚
みは例えばSiO2〜2240ÅSi〜900Åであると共に
積層して反射率を自由に変え得ることは周知のと
おりである。本実施例における反射率は約50%で
ある。 In addition, p-InGaAsP5 and n-InGaAsP9
does not have to be for making it easier to take the ohmic electrode. After forming the third growth layer, a mesa is formed by etching to match the surface stripe that has already been formed, and is filled with an n-InP layer by the fourth growth. The back surface embedding need not be a front flow blocking layer since it is sufficient to confine only the light. Second
The figure is a sectional view taken along the line A-A' of the grown layer in FIG. The optical waveguide layers 3 and 7 are precisely aligned. Ohmic electrodes 10 and 11 are attached to such an epitaxially grown wafer, and etched at an angle of about 45° so that light from the active layer penetrates through the substrate 1, and then the wafer is etched at an angle of about 45° so that light from the active layer penetrates through the substrate 1. Deposit a coating film. The reflective coating film is formed of SiO 2 12, 14, 16, 18 and Si 13, 15, 17, 19, each having a thickness of, for example, SiO 2 ~2240 ÅSi ~ 900 Å, and can be laminated to freely adjust the reflectance. As we all know, things can change. The reflectance in this example is approximately 50%.
このような構造においては励起領域である光導
波路3で発光した光は、反射端12及び18によ
つて基板内及び、反射端16及び14を介して非
励起領域である光導波路7へ導びかれる。すなわ
ち、1対の光導波路を基板で結合する光共振器が
形成されているため、励起領域3の励起強度を高
めれば、レーザー発振に至らしめることが可能で
ある。 In such a structure, the light emitted from the optical waveguide 3, which is an excitation region, is guided into the substrate by the reflective ends 12 and 18, and into the optical waveguide 7, which is a non-excitation region, via the reflective ends 16 and 14. It will be destroyed. That is, since an optical resonator is formed in which a pair of optical waveguides are coupled through the substrate, laser oscillation can be achieved by increasing the excitation intensity of the excitation region 3.
第1図の本発明による半導体レーザ素子におい
て第3図のように、電極10にプラス電極11に
マイナス電極をとりつけ、電流を流してゆくと、
約120mAで発振を開始した。またこの時光出力
は、図に示した8方向より得られることがわかつ
た。次に、電流を発振開始直前に設定し非励起領
域である活性層7中へA方向より光入力を行つた
ところ、光双安定特性が得られることがわかつ
た。 In the semiconductor laser device according to the present invention shown in FIG. 1, as shown in FIG. 3, when a positive electrode 11 and a negative electrode are attached to the electrode 10 and a current is applied,
Oscillation started at approximately 120mA. It was also found that the optical output at this time could be obtained from the eight directions shown in the figure. Next, when the current was set just before the start of oscillation and light was input from the direction A into the active layer 7, which is the non-excited region, it was found that optical bistable characteristics were obtained.
本実施例では便宜上、半導体レーザの構造は埋
め込み構造を用いたが、他の構造、たとえば埋め
込みヘテロ構造の半導体レーザ、分布帰還型の半
導体レーザ、プレーナ型の半導体レーザを用いて
もよい。 In this embodiment, for convenience, a buried structure is used as the semiconductor laser structure, but other structures such as a buried heterostructure semiconductor laser, a distributed feedback semiconductor laser, and a planar semiconductor laser may also be used.
発明の効果
以上述べたように、本発明による半導体レーザ
によれば、従来のように2方向の光出力ではなく
8方向の光出力を得ることができると共に、光双
安定動作も可能となるものである。Effects of the Invention As described above, according to the semiconductor laser of the present invention, it is possible to obtain optical output in eight directions instead of the conventional two-direction optical output, and optical bistable operation is also possible. It is.
第1図は本発明の一実施例の半導体レーザの構
成図、第2図は第1図の断面図、第3図は第1図
に示す半導体レーザの光出射方向を説明するため
の構成図である。
1……n−InP基板、2……n−InP、3……
n−InGaAsP、4……p−InP、5……p−
InGaAsP、6……n−InP、7……n−
InGaAsP、8……n−InP、9……n−
InGaAsP、10,11……オーム性電極。
FIG. 1 is a configuration diagram of a semiconductor laser according to an embodiment of the present invention, FIG. 2 is a sectional view of FIG. 1, and FIG. 3 is a configuration diagram for explaining the light emission direction of the semiconductor laser shown in FIG. 1. It is. 1... n-InP substrate, 2... n-InP, 3...
n-InGaAsP, 4...p-InP, 5...p-
InGaAsP, 6...n-InP, 7...n-
InGaAsP, 8...n-InP, 9...n-
InGaAsP, 10, 11...ohmic electrode.
