JPH03256362A - Semiconductor device of schottky barrier type - Google Patents

Semiconductor device of schottky barrier type

Info

Publication number
JPH03256362A
JPH03256362A JP5354290A JP5354290A JPH03256362A JP H03256362 A JPH03256362 A JP H03256362A JP 5354290 A JP5354290 A JP 5354290A JP 5354290 A JP5354290 A JP 5354290A JP H03256362 A JPH03256362 A JP H03256362A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
electrode
gate electrode
tial3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5354290A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Taniguchi
谷口 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP5354290A priority Critical patent/JPH03256362A/en
Publication of JPH03256362A publication Critical patent/JPH03256362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To arrange that this device is not deteriorated even when it is operated and left as it is at a high temperature for many hours by a method wherein it includes a Schottky electrode composed of the following: a semiconductor composed of III-V compound semiconductors; and a TiAl3 intermetallic compound which is formed on one main face of the semiconductor. CONSTITUTION:A buffer layer 2 composed of N-type GaAs and a channel layer 3 composed of N-type GaAs are formed sequentially on one surface of a semiinsulating GaAs substrate 1 by using a vapor growth method. A source electrode 4 and a drain electrode 5 which are composed of a metal forming an ohmic contact are formed on the channel layer 3. A gate electrode 6 is formed on the channel layer 3 between the source electrode 4 and the drain electrode 5. The gate electrode 6 is constituted of the following: a TiAl3 layer 6A as the face coming into contact with the channel layer 3; and a Ti layer 6B and an Al layer 6C which are formed sequentially on it. The TiAl3 layer 6A is formed by using a vacuum vapor-deposition method or a sputtering method which uses a TiAl3 compound or a metal mixture of Ti and Al as a raw- material source.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はショットキー障壁型半導体装置に用いられるシ
ョットキー電極材料の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in Schottky electrode materials used in Schottky barrier type semiconductor devices.

〔従来の技術〕[Conventional technology]

金属・半導体接合障壁であるショットキー接合障壁を用
いたショットキー障壁型半導体装置は、高速性に優れ、
高周波回路等に広く利用されている。特にG a A 
s半導体を用い、ショットキー接合をゲート電極として
用いた電界効果型トランジスタ(以下、MESFETと
いう)は、マイクロ波帯での能動素子として優れた特性
を示すものである。
Schottky barrier semiconductor devices that use a Schottky junction barrier, which is a metal-semiconductor junction barrier, have excellent high-speed performance.
Widely used in high frequency circuits, etc. Especially G a A
A field effect transistor (hereinafter referred to as MESFET) using an S semiconductor and a Schottky junction as a gate electrode exhibits excellent characteristics as an active element in the microwave band.

このようなMESFETのゲート電極は、GaAs半導
体と接する最下層に比較的電気抵抗の高いチタン(Ti
)が用いられることが多い。この場合、ゲート電極の抵
抗を下げるために、チタン(Ti)の上に白金/金また
はアルジニウムを順次重ねたT i / P t / 
A uまたはTi/AQの多層構造が用いられる。チタ
ン/アルミニウム(Ti/An)多層構造のゲート電極
は、高温で動作または放置した場合、比較的劣化が少な
く安定した特性を示すことが知られている。
The gate electrode of such a MESFET is made of titanium (Ti), which has a relatively high electrical resistance, on the bottom layer in contact with the GaAs semiconductor.
) is often used. In this case, in order to lower the resistance of the gate electrode, platinum/gold or aldinium is sequentially layered on titanium (Ti) to reduce the resistance of the gate electrode.
A multilayer structure of Au or Ti/AQ is used. It is known that a gate electrode having a titanium/aluminum (Ti/An) multilayer structure exhibits stable characteristics with relatively little deterioration when operated or left at high temperatures.

[発明が解決しようとする課題] しかしながら、比較的優れた特性を示すチタン/アルミ
ニウム(Ti/AQ)多層構造のゲート電極であっても
、高温で長時間放置した場合にはショットキー障壁の高
さの劣化を生じる。300℃で30時間放置した場合の
ゲート電極とGaAs半導体界面のオージェ電子分光法
による深さ方向の組成分析結果を第4図に示す。同図か
ら、ゲート電極を形成するチタン(Ti)およびアルミ
ニウム(AQ)原子が半導体中へ拡散していること、ま
た、半導体を形成しているガリウム(Ga)および砒素
(As)がゲート電極中へ拡散していることがわかる。
[Problems to be Solved by the Invention] However, even with a gate electrode having a titanium/aluminum (Ti/AQ) multilayer structure that exhibits relatively excellent characteristics, the Schottky barrier increases when left at high temperatures for a long time. This causes deterioration of the quality. FIG. 4 shows the compositional analysis results in the depth direction by Auger electron spectroscopy of the interface between the gate electrode and the GaAs semiconductor after being left at 300° C. for 30 hours. The figure shows that titanium (Ti) and aluminum (AQ) atoms that form the gate electrode are diffused into the semiconductor, and that gallium (Ga) and arsenic (As) that form the semiconductor are diffused into the gate electrode. It can be seen that it has spread to

これらの相互拡散によりゲート電極の特性が劣化すると
考えられる。
It is thought that these interdiffusions deteriorate the characteristics of the gate electrode.

本発明の目的は、長時間の高温での動作、放置において
も劣化を生じないショットキー電極を有するショットキ
ー障壁型半導体装置の構造を提供することにある。
An object of the present invention is to provide a structure of a Schottky barrier type semiconductor device having a Schottky electrode that does not deteriorate even when operated at a high temperature for a long time or left unused.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によるショットキー障壁型半導体装置は、■−V
族化合物半導体からなる半導体と、該半導体の一主面上
に形成されたT i A fil 、金属間化合物から
なるショットキー電極を含むもの、または、■−V族化
合物半導体からなる半導体と、該半導体の一主面上に形
成されたドレイン電極およびソース電極と、該ドレイン
電極およびソース電極の間に形成されたTiAQ、金属
間化合物からなるショットキー型ゲート電極を含む電界
効果型トランジスタである。
The Schottky barrier type semiconductor device according to the present invention has ■-V
A semiconductor made of a group compound semiconductor, a T i A fil formed on one main surface of the semiconductor, a Schottky electrode made of an intermetallic compound, or a semiconductor made of a -V group compound semiconductor, This field effect transistor includes a drain electrode and a source electrode formed on one principal surface of a semiconductor, and a Schottky gate electrode formed between the drain electrode and the source electrode and made of TiAQ or an intermetallic compound.

なお、上記TiAQ、金属間化合物は、Ti(チタン)
とAQ(アルミニウム)の組成比が実質的に1=3の化
合物である。
Note that the above TiAQ and intermetallic compound are Ti (titanium)
The composition ratio of aluminum and AQ (aluminum) is substantially 1=3.

〔作用] 本発明の構成によれば、ショットキー電極の半導体との
界面が全てバリヤー性の高いTiAQ。
[Function] According to the configuration of the present invention, the entire interface between the Schottky electrode and the semiconductor is TiAQ with high barrier properties.

金属間化合物により構成されているため、ショットキー
電極と半導体との相互拡散が防止されると考えられる。
Since it is composed of an intermetallic compound, it is thought that interdiffusion between the Schottky electrode and the semiconductor is prevented.

〔実施例〕〔Example〕

以下、実施例により本発明をより詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

本発明による実施例であるME S F ETの断面構
造を第1図に示す。半絶縁性G a A s基板1の一
表面上にN型のGaAsからなるバッファ層2(ノンド
ープ、キャリア濃度10″’/crR以下、厚さ2μm
)およびN型のGaAsからなるチャンネル層3(Si
ドープ、キャリア濃度3 X 10”/c/、厚さ0.
15μm)が順次、気相成長法により形成されている。
FIG. 1 shows a cross-sectional structure of a MESFET that is an embodiment of the present invention. A buffer layer 2 made of N-type GaAs (non-doped, carrier concentration 10''/crR or less, thickness 2 μm) is formed on one surface of a semi-insulating GaAs substrate 1.
) and a channel layer 3 made of N-type GaAs (Si
Doped, carrier concentration 3 x 10"/c/, thickness 0.
15 μm) were successively formed by vapor phase growth.

