JPH03256742A - Manufacture of resin laminate coated metal sheet - Google Patents

Manufacture of resin laminate coated metal sheet

Info

Publication number
JPH03256742A
JPH03256742A JP2053767A JP5376790A JPH03256742A JP H03256742 A JPH03256742 A JP H03256742A JP 2053767 A JP2053767 A JP 2053767A JP 5376790 A JP5376790 A JP 5376790A JP H03256742 A JPH03256742 A JP H03256742A
Authority
JP
Japan
Prior art keywords
resin film
thermoplastic resin
refractive index
film
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2053767A
Other languages
Japanese (ja)
Other versions
JP2812526B2 (en
Inventor
Yashichi Oyagi
大八木 八七
Hiroshi Nishida
浩 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2053767A priority Critical patent/JP2812526B2/en
Publication of JPH03256742A publication Critical patent/JPH03256742A/en
Application granted granted Critical
Publication of JP2812526B2 publication Critical patent/JP2812526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To upgrade the quality of a product by measuring the refractive index of a laminated thermoplastic resin film on a metal sheet in a non-contact manner, adjusting the calorie to be transmitted to the thermoplastic resin at the time of laminating and controlling the crystallized state of the thermoplastic resin film. CONSTITUTION:A 25mu saturated polyester resin film is fixed by pressure in the range of approximately 300m/min. line speed on a heated sheet of 0.265mm thickness by the electric resistance heating method, and then a laminate steel sheets are continuously manufactured by the method of quenching and drying under water. In that case, the refractive index of the saturated polyester resin film is measured on the position where quenching and drying were carried out by utilizing a device in which a spectral reflection measuring device and an infrared ray film thickness meter are combinedly used in the six points in the width direction of the laminate steel sheet, and the current of electric resistance heating and the sheet feeding speed are controlled so that respective birefringence degree of the saturated polyester resin film comes to, and the refractive index in the thickness direction at respective measuring points comes close to 1.563+ or -0.003, and the laminate sheet is manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、高速で製造される熱可塑性樹脂ラミネート
金属板の熱可塑性樹脂皮膜の結晶状態を所定範囲内にオ
ンラインにて制御する樹脂ラミネート被覆金属板の製造
方法に関する。
Detailed Description of the Invention [Industrial Field of Application] This invention relates to a resin laminate coating that online controls the crystalline state of a thermoplastic resin film within a predetermined range on a thermoplastic resin laminate metal plate manufactured at high speed. This invention relates to a method for manufacturing a metal plate.

[従来の技術] 近年、樹脂を金属板上に接着した樹脂ラミネート金属板
が容器材料、家電用、建材用等に使用されている。
[Prior Art] In recent years, resin-laminated metal plates in which resin is bonded onto metal plates have been used for container materials, home appliances, building materials, and the like.

樹脂を金属板上にラミネートする方法としては、接着剤
を塗布し樹脂フィルムを接着する方法と樹脂フィルムの
一部あるいは全部を融点以上に加熱溶融し接着する熱接
着法また樹脂をTタイより押し出しそのまま金属板上に
ラミネートするTダイ法などがある。
There are two methods for laminating resin on a metal plate: one method is to apply an adhesive and adhere the resin film, the other is the thermal bonding method where part or all of the resin film is heated above its melting point and bonded, and the resin is extruded from a T-tie. There is a T-die method in which the material is directly laminated onto a metal plate.

熱可塑性樹脂を金属板上にラミネートした場合に樹脂皮
膜の加工性は樹脂皮膜の結晶状態と大きな関係がある。
When a thermoplastic resin is laminated onto a metal plate, the processability of the resin film has a large relationship with the crystalline state of the resin film.

熱可塑性樹脂の結晶状態は、配向した結晶と非晶質から
なる 8.0構造、無配向の結晶と非晶質からなるR、
0構造、非晶質のみからなるN、O構造の三つの結晶状
態に大別できる。8.0構造の樹脂は加熱により配向結
晶が破壊されるとR,0構造に変わる。また、結晶性の
高い樹脂のN、O構造も加熱すると、冷結晶が生成し、
 R,0構造に変わる。いずれの構造変化も温度と時間
の関数となる。すなわち、同じ温度に樹脂が加熱されて
も、時間か長ければ構造変化を起こすが、時間が短けれ
ば構造変化を生しないことも有り得ることか知られてい
る。
The crystalline state of thermoplastic resin is 8.0 structure consisting of oriented crystals and amorphous, R consisting of non-oriented crystal and amorphous,
It can be roughly divided into three crystalline states: 0 structure, N structure consisting only of amorphous structure, and O structure structure. A resin with an 8.0 structure changes to an R,0 structure when the oriented crystals are destroyed by heating. In addition, when the N, O structure of highly crystalline resin is heated, cold crystals are generated,
Changes to R,0 structure. Any structural changes are a function of temperature and time. That is, it is known that even if a resin is heated to the same temperature, if the time is long, a structural change will occur, but if the time is short, no structural change will occur.

結晶構造のうちR,0構造が最も加工性が悪い。Among the crystal structures, the R,0 structure has the worst workability.

特に、ポリエステルの場合には、樹脂に亀裂を生じたり
、極端な場合には樹脂が粉状になってしまう。このため
、樹脂ラミネート鋼板の用途、加工あるいは加熱工程に
より、熱可塑性樹脂皮膜の結晶構造は8.0構造あるい
はN、0構造に作り分けることが必要なことかある。
In particular, in the case of polyester, cracks may occur in the resin, or in extreme cases, the resin may become powdery. Therefore, depending on the use, processing, or heating process of the resin-laminated steel sheet, it may be necessary to differentiate the crystal structure of the thermoplastic resin film into an 8.0 structure or an N,0 structure.

例えば、ポリエステルをラミネートしたブリキ板を、D
I成形のような非常に厳しいしごき加工を行う場合には
、樹脂皮膜の結晶状態はN、O構造てなければならない
。樹脂皮膜の結晶状態が8.0構造はもちろん8.0構
造ても樹脂皮膜は欠陥を生してしまう。これは、しごき
成形により樹脂皮膜か激しく延伸されるためてあり、し
ごき加工を受けた樹脂皮膜はN、O構造から 8.0構
造となっている。既に延伸をされている8、0構造の樹
脂皮膜では樹脂の限界以上に延伸されるため、皮膜が加
工に追随できず皮膜欠陥を生じる。また、ひどい場合に
は皮膜欠陥のみでなく基材であるブリキ板も破断し加工
できないこともある。
For example, a tin plate laminated with polyester is
When performing extremely severe ironing processing such as I-forming, the crystalline state of the resin film must be an N,O structure. Even if the crystalline state of the resin film is 8.0 structure as well as 8.0 structure, the resin film will have defects. This is because the resin film is violently stretched during ironing, and the resin film after ironing changes from an N,O structure to an 8.0 structure. In the case of a resin film having an 8,0 structure that has already been stretched, the film is stretched beyond the limit of the resin, so that the film cannot follow the processing and film defects occur. Furthermore, in severe cases, not only the film is defective, but also the tin plate as a base material may be broken, making it impossible to process.

また、結晶性の高い熱可塑性樹脂ラミネート金属板が塗
装焼付けのような加熱工程を経る場合等には、 8.0
構造が望ましい。樹脂皮膜の結晶構造か8.0であると
、冷結晶か生成しその後加工性を失ってしまう。特に熱
可塑性ポリエステルを用いた場合には粉末となり皮膜を
形成しない場合も生しる。熱可塑性樹脂皮膜の結晶構造
が8.0であれば、配向結晶が破壊される温度が冷結晶
か生成する温度より高く、 N、O構造の場合よりも8
.0構造の方かかなり高い温度まて安定であるため、 
8.0構造か望ましい。
In addition, when a highly crystalline thermoplastic resin laminated metal plate undergoes a heating process such as painting baking,
Structure is desirable. If the crystal structure of the resin film is 8.0, cold crystals will form and processability will be lost thereafter. In particular, when thermoplastic polyester is used, it may turn into powder and not form a film. If the crystal structure of the thermoplastic resin film is 8.0, the temperature at which the oriented crystals are destroyed is higher than the temperature at which cold crystals are formed, and the temperature is higher than the temperature at which the oriented crystals are formed.
.. Since the zero structure is stable at considerably high temperatures,
8.0 structure is desirable.

熱可塑性樹脂皮膜の結晶構造を8.0としたラミネート
金属板を製造するには、延伸配向されたフィルムを配向
結晶か破壊される温度以下でラミネートする必要がある
。従って、接着剤や接着層を用いたり、延伸配向された
フィルムの一部のみを融解することによりラミネートさ
れる。ラミネート時の温度が高すぎると配向結晶が破壊
されてしまいR,O構造となるため、ラミネート時の温
度制御が重要である。
In order to manufacture a laminated metal plate in which the crystal structure of the thermoplastic resin film is 8.0, it is necessary to laminate the stretched and oriented film at a temperature below which the oriented crystals are destroyed. Therefore, lamination is performed by using an adhesive or adhesive layer or by melting only a portion of the stretched and oriented film. If the temperature during lamination is too high, the oriented crystals will be destroyed and an R,O structure will result, so temperature control during lamination is important.

N、O構造は溶融状態にある樹脂を急冷することにより
作られる。溶融状態が不完全、すなわち加熱が不十分で
結晶が残存したり、冷却が不十分な場合にはR,O構造
となる。また、樹脂の温度を上げすぎると樹脂の分解を
招くため、この場合にも、ラミネート時の温度制御が重
要である。
The N,O structure is created by rapidly cooling the resin in a molten state. If the molten state is incomplete, that is, if the heating is insufficient and crystals remain, or if the cooling is insufficient, the R,O structure will be formed. Furthermore, if the temperature of the resin is increased too much, the resin will decompose, so temperature control during lamination is also important in this case as well.

さらに、ラミネート工程において熱可塑性樹脂皮膜の結
晶構造をN、O構造成は8.0構造に作り込まれたラミ
ネート金属板か塗装焼付は等の加熱工程を経る場合にお
いても、ラミネート皮膜に伝達される熱量を調整するこ
とにより樹脂皮膜の結晶状態を制御することが必要であ
る。
Furthermore, in the lamination process, the N and O structure of the thermoplastic resin film is transferred to the laminate film even when the laminated metal plate is made into an 8.0 structure, or when it goes through a heating process such as painting and baking. It is necessary to control the crystalline state of the resin film by adjusting the amount of heat applied.

従って、黙過塑性樹脂のラミネート金属板を製造する場
合には、樹脂皮膜の結晶構造を作り分ける必要があるも
のがあり、また、ラミネートされた金属板が加熱工程を
通板される場合にも、ラミネート皮膜に伝達される熱量
を調整することにより樹脂皮膜の結晶状態を制御する必
要性か生してきた。このため、結晶状態の安定した熱可
塑性樹脂ラミネート金属板を低コストで供給するために
は、オンラインで熱可塑性樹脂皮膜の結晶状態を制御す
ることが重要となってきた。
Therefore, when manufacturing a laminated metal plate made of silent plastic resin, it may be necessary to create different crystal structures for the resin film, and also when the laminated metal plate is passed through a heating process. There has been a need to control the crystalline state of resin films by adjusting the amount of heat transferred to the laminate film. Therefore, in order to supply a thermoplastic resin laminated metal plate with a stable crystalline state at a low cost, it has become important to control the crystalline state of a thermoplastic resin film online.

[発明が解決しようとする課11J] このように、熱可塑性樹脂ラミネート金属板の熱可塑性
樹脂被膜の結晶状態がラミネート金属板の加工性に大き
な影響を及ぼす場合がある。
[Problem to be Solved by the Invention 11J] As described above, the crystalline state of the thermoplastic resin coating of the thermoplastic resin laminated metal plate may have a large effect on the workability of the laminated metal plate.

しかしながら、高速で通板される金属板上にラミネート
された熱可塑性樹脂皮膜の結晶状態に関するデータをオ
ンラインて測定し結晶状態を制御する方法はない。この
ため、経験的あるいは計算手法により、加熱炉温度、金
属板温度あるいは通板速度を調整することにより熱可塑
性樹脂皮膜の結晶状態を制御する方法が採られており、
オフラインで熱可塑性樹脂皮膜の結晶状態を測定するこ
とにより、所定の結晶状態に製造されていることを確認
している。オフライン測定のため時間を要しており熱可
塑性樹脂皮膜の結晶状態が所定の範囲から外れていた場
合には多量の不良品を製造することとなり、製造コスト
を高くしてしまう。
However, there is no method for controlling the crystalline state by online measuring data regarding the crystalline state of a thermoplastic resin film laminated on a metal plate that is passed at high speed. For this reason, methods have been adopted to control the crystalline state of the thermoplastic resin film by adjusting the heating furnace temperature, metal plate temperature, or plate passing speed using empirical or calculation methods.
By measuring the crystalline state of the thermoplastic resin film off-line, it has been confirmed that the thermoplastic resin film has been manufactured in a predetermined crystalline state. Off-line measurement takes time, and if the crystalline state of the thermoplastic resin film is out of a predetermined range, a large number of defective products will be manufactured, increasing manufacturing costs.

このため、品質の安定した熱可塑性樹脂ラミネート鋼板
を低コストで供給するためには、オンラインで熱可塑性
樹脂皮膜の結晶状態を制御することが重要となってきた
Therefore, in order to supply thermoplastic resin laminated steel sheets with stable quality at low cost, it has become important to control the crystalline state of the thermoplastic resin film online.

本発明は、高速通板中の熱可塑性樹脂ラミネート金属板
の連続製造ラインにおいて熱可塑性樹脂皮膜の屈折率を
オンラインにて非破壊的に測定し、その結果に基き熱可
塑性樹脂皮膜へ伝達される熱量を調整することにより、
熱可塑性樹脂皮膜の結晶状態をオンラインで制御するこ
とにより品質の安定した熱可塑性樹脂ラミネート金属板
を提供することを目的にしている。
The present invention measures the refractive index of a thermoplastic resin film non-destructively online in a continuous production line for thermoplastic resin laminated metal plates during high-speed sheet passing, and transmits the refractive index to the thermoplastic resin film based on the results. By adjusting the amount of heat,
The aim is to provide a thermoplastic resin laminated metal plate with stable quality by controlling the crystalline state of the thermoplastic resin film online.

[課題を解決するための手段] 本発明は、金属板上にラミネートされた熱可塑性樹脂皮
膜の屈折率を非接触にてオンラインで測定し、その結果
に基きラミネート時の熱可塑性樹脂へ伝達される熱量を
調整することにより、熱可塑性樹脂皮膜の結晶状態をオ
ンラインにて制御することを特徴とする方法である。
[Means for Solving the Problem] The present invention measures the refractive index of a thermoplastic resin film laminated on a metal plate online in a non-contact manner, and measures the refractive index transmitted to the thermoplastic resin during lamination based on the result. This method is characterized by controlling the crystalline state of the thermoplastic resin film online by adjusting the amount of heat used.

本発明は、熱可塑性樹脂被覆金属板に対して有効である
が、特に、樹脂皮膜の結晶状態により加工性が大きく影
響をうける飽和ポリエステル樹脂被覆金属板の製造方法
として採用されることか望ましい。
Although the present invention is effective for thermoplastic resin-coated metal plates, it is particularly desirable that it be adopted as a method for manufacturing saturated polyester resin-coated metal plates whose workability is greatly affected by the crystalline state of the resin film.

本発明における、熱可塑性樹脂皮膜の非接触非破壊によ
る屈折率測定方法は、分光反射測定装置と赤外線膜厚計
とを併用した装置を用いることが望ましい。この装置に
よれば、非接触非破壊で光学的に樹脂皮膜の厚み方向の
屈折率を高速通板中にも測定可能である。原理的には、
分光反射測定装置により、光路長の差りを求め、赤外線
膜厚計により求めた膜厚りより、樹脂の各方向の屈折率
を算出するものである。
In the non-contact, non-destructive method for measuring the refractive index of a thermoplastic resin film in the present invention, it is desirable to use a device that uses a spectral reflectance measuring device and an infrared film thickness meter in combination. According to this device, it is possible to optically measure the refractive index of the resin film in the thickness direction in a non-contact and non-destructive manner even during high-speed sheet passing. In principle,
The difference in optical path length is determined using a spectral reflectance measuring device, and the refractive index in each direction of the resin is calculated from the film thickness determined using an infrared film thickness meter.

配向結晶を有するS脂は複屈折を有することはよく知ら
れている。従って、上述の屈折率測定装置を用い、各方
向の屈折率を測定することにより複屈折度を算出するこ
とにより、樹脂皮膜の8.0構造の配向の度合を知るこ
とが可能である。
It is well known that S fat having oriented crystals has birefringence. Therefore, by calculating the degree of birefringence by measuring the refractive index in each direction using the above-mentioned refractive index measuring device, it is possible to know the degree of orientation of the 8.0 structure of the resin film.

複屈折を示さない場合には、樹脂皮膜の構造はR,0構
造、 N、0構造のいずれかであり、 N、0構造の方
が小さな屈折率を示す。
When birefringence is not exhibited, the structure of the resin film is either an R,0 structure or an N,0 structure, with the N,0 structure exhibiting a smaller refractive index.

また、熱可塑性樹脂皮膜厚み方向の屈折率のみに注目し
ても、皮膜の結晶状態が8.0構造を有する場合が最も
高い値を示し、 R,0構造、 N、0構造の順に小さ
な値となる。
In addition, even if we focus only on the refractive index in the thickness direction of the thermoplastic resin film, the highest value is shown when the film has an 8.0 structure in the crystalline state, and the values decrease in the order of R,0 structure and N,0 structure. becomes.

しかしながら、熱可塑性樹脂の種類により各結晶状態で
の皮膜の複屈折度および各方向の屈折率値は異なる。こ
のため、予め熱可塑性樹脂皮膜の結晶状態が既知なるラ
ミネート金属板の熱可塑性樹脂皮膜の各結晶状態での複
屈折度と各方向の屈折率とを測定しておき、実際の製造
時に測定した値とを比較することにより樹脂皮膜の結晶
状態か認識可能となる。
However, the degree of birefringence and the refractive index value in each direction of the film in each crystalline state differ depending on the type of thermoplastic resin. For this reason, we measured the birefringence and refractive index in each direction of the thermoplastic resin coating in each crystalline state of a laminated metal plate whose crystalline state is known in advance, and then measured it during actual manufacturing. By comparing the values, it becomes possible to recognize the crystalline state of the resin film.

樹脂皮膜に伝達される熱量の調整方法については、熱源
の出力調整あるいは通板速度等の単独或は組合せより行
う。例えば、金属板を電気抵抗加熱により加熱し、これ
に樹脂をラミネートする場合には、電気抵抗加熱の出力
調整単独或は通板速度との組合せた調整により、樹脂皮
膜に伝達される熱量を調整する。
The amount of heat transferred to the resin film can be adjusted by adjusting the output of the heat source, the sheet passing speed, etc. alone or in combination. For example, when heating a metal plate by electric resistance heating and laminating resin on it, the amount of heat transferred to the resin film can be adjusted by adjusting the output of the electric resistance heating alone or in combination with the sheet threading speed. do.

従って、本発明方法を用いることにより、例えば、B、
O構造の熱可塑性樹脂皮膜のラミネート金属板を製造す
る場合には、複屈折度が一定値以上にあるようにあるい
は皮膜の厚み方向の屈折率が一定の値以上にあるように
、また、 N、0構造の熱可塑性樹脂皮膜のラミネート
金属板を製造する場合には、複屈折が生じないようにさ
らに皮膜の屈折率が最少になるように、樹脂皮膜に伝達
される熱量を調整することにより、熱可塑性樹脂皮膜の
結晶状態を制御することが可能である。
Therefore, by using the method of the present invention, for example, B,
When manufacturing a laminated metal plate with a thermoplastic resin film having an O structure, N When manufacturing a laminated metal plate with a thermoplastic resin film having a zero structure, the amount of heat transferred to the resin film is adjusted so that birefringence does not occur and the refractive index of the film is minimized. , it is possible to control the crystalline state of the thermoplastic resin film.

[作用] 以上詳述するごとく、熱可塑性樹脂ラミネート金属板の
連続製造ラインにおいて高速通板中に、ラミネート金属
板上の熱可塑性樹脂皮膜の屈折率をオンラインにて測定
し、その結果に基きラミネート時の熱可塑性樹脂へ伝達
される熱量を調整することにより、熱可塑性樹脂皮膜の
結晶状態を制御することか可能となる。また、熱可塑性
樹脂ラミネート金属板をコイルコーティングラインのよ
うな加熱を伴う通板ラインに通板する場合にも適用する
ことが可能である。
[Function] As detailed above, the refractive index of the thermoplastic resin film on the laminated metal plate is measured online during high-speed threading in a continuous production line for thermoplastic resin laminated metal plates, and the lamination process is performed based on the results. By adjusting the amount of heat transferred to the thermoplastic resin during heating, it becomes possible to control the crystalline state of the thermoplastic resin film. Furthermore, it is also possible to apply the present invention to the case where a thermoplastic resin laminated metal plate is threaded through a threading line that involves heating, such as a coil coating line.

従って、熱可塑性樹脂皮膜の結晶状態の安定した熱可塑
性ラミネート金属板を低コスト製造することが可能とな
る。
Therefore, it is possible to manufacture a thermoplastic laminated metal plate in which the crystalline state of the thermoplastic resin film is stable at a low cost.

[実施例コ 実施例1 電気抵抗加熱法により加熱された0、265mm厚のブ
リキ板上に、ラインスピード約300m/minの範囲
で25μの飽和ポリエステル樹脂フィルムを圧着し、そ
の後水中急冷、乾燥する方法によりラミネート鋼板を連
続製造するラインにおいて、急冷乾燥後の位置で、飽和
ポリエステル樹脂皮膜の屈折率を分光反射測定装置と赤
外線膜厚計とを併用した装置を用いることによりラミネ
ート鋼板の幅方向6点で測定し、飽和ポリエステル樹脂
皮膜の各複屈折度が0で厚み方向の屈折率を各測定点で
1.563±0.003となるように電気抵抗加熱の電
流および通板速度を制御し、ラミネート鋼板を製造した
[Example 1] A 25μ saturated polyester resin film is pressed onto a 0.265mm thick tin plate heated by electric resistance heating at a line speed of about 300m/min, and then rapidly cooled in water and dried. In a line that continuously manufactures laminated steel sheets by this method, the refractive index of the saturated polyester resin film is measured in the width direction of the laminated steel sheet by using a device that combines a spectral reflectance measurement device and an infrared film thickness meter at the position after rapid cooling and drying. The current and threading speed of electrical resistance heating were controlled so that each birefringence of the saturated polyester resin film was 0 and the refractive index in the thickness direction was 1.563 ± 0.003 at each measurement point. , produced laminated steel sheets.

製造されたラミネート鋼板の飽和ポリエステル樹脂皮膜
をX線回折および赤外スペクトルを測定し、ラミネート
鋼板の幅方向及び長手方向に亙って完全なN、0構造に
なっており、安定製造かできることを確認した。
We measured the X-ray diffraction and infrared spectra of the saturated polyester resin coating on the manufactured laminated steel sheets, and found that the laminated steel sheets had a complete N,0 structure in the width and length directions, and that stable manufacturing was possible. confirmed.

実施例2 ラインスピード約150m/minで通板中に高周波加
熱により予熱された0、3mmの銅板上に、Tダイより
溶融状態のポリプロピレン樹脂を押したし、膜厚40μ
のラミネート皮膜を形成させるラインにおいて、皮膜の
冷却工程後に分光反射測定装置と赤外線膜厚計とを併用
した装置を用いることによりポリプロピレン樹脂の厚み
方向の屈折率を幅方向3点測定し、厚み方向の屈折率を
1.450±0.005となるように高周波加熱の出力
及びポリプロピレン樹脂の押しだし時の温度、通板速度
を調整した。
Example 2 Molten polypropylene resin was pressed from a T-die onto a 0.3 mm copper plate that had been preheated by high-frequency heating during sheet passing at a line speed of about 150 m/min, and a film thickness of 40 μm was obtained.
In the line for forming the laminate film, after the film cooling process, the refractive index in the thickness direction of the polypropylene resin was measured at three points in the width direction using a device that combines a spectral reflectance measuring device and an infrared film thickness meter. The output of high-frequency heating, the temperature during extrusion of the polypropylene resin, and the sheet passing speed were adjusted so that the refractive index of the polypropylene resin was 1.450±0.005.

製造されたラミネート銅板のポリプロピレン樹脂皮膜を
X線回折および赤外スペクトルを測定し、ラミネート銅
板の幅方向及び長手方向に渡って完全なN、0構造にな
っており、安定製造がてきることを確認した。
We measured the X-ray diffraction and infrared spectra of the polypropylene resin coating on the manufactured laminated copper plate, and found that the laminated copper plate had a complete N,0 structure in the width and length directions, and that stable production was possible. confirmed.

実施例3 火炎方式の加熱炉を有するコイルコーティングにおいて
、ラインスピード約120m/minで0.2mmアル
ミ板の片面に接着剤を介して30μの2軸延伸飽和ポリ
エステルフイルムをラミネートしたラミネートアルミ板
のラミネートの逆面側にロールコータにて塗料を塗布し
、焼付けを行った。加熱炉の出口にて分光−反射測定装
置と赤外線膜厚計とを併用した装置を用いることにより
飽和ポリエステル皮膜の屈折率を幅方向5点で測定し、
飽和ポリエステル皮膜の複屈折度のうちΔyを0,2以
−Eとなるようにラインスピード或は加熱炉温度を調整
し、塗装焼付けを行った。
Example 3 In coil coating with a flame heating furnace, a 30 μ biaxially stretched saturated polyester film was laminated on one side of a 0.2 mm aluminum plate with an adhesive at a line speed of about 120 m/min. Paint was applied to the opposite side using a roll coater and baked. At the exit of the heating furnace, the refractive index of the saturated polyester film was measured at five points in the width direction by using a device that combined a spectroscopic-reflection measuring device and an infrared film thickness meter,
The line speed or heating furnace temperature was adjusted so that Δy of the birefringence of the saturated polyester film was 0.2 or more -E, and the coating was baked.

塗装焼付けされたラミネートアルミ板の飽和ポリエステ
ル樹脂皮膜をX線回折および赤外スペクトルを測定し、
ラミネートアルミ板の幅方向及び長平方向に渡って8.
0構造が完全に残存しており、安定製造ができることを
確認した。
We measured the X-ray diffraction and infrared spectra of the saturated polyester resin film on the painted laminated aluminum plate.
8. Across the width direction and longitudinal direction of the laminated aluminum plate.
It was confirmed that the zero structure remained completely and that stable production was possible.

[発明の効果] 以上のように、この発明によれば、熱可塑性樹脂ラミネ
ート金属板の連続製造ラインにおいて高速通板中に、ラ
ミネート金属板上の熱可塑性樹脂皮膜の屈折率をオンラ
インにて測定し、その結果に基き熱可塑性樹脂へ伝達さ
れる熱量を調整することにより、熱可塑性樹脂皮膜の結
晶状態を制御することが可能となり、熱可塑性樹脂皮膜
の結晶状態の安定した熱可塑性ラミネート金属板を低コ
スト製造することが可能となる。
[Effects of the Invention] As described above, according to the present invention, the refractive index of a thermoplastic resin film on a laminated metal plate can be measured online during high-speed threading in a continuous production line for thermoplastic resin laminated metal plates. By adjusting the amount of heat transferred to the thermoplastic resin based on the results, it is possible to control the crystalline state of the thermoplastic resin film, resulting in a thermoplastic laminated metal plate with a stable crystalline state of the thermoplastic resin film. can be manufactured at low cost.

Claims (1)

【特許請求の範囲】 1、熱可塑性樹脂ラミネート金属板の連続製造ラインに
おいて、ラミネート金属板上の熱可塑性樹脂皮膜の屈折
率をオンラインにて非破壊的に測定し、その結果に基き
、熱可塑性樹脂皮膜へ伝達される熱量を調整することに
より、熱可塑性樹脂皮膜の結晶状態をオンラインにて制
御することを特徴とする樹脂ラミネート被覆金属板の製
造方法。 2、上記熱可塑性樹脂が飽和ポリエステル樹脂であるこ
とを特徴とする請求項1に記載の樹脂ラミネート被覆金
属板の製造方法。 3、屈折率測定方法として分光反射測定装置と赤外線膜
厚計とを併用した装置を用いることを特徴とする請求項
1または2に記載の樹脂ラミネート被覆金属板の製造方
法。
[Claims] 1. In a continuous production line for thermoplastic resin laminated metal plates, the refractive index of the thermoplastic resin film on the laminated metal plate was measured online non-destructively, and based on the results, the thermoplastic A method for producing a resin laminate-coated metal plate, characterized in that the crystalline state of a thermoplastic resin film is controlled online by adjusting the amount of heat transferred to the resin film. 2. The method for manufacturing a resin laminate-coated metal plate according to claim 1, wherein the thermoplastic resin is a saturated polyester resin. 3. The method for manufacturing a resin laminate-coated metal plate according to claim 1 or 2, characterized in that the refractive index measurement method uses a device that combines a spectral reflectance measuring device and an infrared film thickness meter.
JP2053767A 1990-03-07 1990-03-07 Method for producing resin-laminated coated metal sheet Expired - Lifetime JP2812526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2053767A JP2812526B2 (en) 1990-03-07 1990-03-07 Method for producing resin-laminated coated metal sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2053767A JP2812526B2 (en) 1990-03-07 1990-03-07 Method for producing resin-laminated coated metal sheet

Publications (2)

Publication Number Publication Date
JPH03256742A true JPH03256742A (en) 1991-11-15
JP2812526B2 JP2812526B2 (en) 1998-10-22

Family

ID=12951963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053767A Expired - Lifetime JP2812526B2 (en) 1990-03-07 1990-03-07 Method for producing resin-laminated coated metal sheet

Country Status (1)

Country Link
JP (1) JP2812526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592535A (en) * 1991-10-03 1993-04-16 Toyo Kohan Co Ltd Manufacture of laminate metal sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723584A (en) * 1980-07-15 1982-02-06 Kenki Eng Composite crane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723584A (en) * 1980-07-15 1982-02-06 Kenki Eng Composite crane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592535A (en) * 1991-10-03 1993-04-16 Toyo Kohan Co Ltd Manufacture of laminate metal sheet

Also Published As

Publication number Publication date
JP2812526B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
JP6542215B2 (en) Method and apparatus for producing a composite material
KR101429595B1 (en) Process for producing oriented thermoplastic resin film, apparatus therefor and base film for optical film
US4521265A (en) Process for preparing laminated plate
CA2116290C (en) Method for producing thermoplastic resin sheet or film
US5059265A (en) Method of controlling thickness of oriented resin film
US8784601B1 (en) Applying polyester onto metal substrate
JP2007185898A (en) Biaxially oriented polyester film and its manufacturing process
TWI379759B (en) Cross-web heat distribution system and method using repositionable heaters
US3644159A (en) Methods for manufacturing corrugated board
JP2812526B2 (en) Method for producing resin-laminated coated metal sheet
CA1119935A (en) Method and apparatus for producing a laminated structure
JPH04201237A (en) Method and device for manufacturing coated metal plate
RU97118414A (en) METHOD AND DEVICE FOR COATING A METAL STRIP AND PRODUCTS FROM A STRIP
US20080061461A1 (en) Methods to Improve Yields on a Metal Substrate Extrusion Polymer Coating Line
JP2654482B2 (en) Manufacturing method of laminated metal sheet
ES467014A1 (en) Method and apparatus for continuous manufacture of a coated material
JP2000071309A (en) Manufacture of film
JP2000094497A (en) Film thickness control device
JP4317371B2 (en) Cooling control method in production of embossed resin film coated metal sheet
CA2207272C (en) Method and apparatus for producing laminate sheet
JPH029471A (en) Film thickness control device
JP3179200B2 (en) Manufacturing method of laminated metal sheet
JP3034801B2 (en) Method and apparatus for manufacturing thermoplastic resin-coated metal sheet
JP3838073B2 (en) Heating method and apparatus for laminated metal strip
JPH11333920A (en) Method and apparatus for producing resin film