Claims (1)
第2の光導波層を設け、前記第1、第2の光導波
層のそれぞれ両端部に、前記導波層に対して45゜
に加工され前記導波層を導波する光が前記基板内
に反射される反射面を形成し、前記反射面間の前
記第1および第2の光導波層ならびに基板で構成
される光経路にて共振器を形成し、前記光経路の
一部分である前記第1又は第2の光導波層を励起
領域とし前記光経路の他の部分を非励起領域と
し、前記反射面に、前記光経路の光を前記光導波
層方向および前記基板の表裏方向に出射させる出
射面が形成され、注入電流をレーザ発振しきい値
より低くした状態で前記光導波層に前記非励起領
域の吸収端よりも短い波長の光を注入することを
特徴とする光双安定素子。1. First and second layers on the front and back surfaces of the semiconductor substrate, respectively.
A second optical waveguide layer is provided at each end of the first and second optical waveguide layers, and the light guided through the waveguide layer is processed at an angle of 45 degrees with respect to the waveguide layer, and the light guided through the waveguide layer is formed within the substrate. a resonator is formed in an optical path composed of the first and second optical waveguide layers and the substrate between the reflective surfaces, and the optical path is a part of the optical path; The first or second optical waveguide layer is used as an excitation region, the other part of the optical path is used as a non-excitation region, and the light of the optical path is emitted to the reflective surface in the direction of the optical waveguide layer and the front and back directions of the substrate. 1. An optical bistable element, characterized in that an output surface is formed, and light having a wavelength shorter than the absorption edge of the non-excitation region is injected into the optical waveguide layer while the injection current is lower than a laser oscillation threshold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5662384A JPS60200238A (en) | 1984-03-23 | 1984-03-23 | Optically bistable element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5662384A JPS60200238A (en) | 1984-03-23 | 1984-03-23 | Optically bistable element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60200238A JPS60200238A (en) | 1985-10-09 |
JPH0325765B2 true JPH0325765B2 (en) | 1991-04-08 |
Family
ID=13032412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5662384A Granted JPS60200238A (en) | 1984-03-23 | 1984-03-23 | Optically bistable element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60200238A (en) |
-
1984
- 1984-03-23 JP JP5662384A patent/JPS60200238A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60200238A (en) | 1985-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4503541A (en) | Controlled-linewidth laser source | |
US4888785A (en) | Miniature integrated optical beam splitter | |
JPH0817263B2 (en) | Interferometer semiconductor laser | |
JPS63205984A (en) | Surface emitting type semiconductor laser | |
US4297651A (en) | Methods for simultaneous suppression of laser pulsations and continuous monitoring of output power | |
Coldren et al. | Single longitudinal mode operation of two-section GaInAsP/InP lasers under pulsed excitation | |
JPS63116489A (en) | Optical integrated circuit | |
JPS61284987A (en) | Semiconductor laser element | |
JPH0325765B2 (en) | ||
US4922497A (en) | Optical logic circuit | |
Utaka et al. | Measurement of coupling coefficient and coupling length of GaAs/AlGaAs integrated twin-guide injection lasers prepared by liquid-phase-epitaxy | |
KR100227770B1 (en) | Semiconductor laser device operable with low noise even in high ambient temperature | |
JPH1124019A (en) | Semiconductor optical function element and semiconductor polarization mode converter | |
JPS63269594A (en) | Surface emission type bistable semiconductor laser | |
JP2701596B2 (en) | Semiconductor laser device | |
JP2669373B2 (en) | Surface emitting laser | |
JPS59154088A (en) | Semiconductor laser | |
JPH03240285A (en) | Bistable semiconductor laser | |
JPS58162090A (en) | Semiconductor laser | |
KR100526545B1 (en) | Distributed feedback laser | |
JPS61150293A (en) | Bi-stable semiconductor laser | |
JPH07225404A (en) | Optical bistable element and its driving method | |
CA1118085A (en) | Methods for simultaneous suppression of laser pulsations and continuous monitoring of output power | |
JP4024319B2 (en) | Semiconductor light emitting device | |
JP3060511B2 (en) | Semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |