JPH03257602A - Method and device for generating operation command of multi-shaft mechanism - Google Patents
Method and device for generating operation command of multi-shaft mechanismInfo
- Publication number
- JPH03257602A JPH03257602A JP5707590A JP5707590A JPH03257602A JP H03257602 A JPH03257602 A JP H03257602A JP 5707590 A JP5707590 A JP 5707590A JP 5707590 A JP5707590 A JP 5707590A JP H03257602 A JPH03257602 A JP H03257602A
- Authority
- JP
- Japan
- Prior art keywords
- axis
- driving force
- command
- drive
- inter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007246 mechanism Effects 0.000 title claims description 83
- 238000000034 method Methods 0.000 title claims description 46
- 230000009021 linear effect Effects 0.000 claims abstract description 12
- 238000012546 transfer Methods 0.000 claims description 57
- 230000033001 locomotion Effects 0.000 claims description 52
- 238000006243 chemical reaction Methods 0.000 claims description 39
- 238000012545 processing Methods 0.000 claims description 20
- 230000003321 amplification Effects 0.000 claims description 10
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 10
- 230000008030 elimination Effects 0.000 claims description 6
- 238000003379 elimination reaction Methods 0.000 claims description 6
- 230000005484 gravity Effects 0.000 abstract description 6
- 230000001133 acceleration Effects 0.000 abstract description 5
- 230000014509 gene expression Effects 0.000 abstract 6
- 238000010586 diagram Methods 0.000 description 47
- 230000006870 function Effects 0.000 description 38
- 230000004044 response Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 210000000707 wrist Anatomy 0.000 description 8
- 238000005070 sampling Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 230000004043 responsiveness Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000009022 nonlinear effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Numerical Control (AREA)
- Control Of Position Or Direction (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、軸間干渉の有る駆動機構を有する直接駆動多
関節形ロボット等のごとき多軸機構を速度制御もしくは
位置制御により駆動する際に、高い動作軌跡精度を得る
のに好適な、軸間干渉を除去して動作指令を生成する多
軸機構の動作指令生成方法及び装置に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to driving a multi-axis mechanism such as a direct drive articulated robot having a drive mechanism with inter-axis interference by speed control or position control. The present invention relates to a method and apparatus for generating a motion command for a multi-axis mechanism, which generates a motion command by removing interference between axes and is suitable for obtaining high motion locus accuracy.
多軸機構は、直列軸連結形、直並列軸連結形、及び並列
軸連結形とに分類できる。このうち、並列軸連結形では
、機構的に軸間干渉が除去できるが、他の2タイプでは
機構的に軸間干渉を除去することはできず、軸間干渉に
より動作軌跡の精度が影響されることから、軸間干渉の
除去が重要な問題になっている。水平多関節形2軸アー
ムについて各駆動機構の構成を第33図〜第35図に示
した。適切な質量配分とした場合の各駆動機構の運動方
程式は次のように示される。Multi-shaft mechanisms can be classified into series-shaft-connected types, series-parallel-shaft-connected types, and parallel-shaft connected types. Of these, the parallel shaft connection type can mechanically eliminate interference between shafts, but the other two types cannot mechanically eliminate interference between shafts, and the accuracy of the motion trajectory is affected by interference between shafts. Therefore, eliminating interference between axes has become an important issue. The configuration of each drive mechanism for the horizontal articulated biaxial arm is shown in FIGS. 33 to 35. The equation of motion of each drive mechanism with appropriate mass distribution is shown as follows.
(a)直列軸連結形(2軸モータが第1アーム先端にあ
る)
(b)直並列軸連結形(2軸モータが1軸モータの同軸
上の負荷である)
(c)並列軸連結形(1,2軸モータが共にベースに設
けられている)
ここで、TJはj軸駆動トルクを示し、θ−2θ、。(a) Series shaft connection type (two-axis motor is at the tip of the first arm) (b) Series and parallel shaft connection type (two-axis motor is a load on the same axis as the single-shaft motor) (c) Parallel shaft connection type (Both 1- and 2-axis motors are provided on the base) Here, TJ indicates the j-axis drive torque, θ-2θ.
θ、は軸角度、軸角速度、軸角加速度を示し、JIJは
イナーシャ(後述(20)式参照)を示し、JIJがカ
ッコ付き表示のものは第1と第2アームのなす角θ2の
変化によりその値が変化することを示している。以下軸
間干渉除去の必要な直列軸連結形及び直並列軸連結形の
動作指令生成方法の従来例について述べる。θ indicates the shaft angle, shaft angular velocity, and shaft angular acceleration, JIJ indicates inertia (see equation (20) below), and JIJ shown in parentheses is due to the change in the angle θ2 formed by the first and second arms. It shows that the value changes. Hereinafter, a conventional example of a method for generating an operation command for a series-shaft connection type and a series-parallel shaft connection type that requires removal of inter-shaft interference will be described.
直列軸連結形の多軸機構の動作指令生成方法としては、
例えば従来例(i)として、電気学会論文誌り編107
巻第1号(1987年)第1頁〜第8頁に記載されたも
のが知られている。同文献によれば、遠心力等の非線形
作用力が小さい複数の駆動軸からなる機構において、各
軸の駆動力指令を各々定数倍し、これを加算して修正駆
動力指令をソフトウェア的に生成し軸駆動装置を駆動す
ることにより軸間干渉を除去できる動作指令生成方法が
論じられていた。ここで乗算される定数aJI(軸間干
渉除去ゲイン)は、駆動力指令・発生駆動力変換定数K
T J比とイナーシャ比JIJ比の積で示され、すな
わち2軸の場合α□2 = (K tz /KT、)
(Ji2/J2□) 、 α2□= (K丁
x / K Tz )CJ、、/J、1)、で示される
。As a method for generating operation commands for a multi-axis mechanism with serially connected axes,
For example, as a conventional example (i),
Those described in Vol. 1, No. 1 (1987), pages 1 to 8 are known. According to the same document, in a mechanism consisting of multiple drive axes with small nonlinear acting forces such as centrifugal force, the drive force command for each axis is multiplied by a constant, and the results are added to generate a modified drive force command using software. A method of generating motion commands that can eliminate interference between axes by driving an axle drive device was discussed. The constant aJI (inter-axis interference removal gain) multiplied here is the driving force command/generated driving force conversion constant K
It is expressed as the product of T J ratio and inertia ratio JIJ ratio, that is, in the case of two axes α□2 = (K tz /KT,)
(Ji2/J2□), α2□=(Kdx/KTz)CJ, , /J, 1).
本従来例で用いられている軸駆動装置はACモータタイ
プのダイレクト・ドライブ・モータであり、駆動力指令
と発生駆動力の間には線形関係の成りたつものであり、
駆動力指令・発生駆動力変換定数K T Jは一定値を
用いている・また、直並列軸連結形の多軸機構の動作指
令生成方法としては、従来例(ii)として、特開昭6
4−20988号公報に記載のように、機構的に質量配
分を調整して運動方程式を(2)のように簡略化し、各
軸の駆動力指令を各々定数倍し、これを加算して修正駆
動力指令を生成することにより軸間干渉を除去できる動
作指令生成方法が論じられていた。本従来例においても
乗算される定数(軸間干渉除去ゲイン)は、一定値であ
る各軸の駆動力指令・発生駆動力変換定数の比とイナー
シャ比の積として与えられている。本従来例においても
駆動力指令・発生駆動力変換定数(モータのトルク定数
に対応)は一定値で扱われている。The shaft drive device used in this conventional example is an AC motor type direct drive motor, and there is a linear relationship between the driving force command and the generated driving force.
A constant value is used for the driving force command/generated driving force conversion constant K T J.In addition, as a conventional example (ii) of a method for generating an operation command for a multi-axis mechanism with series and parallel shafts,
As described in Publication No. 4-20988, the equation of motion is simplified as shown in (2) by mechanically adjusting the mass distribution, and the driving force command for each axis is multiplied by a constant, and the results are added to correct the equation. A motion command generation method that can eliminate inter-axis interference by generating a driving force command was discussed. Also in this conventional example, the multiplied constant (inter-axis interference removal gain) is given as the product of the ratio of the driving force command/generated driving force conversion constant of each axis, which is a constant value, and the inertia ratio. Also in this conventional example, the driving force command/generated driving force conversion constant (corresponding to the torque constant of the motor) is treated as a constant value.
また、多軸機構の動作指令生成装置の従来例としては、
従来例(i)は修正駆動力指令の生成をソフトウェア的
に行い、その結果をD/A変換し。In addition, as a conventional example of a motion command generation device for a multi-axis mechanism,
In the conventional example (i), a modified driving force command is generated by software, and the result is D/A converted.
パワーモジュールで増幅して軸駆動装置を駆動する構成
が述べられており、従来例(ii)はアナログの駆動力
(電流)指令を他軸に抵抗で分圧して入力することによ
り修正駆動力指令の生成を行い、パワーモジュールで増
幅して軸駆動装置を駆動する構成が述べられていた。A configuration is described in which the amplification is performed by a power module to drive the shaft drive device, and conventional example (ii) is to generate a modified driving force command by inputting an analog driving force (current) command divided by a resistor to another axis. A configuration was described in which the power is generated and amplified by a power module to drive the shaft drive device.
また、従来例(ni)として特開昭61−169905
号公報に記載のように、駆動軸の位置閉ループ逆伝達関
数を位置指令に乗じて駆動軸サーボ系の応答遅れを打ち
消し高い軌跡精度を得る装置が述べられていた。In addition, as a conventional example (ni), JP-A No. 61-169905
As described in the publication, a device was described in which a drive shaft position closed loop inverse transfer function is multiplied by a position command to cancel the response delay of the drive shaft servo system and obtain high trajectory accuracy.
上記従来例(i)、 (ii)は、駆動力指令と発生
駐動力の間に線形関係の威りたつモータを軸駆動装置と
して用いているため、軸間干渉除去ゲイン設定に当って
は駆動力指令・発生駆動力変換定数として一定値を用い
ることにより、最適な軸間干渉除去を実現できた。しか
し最近駆動力指令と全生恥動力の間に非線形関係のある
モータ(例えばステップモータタイプのダイレクト・ド
ライブ・モータ)が、発生トルク・自重比の大きいエネ
ルギ効率の高いモータとして注目され、ダイレクト・ド
ライブ・ロボット等多軸機構の位置決め時間短縮等高性
能化に役立つ軸駆動装置として使用されるようになって
きた。このモータの特性例を第36図に示した。このよ
うなモータを軸駆動装置として用いて軸間干渉除去を行
う場合、通常恥動力指令・発生駆動力変換定数K T
Jとして用いられる最大発生駆動力・最大駆動力指令比
(図中a直線〉と、例えば小さい駆動力指令における駆
動力指令・発生駆動力指令曲線の勾配(図中す直線)と
は著しく異なり、前者の駆動力指令・発生駆動力変換定
数を用いて算出した軸間干渉除去ゲインα4.を用いて
動作軌跡精度の要求される連続軌跡動作を行うと、軸間
干渉除去効果が低いため、多軸機構の動作軌跡精度を高
められないという問題があった。Conventional examples (i) and (ii) above use a motor with a linear relationship between the driving force command and the generated parking force as the shaft drive device, so when setting the inter-axle interference removal gain, the drive By using a constant value as the force command/generated driving force conversion constant, we were able to achieve optimal interference removal between axes. However, recently, motors with a non-linear relationship between the driving force command and the total power (for example, step motor type direct drive motors) have attracted attention as highly energy efficient motors with a large generated torque/self-weight ratio. It has come to be used as an axis drive device that is useful for improving the performance of multi-axis mechanisms such as drives and robots by shortening the positioning time. An example of the characteristics of this motor is shown in FIG. When using such a motor as a shaft drive device to remove interference between shafts, the normal power command/generated driving force conversion constant K T
The maximum generated driving force/maximum driving force command ratio (straight line a in the figure) used as J is significantly different from, for example, the slope of the driving force command/generated driving force command curve (straight line in the figure) for a small driving force command. If continuous trajectory operation that requires motion trajectory accuracy is performed using the former inter-axis interference removal gain α4 calculated using the driving force command/generated driving force conversion constant, the inter-axis interference removal effect will be low, so There was a problem in that the precision of the movement locus of the shaft mechanism could not be improved.
また、従来例(市)は位置閉ループ逆伝達特性を位置指
令に乗じて駆動軸サーボ系の応答遅れを打ち消す装置に
ついて述べているが1位置閉ループ逆伝達関数の次数が
高くなると、修正位H指令の演算に時間を要し、サンプ
リング周期が長くなることにより多軸機構の動作軌跡精
度を高められないという問題があった。In addition, the conventional example (Ichi) describes a device that multiplies the position command by the position closed loop reverse transfer characteristic to cancel the response delay of the drive shaft servo system. There is a problem in that it takes time to calculate and the sampling period becomes long, making it impossible to improve the accuracy of the motion locus of the multi-axis mechanism.
本発明の目的は、駆動力指令と発生駆動力の間に非線形
関係のある軸駆動装置を用いた多軸機構の軸間干渉除去
を最適とし動作軌跡精度を高める動作指令方法及び装置
を提供することにある。An object of the present invention is to provide a motion command method and device that optimizes the removal of interference between axes of a multi-axis mechanism using an axis drive device that has a non-linear relationship between the driving force command and the generated driving force, and improves the accuracy of the motion trajectory. There is a particular thing.
また、本発明の他の目的は、軸間干渉除去を行い、伝達
関数の簡素化された多軸機構の応答遅れを簡易な前置補
償により改善し、サンプリング周期を短くし、動作軌跡
精度を高める動作指令方法及び装置を提供することにあ
る。Another object of the present invention is to eliminate interference between axes, improve the response delay of a multi-axis mechanism with a simplified transfer function through simple pre-compensation, shorten the sampling period, and improve the accuracy of the motion trajectory. An object of the present invention is to provide a method and device for commanding motion to increase the number of motions.
上記目的を達成するために1本発明の多軸機構の動作指
令生成方法は、複数の駆動軸が連関してなる多軸機構の
制御対象軸の修正駆動力指令を、前記各駆動軸の駆動力
指令に前記制御対象軸との軸間干渉除去ゲインを乗じて
その総和として生成し、前記各駆動軸の駆動装置は駆動
力指令と発生駆動力との間に非線形関係を有する多軸機
構の動作指令生成方法において、前記軸間干渉除去ゲイ
ンを、前記制御対象軸に連関する各駆動軸の作用荷重と
制御対象軸・各駆動軸間の軸間角から求めるイナーシャ
比と、駆動力指令の大きさから前記非線形関係により定
まる角鄭動軸の駆動力指令・駆動力変換定数の比との積
として求めることを特徴としている。In order to achieve the above object, the present invention provides a method for generating operation commands for a multi-axis mechanism, in which a corrected driving force command for an axis to be controlled of a multi-axis mechanism in which a plurality of drive axes are linked is generated for driving each of the drive axes. The force command is multiplied by the inter-axis interference removal gain with the controlled axis to generate the total sum, and the drive device for each of the drive axes is a multi-axis mechanism having a non-linear relationship between the drive force command and the generated drive force. In the motion command generation method, the inter-axis interference removal gain is calculated from the inertia ratio obtained from the acting load of each drive axis related to the controlled axis and the axis-to-axis angle between the controlled axis and each drive axis, and the driving force command. It is characterized in that it is obtained from the size as a product of the ratio of the driving force command and the driving force conversion constant of the angle axis motion axis determined by the nonlinear relationship.
また上記目的を達成するために、本発明の多軸機構の動
作指令生成装置は、複数の駆動軸が連関してなる多軸機
構の制御対象軸の修正駆動力指令を、前記各駆動軸の駆
動力指令に前記制御対象軸との軸間干渉除去ゲインを乗
じてその総和として生成し、前記各駆動軸の駆動装置は
駆動力指令と発生駆動力との間に非線形関係を有する多
軸機構の動作指令生成装置において、前記各駆動軸の位
置偏差もしくは速度偏差を演算する中央処理部と、該中
央処理部で求めた位置偏差もしくは速度偏差をもとにア
ナログ量の各駆動軸の駆動力指令を生成する駆動力指令
生成手段と、該駆動力指令生成手段で生成した各駆動力
指令をA/D変換するA/D変換手段と、前記軸間干渉
除去ゲインを、前記制御対象軸に連関する各駆動軸の作
用荷重と制御対象軸・各能動軸間の軸間角から求めるイ
ナーシャ比と、駆動力指令の大きさから前記非線形関係
により定まる各駆動軸の駆動力指令・駆動力変換定数の
比との積として求める軸間干渉除去ゲイン演算手段と、
A/D変換された各駆動軸の駆動力指令(τi)を前記
軸間干渉除去ゲイン演算手段で求めた前記制御対象軸(
j軸)との軸間干渉除去ゲイン(α−1)倍増幅する増
幅手段と、前記制御対象軸(j軸)毎に前記駆動力指令
(τi)αJiτi)する加算手段と、該加算手段から
の出力駆動力指令として受は該制御対象軸の駆動装置に
出力するパワーモジュールとを備えたことを特徴として
いる。Further, in order to achieve the above object, the operation command generation device for a multi-axis mechanism of the present invention generates a modified driving force command for an axis to be controlled in a multi-axis mechanism in which a plurality of drive axes are linked, for each of the drive axes. A driving force command is multiplied by an inter-axis interference removal gain with the controlled axis and generated as the sum thereof, and the driving device for each of the driving axes is a multi-axis mechanism having a non-linear relationship between the driving force command and the generated driving force. The operation command generation device includes a central processing unit that calculates the position deviation or speed deviation of each drive shaft, and a drive force of each drive shaft in an analog quantity based on the position deviation or speed deviation determined by the central processing unit. a driving force command generating means for generating a command; an A/D converting means for A/D converting each driving force command generated by the driving force command generating means; and an A/D converting means for A/D converting each driving force command generated by the driving force command generating means; Drive force command/drive force conversion for each drive axis determined by the nonlinear relationship described above based on the inertia ratio obtained from the acting load of each related drive axis and the axis-to-axis angle between the controlled axis and each active axis, and the magnitude of the drive force command. inter-axis interference removal gain calculating means, which is calculated as a product of a constant ratio;
The A/D converted driving force command (τi) of each drive axis is determined by the axis to be controlled (
an amplification means for amplifying an inter-axis interference removal gain (α-1) with the axis (j-axis); an addition means for issuing the driving force command (τi) αJiτi) for each axis to be controlled (j-axis); The receiver is characterized in that it is equipped with a power module that outputs an output driving force command to the drive device of the axis to be controlled.
また、本発明の別の多軸機構の駆動力指令生成装置は、
複数の駆動軸が連関してなる多軸機構の制御対象軸の修
正駆動力指令を、前記各駆動軸の駆動力指令に前記制御
対象軸との軸間干渉除去ゲインを乗じてその総和として
生成し、前記各駆動軸の駆動装置は駆動力指令と発生駆
動力との間に非線形関係を有する多軸機構の動作指令生
成装置において、前記各駆動軸の位置偏差もしくは速度
偏差を演算し、該位置偏差もしくは速度偏差をもとに各
駆動軸の駆動力指令を生成し、前記軸間干渉除去ゲイン
を、前記制御対象軸に連関する各駆動軸の作用荷重と制
御対象軸・各能動軸間の軸間角から求めるイナーシャ比
と、駆動力指令の大きさから前記非線形関係により定ま
る各駆動軸の駆動力指令・駆動力変換定数の比との積と
して求め、前記制御対象軸(j軸)毎に駆動指令(21
)とを修正駆動力指令として求める中央処理部と、前記
修正駆動力指令をD/A変換してアナログ量とするD/
A変換手段と、アナログ量の前記修正駆動力指令を増幅
して前記制御対象軸の能動装置に出力するパワーモジュ
ールとを備えたことを特徴としている。Further, another multi-axis mechanism driving force command generation device of the present invention includes:
A corrected driving force command for a controlled axis of a multi-axis mechanism in which multiple driving axes are linked is generated as the sum of the driving force commands for each of the driving axes multiplied by an inter-axis interference removal gain with the controlled axis. The drive device for each of the drive shafts is a multi-axis mechanism operation command generation device that has a non-linear relationship between the drive force command and the generated drive force, and calculates the position deviation or speed deviation of each of the drive shafts, and calculates the position deviation or speed deviation of each drive shaft. A driving force command for each drive axis is generated based on the position deviation or speed deviation, and the inter-axis interference removal gain is calculated based on the applied load of each drive axis related to the controlled axis and between the controlled axis and each active axis. It is determined as the product of the inertia ratio obtained from the axis-to-axis angle of Drive command (21
) as a modified driving force command, and a D/A converting the modified driving force command into an analog quantity by D/A converting the modified driving force command.
The present invention is characterized in that it includes an A conversion means, and a power module that amplifies the modified driving force command in analog quantity and outputs it to the active device of the axis to be controlled.
上記第2の目的を達成するために、本発明の多軸機構の
動作指令方法は、複数の駆動軸が連関してなる多軸機構
の制御対象軸の修正駆動力指令を、前記各駆動軸の駆動
力指令に前記制御対象軸との軸間干渉除去ゲインを乗じ
てその総和として生成し、前記各駆動軸の駆動装置は駆
動力指令と発生駆動力との間に非線形関係を有する多軸
機構の動作指令生成方法において、前記各駆動軸の位置
指令もしくは速度指令を与える際、前記位置指令は入力
された指令に位置閉ループ伝達関数の全逆伝達関数を周
波数領域で乗算し、逆ラプラス変換したものとして与え
、また前記速度指令は入力された指令に速度閉ループ伝
達関数を離散時間領域で乗算し、逆2変換したものとし
て与えることを特徴としている。In order to achieve the above-mentioned second object, the operation command method for a multi-axis mechanism of the present invention provides a method for commanding the operation of a multi-axis mechanism in which a plurality of drive axes are linked to each other to generate a corrected driving force command for an axis to be controlled by each of the drive axes. The driving force command is multiplied by the inter-axis interference removal gain with the controlled axis to generate the total sum, and the driving device for each of the driving axes is a multi-axis motor having a non-linear relationship between the driving force command and the generated driving force. In the mechanism operation command generation method, when giving the position command or speed command for each of the drive axes, the position command is obtained by multiplying the input command by the total inverse transfer function of the position closed loop transfer function in the frequency domain, and converting it into an inverse Laplace transform. The speed command is given as an input command multiplied by a speed closed-loop transfer function in a discrete time domain and then inversely transformed.
多軸機構としては、一般にn軸すンク機構が考えられる
。n軸すンク機構においては、駆動軸動作時に駆動軸間
に干渉作用や非線形作用があり、これらを除去すること
により動作軌跡精度を向上できる。As a multi-axis mechanism, an n-axis sink mechanism is generally considered. In the n-axis sink mechanism, there are interference effects and nonlinear effects between the drive axes when the drive axes are operated, and by eliminating these, the accuracy of the movement trajectory can be improved.
一般に動作軌跡精度の要求される連続軌跡操作は、多軸
機構が点制御動作(ポイント・トウ・ポイント動作)で
実現しうる高速動作と比して著しく小さい発生速度で駆
動されるため、非線形作用(遠心力・コリオリカ作用)
の効果は小さい。そこで、干渉作用を除去する動作指令
生成を行うことにより多軸機構の動作軌跡精度を高めら
れる。Continuous trajectory operation, which generally requires high motion trajectory accuracy, is driven by a multi-axis mechanism at a significantly lower generation speed than the high-speed motion that can be achieved with point control motion (point-to-point motion), resulting in non-linear effects. (Centrifugal force/Coriolica action)
The effect is small. Therefore, by generating a motion command that eliminates the interference effect, the precision of the motion trajectory of the multi-axis mechanism can be improved.
多軸機構の対象とする駆動軸J (1)=1,2e・・
・・・+n)の駆動力指令τ4、駆動力指令・発生駆動
力変換定数KT−と駆動軸位置θ4.速度θ4.加速度
θjの間には下式の関係が成り立つ。Drive axis J targeted by multi-axis mechanism (1)=1,2e...
...+n) driving force command τ4, driving force command/generated driving force conversion constant KT-, and drive shaft position θ4. Speed θ4. The following relationship holds true between the accelerations θj.
左辺はj軸発生トルクを示し、右辺第1項は慣性項、第
2項は遠心・コリオリカ項、第3項は重力等バイアス作
用力補償トル9項を示す。右辺第1項のA a iはイ
ナーシャを示している。ここでは、前述のように動作軌
跡精度の要求される低速動作を扱うため、右辺第2項は
無視でき、組立ロボットは通常水平多関節形でありアー
ム駆動軸には重力が作用しないため、右辺第3項も無視
できるとすると、(5)式のj軸角加速度は(6)式の
ように書き換えられる。The left side shows the j-axis generated torque, the first term on the right side shows the inertia term, the second term shows the centrifugal/Coriolica term, and the third term shows the 9th term of torque compensation for bias acting force such as gravity. A a i in the first term on the right side indicates inertia. Here, as mentioned above, we are dealing with low-speed motion that requires high motion trajectory accuracy, so the second term on the right-hand side can be ignored.As assembly robots are usually horizontally articulated and gravity does not act on the arm drive axis, the right-hand side Assuming that the third term can also be ignored, the j-axis angular acceleration in equation (5) can be rewritten as in equation (6).
i=1
ここで(6)式を(7)式のように書き換えることがで
きれば軸間干渉が除去されることになる。なおA J
tは定数である。i=1 Here, if equation (6) can be rewritten as equation (7), inter-axis interference will be eliminated. Furthermore, AJ
t is a constant.
装置制御装置は、位置制御動作時には1位置指令値と位
置出力の偏差に基づき駆動力指令が生成され、軸駆動装
置に流す電流指令を例えば抵抗を介して平滑化した駆動
力指令モニター信号として低電圧で検出可能な信号とな
っている。各軸の駆動力指令で1は、軸間干渉除去回路
において、各制御軸j軸との最適な軸間干渉除去ゲイン
(αji)倍に増幅され、、NtlflN動力指令に加
算され(6)、(7)式を装置すると、j軸駆動力指令
τiを(8)式で示されるように与えることにより、軸
間干渉が除去される。During a position control operation, the device control device generates a driving force command based on the deviation between the 1-position command value and the position output, and outputs a low current command to the shaft drive device as a driving force command monitor signal smoothed through a resistor. The signal is detectable as a voltage. The driving force command of each axis, 1, is amplified by the optimum inter-axis interference elimination gain (αji) for each control axis and the j-axis in the inter-axis interference elimination circuit, and is added to the NtlflN power command (6). When Equation (7) is used, inter-axis interference is removed by giving the j-axis driving force command τi as shown in Equation (8).
ただしミα1五=KTJ−1AJIA□−1K T 1
・・・(9)ここで、α1Kを軸間干渉除去ゲインと呼
ぶ。However, Mi α15 = KTJ-1AJIA□-1K T 1
(9) Here, α1K is called inter-axis interference removal gain.
上記方式は軸駆動装置制御装置(動作指令生成装置)に
おいては次のように実現される。軸駆動用)へ入力され
る。軸間干渉除去ゲインを乗算する増幅手段は、演算増
Ill器、対数増幅器などで構成されており、その増倍
率(軸間干渉除去ゲイン)は、演算部からの指令により
可変とできる。軸駆動装置の駆動力指令・発生駆動力変
換定数が駆動力指令の大きさに対して一定でない場合は
、駆動力指令をA/D変換して検出し、駆動力指令に対
応する駆動力指令・発生駆動力変換定数を選択して軸間
干渉除去ゲインをソフトウェア的に演算し。The above method is realized in the shaft drive control device (operation command generation device) as follows. (for shaft drive). The amplifying means for multiplying the inter-axis interference elimination gain is composed of an operational amplifier, a logarithmic amplifier, etc., and its multiplication factor (inter-axis interference elimination gain) can be varied by a command from the arithmetic unit. If the driving force command/generated driving force conversion constant of the shaft drive device is not constant with respect to the magnitude of the driving force command, the driving force command is detected by A/D conversion, and the driving force command corresponding to the driving force command is detected.・Select the generated driving force conversion constant and calculate the inter-axis interference removal gain using software.
増幅手段に送信することにより、駆動力指令に応じて軸
間干渉除去ゲインを可変とすることができ、駆動力指令
の大きさによらず、最適な軸間干渉除去が可能になる。By transmitting the signal to the amplifying means, it is possible to make the inter-axis interference removal gain variable according to the driving force command, and it is possible to perform optimal inter-axis interference removal regardless of the magnitude of the driving force command.
上記の軸間干渉を除去する装置としては前記もののほか
に、駈動力指令生戊をソフトウェアで行い、D/A変換
手段を介してパワーモジュールへ指令を出し、軸駆動装
置を駆動する構成のものがある。この構成では、軸間干
渉除去ゲインの算出と、駆動力指令との積和の演算を全
てソフトウェア的に行うことにより、軸間干渉除去が可
能になる。In addition to the above-mentioned devices, the device for removing the interference between axes is one that generates a canter power command using software, sends a command to a power module via a D/A conversion means, and drives a shaft drive device. There is. In this configuration, the inter-axes interference can be removed by calculating the inter-axes interference removal gain and calculating the sum of products with the driving force command, all using software.
また、部分逆伝達関数を用いた前置補償による駆動軸サ
ーボ系の応答遅れの打ち消については、軸間干渉除去に
より簡素化された例えば(10)式で示される位置閉ル
ープ伝達関数につき、(11)式のように2次の前置補
償を行うことにより、位置制御系帯域幅が、角周波数:
ωnJ→2πT−”へ高められ、実用的な意味で十分な
高応答性を3次の前置補償を行うことなく得られる。In addition, regarding the cancellation of the response delay of the drive shaft servo system by pre-compensation using a partial inverse transfer function, for example, for the position closed loop transfer function shown in equation (10), which is simplified by inter-axis interference removal, ( By performing second-order precompensation as shown in equation 11), the position control system bandwidth can be changed to the angular frequency:
ωnJ→2πT−”, and a sufficiently high responsiveness can be obtained in a practical sense without performing third-order precompensation.
ωnJ
P・・”=(TJ S + 1)(s・+2ζ、。。、
5+。1、・)(ここで、2πTJ−’>>ωnJ)
・・・・・・(10)
・・・・・・(11)
〔実施例〕
以下、本発明の第1の実施例を第1図〜第21図を用い
て説明する。本実施例は、駆動力指令・発生駆動力間に
非線形関係のある軸駆動装置を用いた多軸機構の軸間干
渉除去を最適化するための軸間干渉除去ゲインの設定方
法を含む多軸機構の動作指令生成方法及び装置について
述べるものである。第1図〜第9図を用いてn軸機構に
ついて述べ、第10図〜第21図を用いて、2軸で水平
面内の位置決めをする水平多関節形ロボットについて述
べる。第1図、第2図は本実施例の多軸機構の動作指令
生成装置のブロック図、第3図、第4図は本実施例の軸
間干渉除去装置の構成図、第5図、第6図は第1図、第
2図に対応するハードウェア構成図、第7図〜第9図は
軸間干渉除去装置のハードウェア構成図である。第10
図は本発明による動作指令生成装置により駆動されるロ
ボットの操作状況を示す見取り図、第11A図は水平多
関節形ロボットロボットの外観図、第11B図はその剛
体モデル図、第12図、第13図は第11A図に示すロ
ボットの1,2軸動作指令生成装置のブロック図、第1
4図は第11A図の1゜2軸直接騨動モータのトルク指
令・発生トルク特性、第15図、集土6図はトルク指令
によるトルク指令・発生トルク変換定数KTの変化を示
す図、第17図、第18図は第11A図に示すロボット
の干渉位置伝達ゲインの軸間干渉除去無し・有りの場合
の周波数特性を示す図、第19図は第11A図に示した
ロボットにおける最適軸間干渉除去ゲインのロボットを
姿勢角との関係を示す実験結果、第20図、第21図は
2種のモータトルク指令・発生トルク変換定数比におけ
る軸間干渉除去ゲインのロボット姿勢角との関係を示す
計算結果、を示している。ωnJ P・・”=(TJ S + 1) (s・+2ζ, . . .
5+. 1, ·) (here, 2πTJ-'>>ωnJ) ......(10) ......(11) [Example] Hereinafter, the first example of the present invention will be described as the first example. This will be explained using FIGS. 21 to 21. This example describes a multi-axis interference removal gain setting method for optimizing inter-axis interference removal in a multi-axis mechanism using an axis drive device that has a non-linear relationship between the driving force command and the generated driving force. This paper describes a method and apparatus for generating operation commands for a mechanism. An n-axis mechanism will be described using FIGS. 1 to 9, and a horizontal articulated robot that performs positioning in a horizontal plane using two axes will be described using FIGS. 10 to 21. 1 and 2 are block diagrams of the operation command generation device for the multi-axis mechanism of this embodiment, FIGS. 3 and 4 are block diagrams of the inter-axis interference removal device of this embodiment, and FIGS. FIG. 6 is a hardware configuration diagram corresponding to FIGS. 1 and 2, and FIGS. 7 to 9 are hardware configuration diagrams of the inter-axis interference removal device. 10th
11A is an external view of a horizontally articulated robot, FIG. 11B is a rigid body model thereof, and FIGS. The figure is a block diagram of the robot's 1st and 2nd axis motion command generation device shown in Figure 11A.
Figure 4 shows the torque command/generated torque characteristics of the 1° 2-axis direct driving motor in Figure 11A, Figure 15, and Figure 6 show the changes in the torque command/generated torque conversion constant KT due to the torque command. Figures 17 and 18 are diagrams showing the frequency characteristics of the interference position transfer gain of the robot shown in Figure 11A with and without inter-axis interference removal, and Figure 19 is the diagram showing the frequency characteristics of the interference position transfer gain of the robot shown in Figure 11A. Experimental results showing the relationship between the interference removal gain and the robot attitude angle. Figures 20 and 21 show the relationship between the inter-axis interference removal gain and the robot attitude angle for two types of motor torque command/generated torque conversion constant ratios. The calculation results shown are shown below.
まず、第1図を用いて本発明に係るn軸長軸機構の動作
指令生成装置の構成について説明する。First, the configuration of an operation command generation device for an n-axis long-axis mechanism according to the present invention will be explained using FIG.
本実施例は、多軸機構が動作軌跡精度を要求される連続
軌跡動作時に用いられる位置制御部を行う動作指令生成
装置を示している。本装置は位置指令θ1.に対して速
度指令θ4.を生成する位置制御部が比例微分先行形P
ID (I−PD)制御系により構成されており、速度
制御部が比例制御系により構成されている例を示してい
る。I−PD制御系は角軸位置偏差積分量と位置の比例
・微分量をとり速度指令を生成するため、ステップ状の
位置指令入力時にも通常のPID制御系でみられる駆動
力指令の突変を防ぐことができる利点がある。This embodiment shows a motion command generation device that performs a position control unit used when a multi-axis mechanism performs a continuous trajectory operation that requires high motion trajectory accuracy. This device uses position command θ1. For speed command θ4. The position control unit that generates the proportional derivative leading type P
An example is shown in which the speed controller is configured by an ID (I-PD) control system and the speed control section is configured by a proportional control system. Since the I-PD control system takes the integral amount of angular axis position deviation and the proportional/derivative amount of the position and generates the speed command, there is no sudden change in the driving force command seen in a normal PID control system even when a step-like position command is input. It has the advantage of preventing
また、本実施例では速度制御系の応答性を高めるために
、速度制御系はアナログ制御系で構成し、アナログの速
度フィードバックを行う構成としている。図中与えられ
た各軸位置指令θJrに対して、位置制御部101で速
度指令θjrが生成され、D/A変換部102でアナロ
グ変換され、比例動作註動力指令生成部103で各軸駆
動力指令τ□が生成され、軸間干渉除去部104で、中
央処理部(図示せず)より与えられる軸間干渉除去ゲイ
ンα□と駆動力指令でjとの積和(=Σ α4.τ4)
換部105で駆動力T、に変換され1機構部106の各
軸駆動装置に駆動力が印加され、各軸速度θ4、位置出
力θ、が得られる構成となっている。Further, in this embodiment, in order to improve the responsiveness of the speed control system, the speed control system is configured to be an analog control system, and is configured to perform analog speed feedback. In the figure, for each axis position command θJr given, the position control unit 101 generates a speed command θjr, the D/A converter 102 converts it into analog, and the proportional operation power command generation unit 103 generates the driving force for each axis. The command τ□ is generated, and the inter-axis interference removal unit 104 calculates the product sum of the inter-axis interference removal gain α□ given by the central processing unit (not shown) and the driving force command j (=Σ α4.τ4).
The converting section 105 converts the driving force into a driving force T, and the driving force is applied to each axis driving device of the first mechanism section 106, thereby obtaining a speed θ4 and a position output θ for each axis.
ここで、軸駆動装置は駆動力指令τ−と発生駆動力TJ
の間に(12)式で示される関係は成立せず、例えば(
13)式で示されるような非線形関係を有する。Here, the shaft drive device uses the driving force command τ- and the generated driving force TJ.
The relationship shown in equation (12) does not hold between the two, and for example, (
13) It has a nonlinear relationship as shown in equation 13).
Tノ=KTJ τノ
・・・・・・(12)TJ=KTJτJ (た
だしαj≠1) ・・・・・・(13)従って、(1
2)式で示されるDC,ACモータと同様に扱うために
は、駆動力指令・発生廃動力変換定数を(14)式のよ
うに扱う必要がある。Tノ=KTJ τノ
・・・・・・(12) TJ=KTJτJ (However, αj≠1) ・・・・・・(13) Therefore, (1
In order to treat the DC and AC motors in the same way as shown in equation 2), it is necessary to treat the driving force command/generated waste power conversion constant as shown in equation (14).
T J = KTI (τJ) τ− このように求められたKTJを用いることにより。TJ = KTI (τJ) τ− By using the KTJ obtained in this way.
(9)式で与えられるi軸と制御対象軸(j軸)間の軸
間干渉除去ゲインαat(= Kta−”AJtA t
t−”KTI)の最適値を求めることができる。(14
)式のK r Jを求めるためには駆動力指令を検出す
る必要があるため、駆動力指令τiをA/D変換部10
7にてディジタル化し、中央処理部(図示せず)に送信
することにより、最適なαj1データ作成に役立つ情報
をうろことができる。このような多軸機構の動作指令生
成装置の構成をとることにより、駆動力指令の大きさに
よらず、多軸機構の軸間干渉を最も除去することができ
る。Inter-axis interference removal gain αat (= Kta−”AJtA t
The optimal value of t-”KTI) can be found (14
) In order to obtain K r J in the equation, it is necessary to detect the driving force command, so the driving force command τi is
By digitizing the data at step 7 and transmitting it to a central processing unit (not shown), information useful for creating optimal αj1 data can be obtained. By adopting such a configuration of the operation command generation device for a multi-axis mechanism, interference between the axes of the multi-axis mechanism can be eliminated to the greatest extent possible, regardless of the magnitude of the driving force command.
次に、第2図を用いて本実施例の多軸機構の動作指令生
成装置の別のブロック図を示した。本装置は修正駆動力
指令で−の生成までディジタル制御系で行い、τ4をD
/A変換し、駆動力変換部(軸駆動装置)105で駆動
力T4に変換され、機構部106の各軸駆動装置に駆動
力を印加する構成である。速度検出は行わず、位置出力
θ−を検出し、位置制御部101をI−PD制御系によ
り構成している。駆動力指令の検出もソフトウェアシー
ケンスの中で演算結果を参照する方式をとるため、ハー
ドウェアの増加は無く、最適な軸間干渉除去ゲインの演
算も容易である。Next, another block diagram of the operation command generation device for the multi-axis mechanism of this embodiment is shown using FIG. This device uses a digital control system to generate the corrected driving force command, and sets τ4 to D.
/A conversion, and is converted into driving force T4 by the driving force conversion unit (axis driving device) 105, and the driving force is applied to each axis driving device of the mechanism unit 106. Speed detection is not performed, but position output θ- is detected, and the position control section 101 is configured by an I-PD control system. Since the detection of the driving force command also refers to the calculation results in the software sequence, there is no need for an increase in hardware, and it is easy to calculate the optimal inter-axis interference removal gain.
本実施例の軸間干渉除去部の演算内容の構成を第3図、
第4図を用いて説明する。第3図は、遠心、コリオリカ
、バイアス廓動力の非線形項が無視しうる動作で最適な
(8)式で示される軸間干渉除去方式を示している。各
軸駆動力指令τiと軸間干渉除去ゲインαjiの積和か
ら各軸修正駆動力な軸間干渉除去方式を示している。こ
の場合の軸間干渉除去可能な駆動力指令と修正駆動力指
令の関係は(15)式のように与えられる。Figure 3 shows the configuration of the calculation contents of the inter-axis interference removal section of this embodiment.
This will be explained using FIG. FIG. 3 shows an optimal inter-axis interference removal method expressed by equation (8) in which the nonlinear terms of centrifugal, Coriolis, and bias rotational forces can be ignored. An inter-axis interference removal method is shown in which the driving force for each axis is corrected based on the product sum of each axis driving force command τi and the inter-axis interference removal gain αji. In this case, the relationship between the driving force command that allows the inter-axis interference to be removed and the corrected driving force command is given by equation (15).
i=1
αJ*=Kia AjtA it KTi
−(15)τiLは非線形項を示してお
り、軸間干渉除去ゲインα□は非線形項無視可能な場合
と同一である。i=1 αJ*=Kia AjtA it KTi
-(15)τiL indicates a nonlinear term, and the inter-axis interference removal gain α□ is the same as when the nonlinear term can be ignored.
τiLの演算はやや煩雑で時間を要する。第1図に示す
ように駆動力指令をアナログ量として扱う場合はτiL
の演算結果をD/A変換する手段が必要となりハードウ
ェア的に複雑になる。第2図に示すように駆動力指令を
ディジタル量として扱う場合は、ハードウェア的には簡
素ですむが、全体の演算量が大きくなる問題がある。以
下の説明では非線形項の影響が無視できる場合を例とし
て示すが、非線形項が無視できない場合は第4図のよう
なブロック図の修正を行うことにより実現可能である。Calculating τiL is somewhat complicated and takes time. As shown in Figure 1, when treating the driving force command as an analog quantity, τiL
A means for D/A converting the calculation result is required, which increases the hardware complexity. As shown in FIG. 2, when the driving force command is treated as a digital quantity, the hardware is simple, but there is a problem that the total amount of calculation becomes large. In the following explanation, a case where the influence of the nonlinear term can be ignored will be exemplified, but if the nonlinear term cannot be ignored, it can be realized by modifying the block diagram as shown in FIG.
次に第1図、第2図の多軸機構の動作指令生成装置の具
体的なハードウェア構成を第5図、第6図を用いて説明
する。Next, the specific hardware configuration of the operation command generation device for the multi-axis mechanism shown in FIGS. 1 and 2 will be explained using FIGS. 5 and 6.
第5図は第1図に対応し、速度制御系をアナログ制御系
で構成した場合の動作指令生成装置のハードウェア構成
を示している。中央処理部1は中央処理装置 (CPU
)2、リードオンリーメモリ(ROM)3、ランダムア
クセスメモリ(RAM)4より構成される。中央処理部
1は位置検出、軸間干渉除去ゲイン設定、A/D、D/
A変換管理等を行っている。中央処理部1で位置指令に
基づきI−PD動作により生成された速度指令θ、、は
、D/A変換部11によりアナログ変換され、速度制御
回路12においてアナログ速度検出!118(例えばタ
コジェネレータ)から入力される速度フィードバック信
号θ4を基に、比例動作に基づき駆動力指令τiを生成
する。駆動力指令τJはA/D変換部10を介して中央
処理部1に送信され、駆動力指令で、に対応する軸匪動
装置の駆動力指令・発生駆動力変換定数KTJ(τi)
を算出し、負荷条件、軸間角等により演算されるイナー
シャAをもとに(9)式に基づき軸間干渉除去ゲインα
J、を演算し、アナログの増幅器により構成さ指令を送
信する。出力される修正駆動力指令τ□は増幅部16で
増幅され、軸駆動装置に印加され、駆動力TJを発生し
、多軸機構の各軸が駆動される。位置検出器19は多軸
機構の各駆動軸に連結されており、位置検出回路9でサ
ンプリングパルスタイマ8の信号に同期して一時記憶回
路7へ送られ、中央処理部1へ送信される。A/D変換
部10、D/A変換部11、−時記憶回路14の動作管
理はデコーダ13を介して中央処理部1により行われる
1図中のK A J K ’ T J / R−が第1
図のKTJに対応している。FIG. 5 corresponds to FIG. 1 and shows the hardware configuration of the operation command generation device when the speed control system is configured as an analog control system. The central processing unit 1 is a central processing unit (CPU
) 2, read-only memory (ROM) 3, and random access memory (RAM) 4. The central processing unit 1 performs position detection, inter-axis interference removal gain setting, A/D, D/
Performs A conversion management, etc. The speed command θ, generated by the I-PD operation based on the position command in the central processing unit 1 is converted into analog by the D/A converter 11, and the speed control circuit 12 detects the analog speed! Based on the speed feedback signal θ4 inputted from 118 (for example, a tacho generator), a driving force command τi is generated based on a proportional operation. The driving force command τJ is sent to the central processing unit 1 via the A/D converter 10, and the driving force command of the shaft tilting device corresponding to the driving force command/generated driving force conversion constant KTJ (τi) is the driving force command.
is calculated, and based on the inertia A calculated based on the load conditions, the angle between the shafts, etc., the interference removal gain α between the shafts is calculated based on equation (9).
J, and transmits a command using an analog amplifier. The output corrected driving force command τ□ is amplified by the amplifier 16 and applied to the shaft drive device to generate the driving force TJ and drive each axis of the multi-axis mechanism. The position detector 19 is connected to each drive shaft of the multi-axis mechanism, and the position detection circuit 9 sends the signal to the temporary storage circuit 7 in synchronization with the signal from the sampling pulse timer 8, and then to the central processing unit 1. Operation management of the A/D converter 10, the D/A converter 11, and the -time storage circuit 14 is performed by the central processing unit 1 via the decoder 13. 1st
It corresponds to KTJ shown in the figure.
第6図は第2図に対応し1位置制御をディジタル制御に
より行う場合の動作指令生成装置のハードウェア構成を
示している。速度検出量をアナログ量としてフィードバ
ックする必要が無いので速度検出器を省くことができ簡
易な構成とでできる。FIG. 6 corresponds to FIG. 2 and shows the hardware configuration of an operation command generation device when one-position control is performed by digital control. Since there is no need to feed back the speed detection amount as an analog amount, the speed detector can be omitted and a simple configuration can be achieved.
位置検出器19としてはエンコーダ等ディジタル検出器
を用い、中央処理部1でI−PD動作、比例動作による
駆動力指令τ−の生成、軸間干渉除去のための修正駆動
力指令τiの生成を行い、D/A変換部11でアナログ
変換される。修正駆動力指令τJは増幅部16で増幅さ
れ、軸駆動装置を能動し、多軸機構を能動する。本装置
では軸間干渉除去はソフトウェアで行われる。A digital detector such as an encoder is used as the position detector 19, and the central processing unit 1 performs I-PD operation, generation of driving force command τ- by proportional operation, and generation of corrected driving force command τi for removing interference between axes. The data is converted into analog data by the D/A converter 11. The corrected driving force command τJ is amplified by the amplifier 16, activates the shaft drive device, and activates the multi-axis mechanism. In this device, interference removal between axes is performed by software.
ここで、第5図で用いられる軸間干渉除去部15の具体
的な構成例について第7図〜第9図を用いて述べる。軸
間干渉除去部15は乗算部と加算部の2段構成となって
いる。乗算方法として、次の2方式が考えられる。Here, a specific example of the configuration of the inter-axis interference removing section 15 used in FIG. 5 will be described using FIGS. 7 to 9. The inter-axis interference removal section 15 has a two-stage configuration of a multiplication section and an addition section. The following two methods can be considered as multiplication methods.
(I)駆動力指令を演算増幅する方式
(II)N動力指令を非線形増幅する方式通常、軸間干
渉除去ゲインαハは各軸駒動力指令の極性が同一の場合
O≦αJi≦1で与えられる。(I) A method of operationally amplifying the driving force command (II) A method of nonlinearly amplifying the N power command Normally, the inter-axle interference removal gain α is given as O≦αJi≦1 when the polarity of each axis piece power command is the same. It will be done.
く方式(1)について〉
増幅率は演算増幅回路の抵抗比により定まることから、
中央処理部1から送信される指令に基づき抵抗値可変と
できる方式としては、下記2方式が考えられる。Regarding method (1)> Since the amplification factor is determined by the resistance ratio of the operational amplifier circuit,
The following two methods can be considered as methods for making the resistance value variable based on commands sent from the central processing unit 1.
(1)指令値をD/A変換することにより得られるアナ
ログ電圧を印加することにより抵抗値可変となる電圧可
変抵抗を演算増幅回路に組込む方式。(1) A method in which a voltage variable resistor whose resistance value can be changed by applying an analog voltage obtained by D/A converting a command value is incorporated into an operational amplifier circuit.
(2)複数段階の増幅率を得られるよう複数種類の抵抗
を並列配置し、その両端にマルチプレクサを接続し、抵
抗選択指令を両端のマルチプレクサに与えることにより
単一の抵抗が選択され増幅率を設定可能とする方式。(2) Multiple types of resistors are arranged in parallel to obtain multiple stages of amplification factors, multiplexers are connected to both ends of the resistors, and a single resistor is selected by giving a resistor selection command to the multiplexers at both ends and the amplification factor is set. A method that allows settings.
各方式を各々第7図、第8図を用いて説明する。Each method will be explained using FIG. 7 and FIG. 8, respectively.
方式(1)−(1)は第5図の一時記憶回路14より送
信される指令(電圧可変抵抗R2J lの抵抗値データ
)を次のように定める。本方式は第7図において、演算
増幅器24を用いて反転増幅回路を構成するため、各抵
抗値と駆動力指令増幅率α。の間には(16)式が成り
たつ。In method (1)-(1), the command (resistance value data of voltage variable resistor R2Jl) transmitted from the temporary storage circuit 14 in FIG. 5 is determined as follows. In this method, in FIG. 7, since an inverting amplifier circuit is constructed using an operational amplifier 24, each resistance value and the driving force command amplification factor α. Equation (16) holds true between.
R工 従って、αjiが与えられ、その可変域でR2J。R engineering Therefore, given αji, R2J in its variable range.
可変となるよう固定抵抗Rを選択し、R,41抵抗デー
タを中央処理部1で作成することにより反転乗算駆動力
指令−α、1τJをうることが可能となる。また、演算
増幅器24の仮想接地抵抗23は。By selecting the fixed resistance R so that it is variable and creating R, 41 resistance data in the central processing unit 1, it becomes possible to obtain the inversion multiplication driving force command -α, 1τJ. Further, the virtual ground resistance 23 of the operational amplifier 24 is as follows.
R1R2J l / (Rユ+R2J l )に選ぶの
が適当であることが知られているため、抵抗23にも電
圧可変抵抗を設けた。電圧可変抵抗は例えば磁気抵抗素
子、光導電素子等を用いて構成する。また、干渉除去部
加算部は、乗算部で得られた反転乗算出力−α4.τi
を並列設置された抵抗25を介してj軸分につき並列入
力することにより演算増幅器26で増幅率lで反転増幅
することにより構成した。Since it is known that it is appropriate to select R1R2J l / (R + R2J l ), a voltage variable resistor is also provided for the resistor 23. The voltage variable resistor is constructed using, for example, a magnetoresistive element, a photoconductive element, or the like. Further, the interference canceling unit adding unit also outputs the inverted multiplication output −α4 obtained by the multiplying unit. τi
is input in parallel for the j-axis through a resistor 25 installed in parallel, and the resultant signal is inverted and amplified by an operational amplifier 26 at an amplification factor l.
軸間干渉除去部の加算部の構成は以下述べる他方式でも
同一とした。The configuration of the addition section of the inter-axis interference removal section was the same for the other systems described below.
次に、方式(1)−(2)を第8図を用いて説明する。Next, methods (1) and (2) will be explained using FIG.
2段の反転増幅回路を用いて構成されている点は方式(
1)−(1)と同一であり、可変抵抗R2J 1は、抵
抗選択指令Rがマルチプレクサ29.30に入力される
ことにより、選択設定される。マルチプレクサ29.3
0により設定しうる増幅率α1iは方式(1)−(1)
と比して一般に少段階にしか設定できない。従って、選
択されるべき抵抗値は、(16)式から算出される最適
値との差が最小となるよう選択しなければならない。The point that it is constructed using a two-stage inverting amplifier circuit is the method (
1)-(1), and the variable resistor R2J1 is selected and set by inputting the resistance selection command R to the multiplexer 29.30. Multiplexer 29.3
The amplification factor α1i that can be set by 0 is the method (1)-(1)
Generally speaking, it can be set in only a small number of steps. Therefore, the resistance value to be selected must be selected such that the difference from the optimum value calculated from equation (16) is minimized.
〈方式(II)について〉
次に、方式(n)について対数増幅器を用いた例を第9
図を用いて説明する。駆動力指令τノは演算増幅器24
のA部でバイアス電圧■^が印加され、対トランジスタ
37のトランジスタQ1に電流11が流れる。トランジ
スタQ2には定電流12が流れるように調整されている
ため、B点ではトランジスタの非線形特性(対数特性)
による(17)式で示される電圧が発生する。<About method (II)> Next, an example using a logarithmic amplifier for method (n) will be described in the ninth section.
This will be explained using figures. The driving force command τ is provided by the operational amplifier 24.
A bias voltage ■^ is applied to a portion A of the transistor Q1, and a current 11 flows through the transistor Q1 of the paired transistor 37. Since the transistor Q2 is adjusted so that a constant current 12 flows, the nonlinear characteristics (logarithmic characteristics) of the transistor at point B
A voltage expressed by equation (17) is generated.
演算増幅器38では抵抗R4,R,により非反転増幅が
行われ0点出力電圧は(18)式で示される値となる。In the operational amplifier 38, non-inverting amplification is performed by the resistors R4 and R, and the zero point output voltage becomes the value shown by equation (18).
τ 1
Vc= A Qog−o −B (A> O)
−(18)R1J 1
ここでは、Vc”−αJlτiとなるように設定するこ
とが望まれるので、抵抗RIJ136を電圧可変抵抗に
より構成し、中央処理部1よりD/A変換部35を介し
て抵抗値が(19)式の値となるように指令することに
より所望の乗算を行うことが可能となる。τ 1 Vc= A Qog-o −B (A>O)
-(18) R1J 1 Here, it is desired to set it to be Vc''-αJlτi, so the resistor RIJ136 is configured with a voltage variable resistor, and the resistor is connected from the central processing unit 1 via the D/A converter 35 By instructing the value to be the value of equation (19), desired multiplication can be performed.
B−α41τ量
R−Jl = x t ・10
・・・(19)次に、以上述べたn軸条軸機構
の動作指令生成方法及び装置を4自由度水平多関節形直
接駆動ロボットに適用した例を第10図〜第21図を用
いて説明する。B-α41τ amount R-Jl = x t ・10
...(19) Next, an example in which the above-mentioned operation command generation method and device for an n-axis shaft mechanism is applied to a 4-degree-of-freedom horizontal articulated direct drive robot will be explained using Figs. 10 to 21. explain.
第10図において、ロボット本体107は、各軸駆動装
置がτiで示す駆動方向に駆動力を発生することにより
空間内の動作範囲内における任意の位置への位置決めが
可能な構成となっている。In FIG. 10, the robot main body 107 is configured such that each axis drive device generates a driving force in the driving direction indicated by τi, so that the robot main body 107 can be positioned at any position within the movement range in space.
ロボット本体107の詳細構造については第11図を用
いて後述する。ロボット本体107は作業者110より
教示装置109を介してロボット制御装置108に記憶
させた各軸移動パターン、移動速度データに基づき、ロ
ボット制御袋!108よりロボット本体107各軸駆動
装置に(電力供給)ケーブル114を介して電力供給を
行うことにより駆動され、各軸移動量、移動速度は(信
号伝達)ケーブル114を介してロボット制御装置10
8にフィードバックされ、駆動力指令等動作指令の生成
に用いられる。図中、ロボットは挿入体112を作業台
111に設置された被挿入体113の孔にはめあい挿入
する作業を行っている。The detailed structure of the robot body 107 will be described later using FIG. 11. The robot main body 107 is controlled based on the movement pattern and movement speed data of each axis stored in the robot control device 108 by the operator 110 via the teaching device 109. The robot main body 107 is driven by supplying power to each axis drive device via a (power supply) cable 114 from 108, and the movement amount and movement speed of each axis are controlled via the (signal transmission) cable 114 to the robot control device 10.
8 and is used to generate operation commands such as driving force commands. In the figure, the robot is performing a task of fitting and inserting an inserter 112 into a hole of an inserter 113 installed on a workbench 111.
ロボットは高速・高精度に動作することが望まれており
、第12図、第13図を用いて後述する動作指令生成装
置は、ロボット制御袋!1108中に設けられ、上記動
作を可能せしめるものである。It is desired that robots operate at high speed and with high precision, and the operation command generation device, which will be described later using FIGS. 12 and 13, is a robot control bag! 1108 to enable the above operations.
第11A図は本ロボットの簡略構造図である。FIG. 11A is a simplified structural diagram of the robot.
本ロボットは第1アーム40と、第2アーム42をそれ
ぞれ駆動モータ39と41により直接駆動する構成で、
手首部(スプライン軸)49はモータ43の回転動力を
プーリ・ベルト・プーリ(図示せず)を介してボールネ
ジ軸46に伝達しそれと螺合するポールネジナツト部と
結合されたブラケット47と共に上下方向に駆動され、
更にモータ44により減速機45、プーリ・ベルト・プ
ーリ・スプライン軸受(図示せず)を介して回転駆動さ
れる構成となっている。スプライン軸49はブラケット
47に対して回転自由に支持されており、その下端に工
具48が付けられている。各軸の駆動モータには位置・
速度検出器が設けられている。また、動作範囲のオーバ
ラン、原点位置を検出するための特定位置検出器・被検
出体と、オーバランして更に行き過ぎた動作を行うこと
を止めるストッパ部及び衝突部材が設けられている。This robot has a configuration in which the first arm 40 and the second arm 42 are directly driven by drive motors 39 and 41, respectively.
The wrist portion (spline shaft) 49 transmits the rotational power of the motor 43 to the ball screw shaft 46 via a pulley, belt, and pulley (not shown), and is rotated in the vertical direction together with a bracket 47 connected to a pole screw nut portion that is screwed thereto. driven by
Furthermore, it is configured to be rotationally driven by a motor 44 via a speed reducer 45, a pulley, a belt, a pulley, and a spline bearing (not shown). The spline shaft 49 is rotatably supported by the bracket 47, and has a tool 48 attached to its lower end. The drive motor for each axis
A speed detector is provided. Further, there are provided a specific position detector/detected object for detecting an overrun in the operating range and the origin position, and a stopper section and a collision member for stopping an overrun and further excessive operation.
なお、手首回転軸は360”回転する構造となっており
、オーバラン検出器、ストッパ、衝突部材は設けられて
いない。また、手首上下軸には滑落防止用のブレーキが
設けられている。Note that the wrist rotation axis is structured to rotate 360'', and is not provided with an overrun detector, a stopper, or a collision member.Furthermore, a brake for preventing slipping is provided on the wrist vertical axis.
本ロボットの4軸すべての能動モータが通電され、トル
クTJを発生すると、第11A図かられかるように手首
上下軸と回転軸の開動モータ43と44間には干渉は無
い。一方、手首上下軸と回転軸の開動モータ43と44
と、2軸用駆動モータ41と、1軸用鮭動モータ39と
の各駆動モータの相互間には軸干渉がある。このうち、
手首上下軸と回転軸の能動モータ43と44のモータト
ルクは、1,2軸モータのトルクと比して小さく、同時
に加減速することも少ないと考えられる。そこで、1.
2軸間の干渉に着目し、手首部負荷はすべて第2アーム
に含まれていると考えた2ア一ム剛体モデルを第11B
図に示す。1.2軸モータ39と41により開動される
第1アーム40と第2アーム42は、それぞれアーム長
a工、a2、重心位置氾□l Q2、集中質量mよ2m
2、重心まわり集中イナーシャI IZI I zZ
の剛体モデルで扱える高い剛性を有するものとする。こ
の場合、第1アーム角θ4.1,2輪軸間角θ2.1,
2軸のモータトルクT1.T2とすると運動方程式は(
20)式で示される。When the active motors of all four axes of this robot are energized and generate torque TJ, there is no interference between the opening motors 43 and 44 of the wrist vertical axis and the rotation axis, as seen from FIG. 11A. On the other hand, opening motors 43 and 44 for the wrist vertical axis and rotation axis
There is shaft interference between the drive motors, the two-axis drive motor 41, and the single-axis movement motor 39. this house,
The motor torques of the active motors 43 and 44 for the wrist vertical axis and rotation axis are smaller than the torques of the one- and two-axis motors, and it is thought that simultaneous acceleration and deceleration is rare. Therefore, 1.
Focusing on the interference between the two axes, we created a two-arm rigid body model in 11B, which assumes that all wrist loads are included in the second arm.
As shown in the figure. 1. The first arm 40 and the second arm 42, which are opened and operated by the two-axis motors 39 and 41, have arm lengths a, a2, center of gravity □l Q2, concentrated mass m and 2 m, respectively.
2. Concentrated inertia around center of gravity I IZI I zZ
It is assumed that the rigidity is high enough to be handled by a rigid body model. In this case, the first arm angle θ4.1, the angle between the two wheels θ2.1,
2-axis motor torque T1. Assuming T2, the equation of motion is (
20) is shown by the formula.
・・・(20)
ここで、J□、=J□、。−Jよ、cosθ2J□z
”Jzl”Jz□−J14cosθ2J□3 =2Jx
4= 2.L、=2m2a工氾2本実施例で述べた動
作指令生成方法をロボットに適用する場合の位置制御用
動作指令生成装置のブロック図を第12図、第13図に
示す。本実施例ロボットは、1軸、2軸モータに重力に
よるバイアス作用力は作用しない。また、動作軌跡精度
の要求される低速動作では、遠心・コリオリ作用力も小
さい。そこで、慣性トルクに着目した軸間干渉除去方式
が適用できる。...(20) Here, J□,=J□,. -J, cosθ2J□z
“Jzl”Jz□−J14cosθ2J□3 =2Jx
4=2. L,=2m2a engineering flood 2 FIGS. 12 and 13 are block diagrams of a position control motion command generation device when the motion command generation method described in this embodiment is applied to a robot. In the robot of this embodiment, no bias force due to gravity acts on the 1-axis and 2-axis motors. In addition, in low-speed operations that require precision in the movement trajectory, centrifugal and Coriolis forces are also small. Therefore, an inter-axis interference removal method that focuses on inertial torque can be applied.
第12図は第1図に、第13図は第2図に対応する2軸
の動作指令生成装置を示している。ここでは、自軸の軸
間干渉除去ゲインα□□=α22=1である場合のα1
□、α2、を求める問題を扱う。速度θとトルク指令τ
の間には(21)式の関係が成立する。FIG. 12 shows a two-axis motion command generation device corresponding to FIG. 1, and FIG. 13 corresponds to FIG. 2. Here, α1 when the self-axis inter-axis interference removal gain α□□=α22=1
We deal with the problem of finding □, α2. Speed θ and torque command τ
The relationship expressed by equation (21) holds true between them.
ここで△は(23)式で示される。Here, Δ is expressed by equation (23).
Δ=(J、、J22 JL2”)S” +(JttK
zKy2+J2□に工KT1−J□2KT□α、2に2
−J□2KT2αzxK1)S+KTlKT2KzK2
(I CE12α21)(23)
以上から、速度出力θ、は(24)式で示される。Δ=(J,,J22 JL2")S"+(JttK
zKy2+J2□ to KT1-J□2KT□α, 2 to 2
-J□2KT2αzxK1)S+KTlKT2KzK2
(ICE12α21) (23) From the above, the speed output θ is expressed by equation (24).
ここで、遠心・コリオリ作用力を無視した場合の応答特
性を求める。(ここでラプラス変換L(θ)二〇と記す
)
伝達関数6□2.α2□が零となれば軸間干渉は除去さ
れる。従って(22)式から、α、2.α21は(25
)式のように求められる。Here, the response characteristics are determined when centrifugal and Coriolis forces are ignored. (Here, it is written as Laplace transform L(θ)20) Transfer function 6□2. When α2□ becomes zero, inter-axis interference is eliminated. Therefore, from equation (22), α, 2. α21 is (25
) can be calculated as follows.
Kr、J、□
Kr2J□、
この場合、G□1.G2□は極零相殺がなされ、(26
)式のように簡略化される。Kr, J, □ Kr2J□, in this case, G□1. G2□ undergoes pole-zero cancellation, and becomes (26
) is simplified as Eq.
K J K T J
位置制御系もその応答周期がサンプリング周期と比して
十分長い場合を考え、連続系として扱うと位置伝達関数
は(27)式で示される。K J K T J Considering the case where the response period of the position control system is sufficiently long compared to the sampling period, and treating it as a continuous system, the position transfer function is expressed by equation (27).
θJ=L−’ (PadOar)
1 a
ω nJ
(T*s+1)(s”+2ζJ ωnJS + (+)
nJ2)・・・(27)
ここで位置干渉伝達特性Po(1≠j)を測定し。θJ=L−' (PadOar) 1 a ω nJ (T*s+1)(s”+2ζJ ωnJS + (+)
nJ2)...(27) Here, the position interference transfer characteristic Po (1≠j) is measured.
軸間干渉除去有無の場合につき、比較した結果を述べる
。1,2軸モータの発生駆動力(トルク)Tと駆動力(
トルク)指令τの関係例(機械設計第31巻第13号P
P3O−37(1987−9)記事P32記載のもの)
を第14図に示した。これから、T−τ間には非線形性
がみられる。ここで、τM、TMは各々の最大値を示す
。トルク定数をT、τ比で扱うためのトルク指令に対す
るトルク指令・トルク変換定数KTの変かを第15図に
示し、(25)式に基づき軸間干渉除去ゲインを求める
際に用いられる1、2軸のトルク指令・発生トルク変換
定数比KT工/KT2のトルク指令との関係を第16図
に示した。これから、トルク指令により30%程度の差
異がみられることがわかった。We will describe the results of a comparison between cases with and without inter-axle interference removal. The driving force (torque) T generated by the 1st and 2nd axis motors and the driving force (
Example of relationship between torque) command τ (Mechanical Design Vol. 31 No. 13 P)
P3O-37 (1987-9) as stated in article P32)
is shown in Figure 14. From this, nonlinearity can be seen between T and τ. Here, τM and TM indicate their respective maximum values. Figure 15 shows the variation of the torque command/torque conversion constant KT with respect to the torque command in order to treat the torque constant as T and τ ratio. The relationship between the torque command of the two axes and the torque command of the generated torque conversion constant ratio KT/KT2 is shown in FIG. From this, it was found that there was a difference of about 30% depending on the torque command.
まず、軸間干渉除去無し、有りの場合の位置指令零近傍
の微少指令に対する位置干渉伝達ゲインの周波数特性を
第17図、第18図に示した。これから、軸間干渉除去
無しでは、低周波数における位置干渉伝達ゲインP2□
が位置主伝達ゲインP1□、P2□の約45%であるが
、軸間干渉除去有りでは約10%と低減されていること
がわかる。First, FIGS. 17 and 18 show the frequency characteristics of the position interference transfer gain for minute commands in the vicinity of zero position command with and without inter-axis interference removal. From now on, without inter-axis interference removal, position interference transfer gain P2□ at low frequency
is about 45% of the positional main transfer gains P1□, P2□, but it can be seen that it is reduced to about 10% with inter-axis interference removal.
この場合の軸間干渉除去ゲインを変えて位置干渉伝達ゲ
インP1□、P21が最小となる(α、2.α21)の
組み合わせを求めたところ第19図の実測結果となった
。一方、第16図におけるトルク指令τH及びOにおけ
るK T 1/ K T Z値を用いて(25)式に基
づきα□2.α21のロボット姿勢角(第11B図参照
)変化を求めると第20図、第21図のようになり、第
21図の結果が第19図に示した実測値とよく合致する
ことがわかった。これは、通常用いられている最大発生
トルクにおけるTM/τH比で求めたKTx/KTzを
用いた場合は最適な軸間干渉ができないことを示してお
り、駆動力指令条件に合致する軸間干渉除去ゲインの決
定を行うことにより最適な軸間干渉除去が可能であるこ
とを示している。本実施例で述べた駆動力指令検出値に
基づく駆動力指令・発生駐動力変換定数を用いた軸間干
渉除去ゲイン演算を伴う動作指令生成方法を用いること
により最適な軸間干渉除去が可能である。When the inter-axis interference removal gain in this case was changed to find the combination (α, 2.α21) in which the positional interference transfer gains P1□, P21 were minimized, the actual measurement results shown in FIG. 19 were obtained. On the other hand, using the K T 1/K T Z values at the torque commands τH and O in FIG. When the change in the robot posture angle (see FIG. 11B) of α21 was calculated, the results were as shown in FIGS. 20 and 21, and it was found that the results in FIG. 21 were in good agreement with the measured values shown in FIG. 19. This indicates that optimal inter-axle interference cannot be achieved when using KTx/KTz determined by the TM/τH ratio at the maximum generated torque, which is commonly used, and inter-axle interference that meets the driving force command conditions This shows that optimal inter-axis interference removal is possible by determining the removal gain. Optimal interference between axes can be removed by using the operation command generation method that involves inter-axis interference removal gain calculation using the driving force command/generated parking force conversion constant based on the detected driving force command value as described in this example. be.
次に、本実施例の第2の実施例を第22図〜第32図を
用いて説明する。本実施例は、軸間干渉除去により単純
化された多軸機構の伝達特性をもとに、その応答遅れを
打ち消す前置補償を全逆伝達特性もしくは部分逆伝達特
性を指令に乗算する構成により実現し、制御系の帯域幅
を広げ、高応答化し、動作軌跡精度を高めるものである
。第22図は軸間干渉除去のなされた遠心・コリオリカ
作用の無視しうる多軸機構の位置制御・動作指令生成装
置ブロック図、第23図は第22図の位置伝達関数の周
波数特性を示す図、第24図は第22図に示した位置制
御系に部分逆伝達関数前置補償を行った多軸機構の位置
制御・動作指令生成装置ブロック図、第25図は第24
図の位置伝達関数の周波数特性を示す図、第26図は第
22図に示した位置制御系に全逆伝達関数前置補償を行
った多軸機構の位置制御・動作指令生成装置ブロック図
、第27図は第26図の位置伝達関数の周波数特性を示
す図、第28図は軸間干渉除去のなされた遠心・コリオ
リカ作用の無視しうる多軸機構の速度制御系に全逆伝達
関数前置補償を行った多軸機構の速度制御・動作指令生
成装置ブロック図、第29図は第28図に示した速度制
御系の前置補償有・無時の速度伝達関数の周波数特性を
示す図、第30図は位置制御系・速度制御系切換動作可
能な多軸機構の動作指令生成装置のブロック図を示して
いる。Next, a second embodiment of this embodiment will be described using FIGS. 22 to 32. This embodiment is based on the transfer characteristics of a multi-axis mechanism that has been simplified by eliminating interference between axes, and has a configuration in which the command is multiplied by the full reverse transfer characteristic or partial reverse transfer characteristic by pre-compensation that cancels out the response delay. This will widen the bandwidth of the control system, increase response, and improve the accuracy of the motion trajectory. Figure 22 is a block diagram of a position control/motion command generation device for a multi-axis mechanism in which inter-axis interference has been removed and centrifugal and Coriolis effects can be ignored, and Figure 23 is a diagram showing the frequency characteristics of the position transfer function in Figure 22. , FIG. 24 is a block diagram of a position control/motion command generation device for a multi-axis mechanism in which partial inverse transfer function pre-compensation is applied to the position control system shown in FIG. 22, and FIG.
Figure 26 is a block diagram of a position control/motion command generation device for a multi-axis mechanism in which full inverse transfer function pre-compensation is performed on the position control system shown in Figure 22; Figure 27 is a diagram showing the frequency characteristics of the position transfer function in Figure 26, and Figure 28 is a diagram showing the frequency characteristics of the position transfer function in Figure 26. Figure 29 is a block diagram of a speed control/operation command generation device for a multi-axis mechanism with position compensation, and Figure 29 is a diagram showing the frequency characteristics of the speed transfer function with and without pre-compensation of the speed control system shown in Figure 28. , FIG. 30 shows a block diagram of an operation command generation device for a multi-axis mechanism capable of switching between a position control system and a speed control system.
まず、軸間干渉除去のなされた多軸機構の位置制御系の
特性を第22図、第23図を用いて説明する。位置制御
系伝達関数は2軸の場合を(27)式に示したが、多軸
の場合も同様であり、第22図のように示される。時定
数T、−1とω。、は第23図に示すような大小関係が
あり、2πTJ−”>>ωnJであるとする。この場合
、角周波数と位置伝達関数ゲインの関係は次のようにな
っている。First, the characteristics of the position control system of a multi-axis mechanism in which interference between axes has been removed will be explained using FIGS. 22 and 23. The position control system transfer function is shown in equation (27) in the case of two axes, but the same applies to the case of multiple axes, and is shown as shown in FIG. Time constant T, -1 and ω. , has a magnitude relationship as shown in FIG. 23, and it is assumed that 2πTJ-">>ωnJ. In this case, the relationship between the angular frequency and the position transfer function gain is as follows.
ω〈ωnJ PJ、+:OdBω
。、≦(13<2 πTJ−’ PJJ :
40 d B/decω≧2 yt TJ−1PJJ
: −60d B/decこれから、帯域幅ωn、で
ある制御系を帯域幅2πTJ″″1とすることにより、
制御系の応答性が著しく高められる。そのためには、(
28)式に示す前置補償要素F、を用いて、(29)式
に示す修正位置指令を生成することにより可能である。ω〈ωnJ PJ, +:OdBω
. ,≦(13<2 πTJ−' PJJ:
40 d B/decω≧2 yt TJ-1PJJ
: -60d B/dec From now on, by setting the control system whose bandwidth is ωn to a bandwidth of 2πTJ""1,
The responsiveness of the control system is significantly improved. for that purpose,(
This is possible by generating the corrected position command shown in equation (29) using the pre-compensation element F shown in equation (28).
*
θ 、、:L−1(F (S) ・■Jr)
”’(29)本前置補償を施した場合の位置制御系伝
達関数の周波数特性を第25図に示した。* θ,,:L-1(F(S)・■Jr)
(29) FIG. 25 shows the frequency characteristics of the position control system transfer function when this pre-compensation is applied.
次に、前置補償要素として位置制御系の全逆伝達関数を
用いる場合のブロック図を第26図に示した。この場合
の位置制御系伝達関数の周波数特性を第27図に示した
。これから、位置制御系帯域幅を無限大とできることが
わかった。しかるに部分逆伝達関数を用いる場合と比し
て演算量が増大する問題があり、部分逆伝達関数を前置
補償要素として用いることにより十分な帯域幅が得られ
るならば、部分逆伝達関数を用いる方がサンプリング周
期を短縮でき、実用上は良好と考えられる。Next, FIG. 26 shows a block diagram when the full inverse transfer function of the position control system is used as the pre-compensation element. The frequency characteristics of the position control system transfer function in this case are shown in FIG. From this, we found that the position control system bandwidth can be made infinite. However, there is a problem that the amount of calculation increases compared to the case of using partial inverse transfer functions, and if sufficient bandwidth can be obtained by using partial inverse transfer functions as precompensation elements, then partial inverse transfer functions can be used. This method can shorten the sampling period and is considered to be better in practice.
次に、速度制御を行い、多軸機構を駆動する場合の前置
補償方式を第28図に示した。軸間干渉除去を行うこと
により、多軸機構の速度伝達関数が一次遅れ系に単純化
されるため、前置補償要素として上次進み要素を用いる
ことにより、第29図のように帯域幅を無限大とできる
。簡易な伝達関数を有する制御系には全逆伝達関数を前
置補償要素として用いることによる問題は無い。Next, FIG. 28 shows a pre-compensation method when speed control is performed to drive a multi-axis mechanism. By removing interference between axes, the speed transfer function of a multi-axis mechanism is simplified to a first-order lag system, so by using an upper-order advance element as a precompensation element, the bandwidth can be reduced as shown in Figure 29. Can be made infinite. For control systems with simple transfer functions, there is no problem with using the full inverse transfer function as a precompensation element.
次に、第30図は速度制御・位置制御動作指令生成装置
のブロック図を示している。速度制御時は速度制御用前
置補償要素、位置制御時は位置制御用前置補償要素を用
いることにより、いずれの制御モードでも応答性の向上
をはかることができる。Next, FIG. 30 shows a block diagram of a speed control/position control operation command generation device. By using a speed control precompensation element during speed control and a position control precompensation element during position control, responsiveness can be improved in either control mode.
また、以上の説明は連続時間形で扱ったが、サンプリン
グ周期が制御系の固有同期と比して十分小さくない離散
時間系として扱う必要のある制御系については、Z領域
で伝達関数を記述し、その全逆伝達関数もしくは部分逆
伝達関数を前置補償要素とすることにより、同様に扱う
ことができる。In addition, although the above explanation was handled in continuous time form, for control systems that need to be treated as a discrete time system where the sampling period is not sufficiently small compared to the inherent synchronization of the control system, the transfer function can be described in the Z domain. , can be handled in the same way by using its full inverse transfer function or partial inverse transfer function as a precompensation element.
以上、本実施例で述べた軸間干渉除去のなされた多軸機
構制御系の全逆伝達特性もしくは部分逆伝達特性を用い
た前置補償を行うことにより、多軸機構の応答性を著し
く高めることができ、その動作軌跡精度を著しく高める
ことができる。As described above, by performing pre-compensation using the full or partial reverse transfer characteristic of the multi-axis mechanism control system with inter-axle interference removed as described in this example, the responsiveness of the multi-axis mechanism can be significantly improved. It is possible to significantly improve the accuracy of the motion trajectory.
また、多軸機構の位置決め動作における整正時の挙動を
第31図、第32図に示すように変化させることができ
、整定時間の短縮をはかることが可能となり1組立作業
の高速化をはかりうる。In addition, the behavior during adjustment during positioning of the multi-axis mechanism can be changed as shown in Figures 31 and 32, making it possible to shorten the settling time and speed up one assembly operation. sell.
以上の説明は、サンプル周期が制御系応答周期と比して
微小な周波数領域(S領域)での取扱いが可能な場合に
ついて述べたが、サンプル周期が制御系応答周期と比し
て無視しえない離散時間領域(Z領域)での取扱いが必
要な場合にも、伝達関数を同様に2表現しく5=1−Z
−1)、修正位置指令生成に当っては例えば(29)式
を(30)式のように逆Z変換することにより、同様の
効果をうろことが可能になる。The above explanation deals with the case where handling is possible in the frequency domain (S domain) where the sample period is minute compared to the control system response period, but the case where the sample period is negligible compared to the control system response period is described. If it is necessary to treat the transfer function in the discrete time domain (Z domain), the transfer function can be similarly expressed as 2 and 5=1−Z
-1) When generating the corrected position command, the same effect can be obtained by inversely Z-transforming the equation (29) as shown in the equation (30).
本
θ ar=Z−1(F (z)OJ、(z))−(
30)〔発明の効果〕
本発明は、以上説明したように構成されているので以下
に記載されるような効果を奏する。Book θ ar=Z-1(F (z)OJ, (z))-(
30) [Effects of the Invention] Since the present invention is configured as described above, it produces the effects described below.
(1) #i動力指令と発生駆動力の間に非線形関係
のある軸駆動装置により駆動される多軸機構を、駆動力
指令を検出し、それに対応する駆動力指令・発生駆動力
変換定数を用いて軸間干渉除去ゲインを演算するため、
最適な軸間干渉除去を実現できる。(1) #i A multi-axis mechanism driven by an axis drive device that has a non-linear relationship between the power command and the generated driving force is detected by detecting the driving force command and converting the corresponding driving force command/generated driving force conversion constant. In order to calculate the inter-axis interference removal gain using
Optimal inter-axis interference removal can be achieved.
(2)上記の軸間干渉除去により簡素化された位!i1
1御系もしくは速度制御系にその全逆伝達特性もしくは
部分逆伝達特性を有する前置補償要素を用いて指令を修
正することにより、簡易な演算により、制御系の帯域幅
を広げることができ、応答性を高められ、多軸機構先端
で高い動作軌跡精度を得ることができる。(2) Simplified by removing the interference between axes as described above! i1
By modifying the command using a pre-compensation element having full reverse transfer characteristics or partial reverse transfer characteristics in the speed control system or the speed control system, the bandwidth of the control system can be expanded with simple calculations. Responsiveness is improved and high motion trajectory accuracy can be obtained at the tip of the multi-axis mechanism.
第1図、第2図は本発明の第1実施例のn軸条軸機構の
動作指令生成装置のブロック図、第3図、第4図は本発
明の軸間干渉除去部の構成図、第5図、第6図は第1図
、第2図に対応するハードウェア構成図、第7図〜第9
図は軸間干渉除去部のハードウェア構成図、第10図は
本発明の動作指令生成装置により駆動されるロボットの
操作状況を示す見取図、第11A図は水平多関節形直接
駆動ロボットの外観図、第11B図は第11A図の剛体
モデルを示す図、第12図、第13図はj111A図に
示したロボットの1,2軸動作指令生成装置のブロック
図、第14図は第11A図に示すロボットの1,2軸輛
動用直接疑動モータのトルク指令と発生トルクの関係を
示す図、第15図はトルク指令・発生トルク変換定数を
示す図、第16図は各軸トルク指令・発生トルク変換定
数比とトルク指令の関係を示す図、第17図、第18図
は軸間干渉除去補償無し・有り時の位置干渉伝達ゲイン
の周波数特性を示す図、第19図は、最適軸間干渉除去
ゲイン実測値のロボット姿勢角との関係を示す図、第2
0図、第21図は2種のトルク指令・発生トルク変換定
数比に対する軸間干渉除去ゲイン計算値のロボット姿勢
角との関係を示す図、第22図は軸間干渉除去のなされ
た多軸機構の位置制御系のブロック図、第23図は第2
2図に示す位置制御系伝達関数の周波数特性を示す図、
第24図は第22図に示す位置制御系にその部分逆伝達
関数を前置補償要素として設けたもののブロック図、第
25図は第24図に示す位置制御系伝達関数の周波数特
性を示す図、第26図は第22図に示す位置制御系にそ
の全逆伝達関数を前置補償要素として設けたもののブロ
ック図、第27図は第26図に示す位置制御系伝達関数
の周波数特性を示す図、第28図は速度制御系にその全
逆伝達関数を前置補償要素として設けたもののブロック
図、第29図は第28図に示す速度制御系の前置補償要
素布・無の場合の伝達関数の周波数特性を示す図、第3
0図は速度制御・位置制御制御系のブロック図、第31
図は制御系帯域幅が狭い場合で多軸機構の位置決め動作
時の挙動を示す図、第32図は制御系帯域幅が広い場合
で多軸機構の位置決め動作時の挙動を示す図、第33図
〜第35図は直列軸連結形、直並列軸連結形、並列軸連
結形水平多関節形ロボットの構成図、第36図は駆動力
指令・発生軛動力間に非線形関係のある軸駆動装置の特
性例を示す図である。
1・・・中央処理部、2・・・中央処理部@ (cpu
)、3・・・ROM、4・・・RAM、5・・・アドレ
スバス、6・・・データバス、7,14・・・−時記憶
回路、8・・・サンプリングパルスタイマ、9・・・位
置検出回路、10・・・A/D変換部、11,20.3
5・・・D/A変換部、12・・・速度制御回路、13
・・・デコーダ、15・・・軸間干渉除去部、16・・
・増幅部、17・・・駆動機構及びそれと連結された多
軸機構、18・・・速度検出器、19・・・位置検出器
、21,22,23゜25.27,28,33,34.
36・・・抵抗、24.26,38・・・演算増幅器、
29,30,31゜32・・・マルチプレクサ、37・
・・対トランジスタ、39・・・1軸用直接駆動モータ
、40・・・第1アーム、41・・・2軸用直接駆動モ
ータ、42・・・第2アーム、43・・・上下軸駆動モ
ータ、44・・・手首回転軸駆動モータ、45・・・減
速機、46・・・ボールネジ軸、47・・・ブラケット
、48・・・工具、49・・・スプライン軸、101・
・・位置制御部、102・・・D/A変換部、103・
・・駆動力指令生成部、104・・・軸間干渉除去部、
105・・・駆動力変換部、106・・・ロボット機構
部、107・・・ロボット本体、108・・・ロボット
制御装置、109・・・教示装置、110・・・作業者
、
1
1・・・作業台。
12
・・挿入体、
・・・被挿入体。
14・・・ケーブル。1 and 2 are block diagrams of an operation command generation device for an n-axis shaft mechanism according to a first embodiment of the present invention, and FIGS. 3 and 4 are block diagrams of an inter-axis interference removal section of the present invention, Figures 5 and 6 are hardware configuration diagrams corresponding to Figures 1 and 2, and Figures 7 to 9.
The figure is a hardware configuration diagram of the inter-axis interference removal unit, Figure 10 is a sketch diagram showing the operation status of the robot driven by the motion command generation device of the present invention, and Figure 11A is an external view of the horizontal articulated direct drive robot. , Figure 11B is a diagram showing the rigid body model in Figure 11A, Figures 12 and 13 are block diagrams of the 1st and 2nd axis motion command generation device of the robot shown in Figure j111A, and Figure 14 is a diagram showing the rigid body model in Figure 11A. Figure 15 is a diagram showing the torque command/generated torque conversion constant, and Figure 16 is the torque command/generated torque for each axis. Figures 17 and 18 are diagrams showing the relationship between torque conversion constant ratio and torque command, Figures 17 and 18 are diagrams showing the frequency characteristics of position interference transfer gain without and with inter-axle interference removal compensation, and Figure 19 is a diagram showing the frequency characteristics of position interference transfer gain with and without inter-axle interference removal compensation. Diagram showing the relationship between the measured value of interference removal gain and the robot posture angle, 2nd
Figure 0 and Figure 21 are diagrams showing the relationship between the robot attitude angle and the calculated value of the inter-axis interference removal gain for two types of torque command/generated torque conversion constant ratio, and Figure 22 is a diagram showing the relationship between the robot attitude angle and the calculated value of the inter-axis interference removal gain for two types of torque command/generated torque conversion constant ratio. A block diagram of the position control system of the mechanism, Figure 23 is the second
A diagram showing the frequency characteristics of the position control system transfer function shown in Figure 2,
Fig. 24 is a block diagram of the position control system shown in Fig. 22 in which the partial inverse transfer function is provided as a precompensation element, and Fig. 25 is a diagram showing the frequency characteristics of the position control system transfer function shown in Fig. 24. , Fig. 26 is a block diagram of the position control system shown in Fig. 22 with its full inverse transfer function provided as a precompensation element, and Fig. 27 shows the frequency characteristics of the position control system transfer function shown in Fig. 26. Figure 28 is a block diagram of a speed control system in which the total inverse transfer function is provided as a precompensation element, and Figure 29 is a block diagram of the speed control system shown in Figure 28 with no precompensation element distribution. Diagram showing frequency characteristics of transfer function, 3rd
Figure 0 is a block diagram of the speed control/position control system, No. 31.
Figure 32 shows the behavior of the multi-axis mechanism during positioning when the control system bandwidth is narrow, Figure 32 shows the behavior of the multi-axis mechanism during positioning when the control system bandwidth is wide, and Figure 33 shows the behavior of the multi-axis mechanism during positioning when the control system bandwidth is wide. Figures 35 to 35 are configuration diagrams of series-shaft-connected, series-parallel-shaft-connected, and parallel-shaft-connected horizontal articulated robots, and Figure 36 is a shaft drive device with a nonlinear relationship between driving force command and generated yoke force. It is a figure which shows the example of a characteristic. 1... Central processing unit, 2... Central processing unit @ (cpu
), 3...ROM, 4...RAM, 5...address bus, 6...data bus, 7, 14...-hour storage circuit, 8...sampling pulse timer, 9...・Position detection circuit, 10... A/D conversion section, 11, 20.3
5... D/A conversion section, 12... Speed control circuit, 13
... Decoder, 15... Inter-axis interference removal section, 16...
- Amplifying section, 17... Drive mechanism and multi-axis mechanism connected thereto, 18... Speed detector, 19... Position detector, 21, 22, 23° 25.27, 28, 33, 34 ..
36... Resistor, 24.26, 38... Operational amplifier,
29, 30, 31° 32... multiplexer, 37.
・Pair transistor, 39... Direct drive motor for 1 axis, 40... 1st arm, 41... Direct drive motor for 2 axes, 42... 2nd arm, 43... Vertical axis drive Motor, 44...Wrist rotating shaft drive motor, 45...Reducer, 46...Ball screw shaft, 47...Bracket, 48...Tool, 49...Spline shaft, 101...
...Position control section, 102...D/A conversion section, 103.
... Driving force command generation unit, 104... Inter-axis interference removal unit,
105... Driving force conversion unit, 106... Robot mechanism unit, 107... Robot body, 108... Robot control device, 109... Teaching device, 110... Operator, 1 1... ·Workbench. 12 ... Inserted body, ... Inserted body. 14... Cable.
Claims (1)
の修正駆動力指令を、前記各駆動軸の駆動力指令に前記
制御対象軸との軸間干渉除去ゲインを乗じてその総和と
して生成し、前記各駆動軸の駆動装置は駆動力指令と発
生駆動力との間に非線形関係を有する多軸機構の動作指
令生成方法において、前記軸間干渉除去ゲインを、前記
制御対象軸に連関する各駆動軸の作用荷重と制御対象軸
・各駆動軸間の軸間角から求めるイナーシャ比と、駆動
力指令の大きさから前記非線形関係により定まる角駆動
軸の駆動力指令・駆動力変換定数の比との積として求め
ることを特徴とする多軸機構の動作指令生成方法。 2、請求項1記載の多軸機構の動作指令生成方法におい
て、前記各駆動軸の位置指令もしくは速度指令を与える
際、前記位置指令は入力された指令に位置閉ループ伝達
関数の全逆伝達関数を周波数領域で乗算し、逆ラプラス
変換したものとして与え、また前記速度指令は入力され
た指令に速度閉ループ伝達関数を離散時間領域で乗算し
、逆Z変換したものとして与えることを特徴とする多軸
機構の動作指令生成方法。 3、複数の駆動軸が連関してなる多軸機構の制御対象軸
の修正駆動力指令を、前記各駆動軸の駆動力指令に前記
制御対象軸との軸間干渉除去ゲインを乗じてその総和と
して生成し、前記各駆動軸の駆動装置は駆動力指令と発
生駆動力との間に非線形関係を有する多軸機構の動作指
令生成装置において、前記各駆動軸の位置偏差もしくは
速度偏差を演算する中央処理部と、該中央処理部で求め
た位置偏差もしくは速度偏差をもとにアナログ量の各駆
動軸の駆動力指令を生成する駆動力指令生成手段と、該
駆動力指令生成手段で生成した各駆動力指令をA/D変
換するA/D変換手段と、前記軸間干渉除去ゲインを、
前記制御対象軸に連関する各駆動軸の作用荷重と制御対
象軸・各駆動軸間の軸間角から求めるイナーシャ比と、
駆動力指令の大きさから前記非線形関係により定まる各
駆動軸の駆動力指令駆動力変換定数の比との積として求
める軸間干渉除去ゲイン演算手段と、A/D変換された
各駆動軸の駆動力指令(τ_i)を前記軸間干渉除去ゲ
イン演算手段で求めた前記制御対象軸(j軸)との軸間
干渉除去ゲイン(α_j_i)倍増幅する増幅手段と、
前記制御対象軸(j軸)毎に前記駆動力指令(τ_i)
と軸間干渉除去ゲイン(α_j_i)の積を加算(▲数
式、化学式、表等があります▼)する加算手段と、該加
算手段からの出力(▲数式、化学式、表等があります▼
) を前記制御対象軸(j軸)の修正駆動力指令として受け
該制御対象軸の駆動装置に出力するパワーモジュールと
を備えたことを特徴とする多軸機構の駆動力指令生成装
置。 4、複数の駆動軸が連関してなる多軸機構の制御対象軸
の修正駆動力指令を、前記各駆動軸の駆動力指令に前記
制御対象軸との軸間干渉除去ゲインを乗じてその総和と
して生成し、前記各駆動軸の駆動装置は駆動力指令と発
生駆動力との間に非線形関係を有する多軸機構の動作指
令生成装置において、前記各駆動軸の位置偏差もしくは
速度偏差を演算し、該位置偏差もしくは速度偏差をもと
に各駆動軸の駆動力指令を生成し、前記軸間干渉除去ゲ
インを、前記制御対象軸に連関する各駆動軸の作用荷重
と制御対象軸・各駆動軸間の軸間角から求めるイナーシ
ャ比と、駆動力指令の大きさから前記非線形関係により
定まる各駆動軸の駆動力指令・駆動力変換定数の比との
積として求め、前記制御対象軸(j軸)毎に駆動指令(
τ_i)と軸間干渉除去ゲイン(α_j_i)の積和(
▲数式、化学式、表等があります▼)を修正駆動力指令
として求める中央処理部と、前記修正駆動力指令をD/
A変換してアナログ量とするD/A変換手段と、アナロ
グ量の前記修正駆動力指令を増幅して前記制御対象軸の
駆動装置に出力するパワーモジュールとを備えたことを
特徴とする多軸機構の動作指令生成装置。 5、請求項3または4記載の多軸機構の動作指令生成装
置を備えたことを特徴とするロボット。[Claims] 1. A correction driving force command for a controlled axis of a multi-axis mechanism in which a plurality of drive axes are linked is added to the driving force command of each of the drive axes to remove inter-axis interference with the controlled axis. In the operation command generation method for a multi-axis mechanism in which the drive device for each drive shaft has a nonlinear relationship between the drive force command and the generated drive force, the inter-axis interference removal gain is , the inertia ratio determined from the acting load of each drive shaft related to the controlled axis, the inter-axle angle between the controlled axis and each drive axis, and the magnitude of the driving force command, and the drive of the angular drive axis determined by the nonlinear relationship. A method for generating a motion command for a multi-axis mechanism, characterized in that it is obtained as a product of a force command and a ratio of a driving force conversion constant. 2. In the method for generating an operation command for a multi-axis mechanism according to claim 1, when giving a position command or a speed command for each of the drive axes, the position command is made by applying a total inverse transfer function of a position closed loop transfer function to the input command. The multi-axis multi-axis system is characterized in that the speed command is multiplied in the frequency domain and given as an inverse Laplace transform, and the speed command is given as a result of multiplying the input command by a speed closed loop transfer function in the discrete time domain and inverse Z-transformed. A method for generating operation commands for mechanisms. 3. The corrected driving force command for the controlled axis of a multi-axis mechanism in which multiple driving axes are linked is calculated by multiplying the driving force command of each of the driving axes by the inter-axis interference removal gain with the controlled axis, and then calculating the sum of the results. The drive device for each drive shaft calculates the position deviation or speed deviation of each drive shaft in a multi-axis mechanism operation command generation device that has a nonlinear relationship between the drive force command and the generated drive force. a central processing section, a driving force command generation means for generating an analog driving force command for each drive shaft based on the positional deviation or speed deviation obtained by the central processing section; An A/D conversion means for A/D converting each driving force command, and an inter-axis interference removal gain,
an inertia ratio obtained from the acting load of each drive shaft related to the controlled axis and the interaxial angle between the controlled axis and each drive axis;
an inter-axis interference removal gain calculating means that calculates the magnitude of the driving force command as a product of the ratio of the driving force conversion constant of the driving force command of each drive axis determined by the non-linear relationship, and the A/D converted drive of each drive axis. an amplification means for amplifying the force command (τ_i) by an inter-axis interference elimination gain (α_j_i) with the axis to be controlled (j-axis) obtained by the inter-axis interference elimination gain calculation means;
The driving force command (τ_i) for each axis to be controlled (j-axis)
There is an addition means that adds the product of and inter-axis interference removal gain (α_j_i) (▲There are mathematical formulas, chemical formulas, tables, etc.▼), and an output from the addition means (▲There are mathematical formulas, chemical formulas, tables, etc.▼
) as a modified driving force command for the axis to be controlled (j-axis) and a power module for outputting it to a drive device for the axis to be controlled. 4. The corrected driving force command for the controlled axis of a multi-axis mechanism in which multiple driving axes are linked is calculated by multiplying the driving force command of each of the driving axes by the inter-axis interference removal gain with the controlled axis, and then calculating the sum of the results. The drive device for each drive shaft calculates the position deviation or speed deviation of each drive shaft in an operation command generation device for a multi-axis mechanism that has a nonlinear relationship between the drive force command and the generated drive force. , generates a driving force command for each drive axis based on the position deviation or speed deviation, and calculates the inter-axis interference removal gain by calculating the applied load of each drive axis related to the controlled axis and the controlled axis/each drive. It is obtained as the product of the inertia ratio obtained from the inter-axle angle between the axes and the ratio of the driving force command/driving force conversion constant of each drive axis determined by the nonlinear relationship from the magnitude of the driving force command, and the control target axis (j Drive command (
The sum of products (τ_i) and inter-axis interference removal gain (α_j_i)
▲There are mathematical formulas, chemical formulas, tables, etc.▼) as the corrected driving force command, and a central processing unit that calculates the corrected driving force command as D/
A multi-axis device comprising: a D/A converter that performs A conversion into an analog quantity; and a power module that amplifies the corrected driving force command in the analog quantity and outputs it to the drive device of the controlled axis. Mechanism operation command generation device. 5. A robot comprising the motion command generation device for a multi-axis mechanism according to claim 3 or 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5707590A JPH03257602A (en) | 1990-03-08 | 1990-03-08 | Method and device for generating operation command of multi-shaft mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5707590A JPH03257602A (en) | 1990-03-08 | 1990-03-08 | Method and device for generating operation command of multi-shaft mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03257602A true JPH03257602A (en) | 1991-11-18 |
Family
ID=13045344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5707590A Pending JPH03257602A (en) | 1990-03-08 | 1990-03-08 | Method and device for generating operation command of multi-shaft mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03257602A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997031303A1 (en) * | 1996-02-20 | 1997-08-28 | Kabushiki Kaisha Yaskawa Denki | Controller of multi-axis robot |
-
1990
- 1990-03-08 JP JP5707590A patent/JPH03257602A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997031303A1 (en) * | 1996-02-20 | 1997-08-28 | Kabushiki Kaisha Yaskawa Denki | Controller of multi-axis robot |
US6069463A (en) * | 1996-02-20 | 2000-05-30 | Kabushiki Kaisha Yaskawa Denki | Controller of multi-axis robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Koren et al. | Advanced controllers for feed drives | |
JP3324298B2 (en) | Manipulator control device | |
CN100396452C (en) | Method and apparatus for controlling acceleration/deceleration | |
Morel et al. | The precise control of manipulators with high joint-friction using base force/torque sensing | |
JP2604698B2 (en) | Angular acceleration control method | |
KR940003005B1 (en) | Arrangement for speed regulation of electric motor | |
Kim et al. | Indirect cutting force measurement in multi-axis simultaneous NC milling processes | |
An et al. | Experimental determination of the effect of feedforward control on trajectory tracking errors | |
JPS6010876B2 (en) | Control method for manipulator and industrial robot | |
Yuan et al. | Position-based impedance force controller with sensorless force estimation | |
JPH0991004A (en) | Method for estimating load weight | |
JPH03257602A (en) | Method and device for generating operation command of multi-shaft mechanism | |
Koshkouei et al. | Adaptive output tracking backstepping sliding mode control of nonlinear systems | |
JP3599849B2 (en) | Distribution method of movement command in servo control | |
JP2709773B2 (en) | Servo motor control method | |
JPH0375906A (en) | Method and device for controlling multiaxis mechanism | |
JP3558179B2 (en) | Servo control device and servo control method, and robot control device and robot control method using the same | |
JPH07121239A (en) | Control method for robot device | |
Ontañón‐Ruiz et al. | On the use of differential drives for overcoming transmission nonlinearities | |
Berkemeier et al. | Control experiments on an underactuated robot with application to legged locomotion | |
Wang et al. | Friction compensation of an xy robot using a recursive model free controller | |
JP2798217B2 (en) | High-speed positioning control method | |
Fukushima et al. | Online compensation of gravity and friction for haptics with incremental position sensors | |
JP2790634B2 (en) | Exercise machine control device | |
JPS59100903A (en) | Servocontrol device of industrial robot |