(イオン注入法によりチャンネル層3を形成することも
できる。)このチャンネル層3上にオーミックコンタク
トを形成する金属からなるソース電極4およびドレイン
電極5が設けらている。このソース電極4およびドレイ
ン電極5の間のチャンネル層3上にゲート電極6が設け
られている。ゲート電極6は、チャンネル層3と接する
面がTiAl、層6A(厚さ200人)と、その上に順
次形成されたTi層6B(厚さ200人)およびA悲層
6C(厚さ4600A)から構成され、ゲート長0.5
4m1ゲ一ト幅280μmである。ソース電極4、ドレ
イン電極5およびゲート電極6の表面、および、これら
の電極で覆われていないチャンネル層3の表面はプラズ
マCVDで形成された窒化シリコン膜7で覆われている
(The channel layer 3 can also be formed by ion implantation.) A source electrode 4 and a drain electrode 5 made of metal are provided on the channel layer 3 to form an ohmic contact. A gate electrode 6 is provided on the channel layer 3 between the source electrode 4 and the drain electrode 5. The gate electrode 6 has a TiAl layer 6A (200 mm thick) on the surface in contact with the channel layer 3, and a Ti layer 6B (200 mm thick) and an A-layer 6C (4600 mm thick) sequentially formed thereon. The gate length is 0.5.
The width of the 4m1 gate is 280 μm. The surfaces of the source electrode 4, drain electrode 5, and gate electrode 6, as well as the surface of the channel layer 3 not covered with these electrodes, are covered with a silicon nitride film 7 formed by plasma CVD.

このMESFETのドレイン電流(Ids)とドレイン
電圧(Vds)の関係を第2図に示す。
FIG. 2 shows the relationship between the drain current (Ids) and drain voltage (Vds) of this MESFET.

18GHzでの高周波動作特性として、1dB圧縮点で
の出力電力は19dBmであり、その時の高周波利得は
8dBである(Vds−8V、Ids=40mA)。こ
れらの特性は、ゲート電極としてT i / P t 
/ A uの多層構造(Ti、Pt、Auの厚さはそれ
ぞれ200A、1000A、400OA)やTi/An
の多層構造(Ti、AQの厚さはそれぞれ20OA、4
600A)を用いた従来のME S F ETと同等で
ある。
As for the high frequency operation characteristics at 18 GHz, the output power at the 1 dB compression point is 19 dBm, and the high frequency gain at that time is 8 dB (Vds-8V, Ids=40 mA). These properties are consistent with T i /P t as the gate electrode
/ Au multilayer structure (Ti, Pt, and Au thicknesses are 200A, 1000A, and 400OA, respectively) and Ti/An
multilayer structure (Ti and AQ thicknesses are 20OA and 4
600A) is equivalent to the conventional MESFET using 600A).

また、本実施例のMESFETを高温(空気中、295
℃)で放置した場合のショットキー障壁の高さの経時変
化率を第3図に示す、同図には比較例としてゲート電極
にT i / A nの多層構造(Ti%AQの厚さは
それぞれ200A、460OA)を用いた場合の変化率
も示す。実施例においては、初期値(0,72eV)に
比べて100時間経過後でも変化率は5%以下であり殆
ど変化していない。比較例であるT i / A n構
造では、初期値(0,72eV)に比べて100時間経
過後で約30%と著しく変化している。
In addition, the MESFET of this example was heated at high temperature (in air, 295
Figure 3 shows the rate of change over time in the Schottky barrier height when left at The rate of change when using 200A and 460OA, respectively, is also shown. In the example, the rate of change is 5% or less compared to the initial value (0.72 eV) even after 100 hours, which is almost no change. In the T i /A n structure as a comparative example, there is a remarkable change of about 30% after 100 hours compared to the initial value (0.72 eV).

TiAQ、層6Aの形成方法は、原料ソースとしてT 
i A Q 、化合物またはTi%AQ金属の混合物(
合金を含む)をもちいた真空蒸着法やスパッタリング法
である。また、MBE (分子線ビームエピタキシー法
)などにより数十穴のTi、Anの各金属層を交互に多
層積層し、半導体が分解しない温度(GaAsの場合は
300℃以下)で熱処理することでも形成できる。
The method for forming the TiAQ layer 6A uses T as the raw material source.
iAQ, compound or mixture of Ti%AQ metals (
These are vacuum evaporation methods and sputtering methods using materials (including alloys). It can also be formed by alternately stacking several dozen Ti and An metal layers using MBE (molecular beam epitaxy), etc., and then heat-treating them at a temperature that does not decompose the semiconductor (300°C or less in the case of GaAs). can.

以上の実施例ではm−V族化合物半導体としてG a 
A sを用いたが、InPlAfiGaAsなどでも本
発明は適用しつる。
In the above embodiments, Ga is used as the m-V group compound semiconductor.
Although As was used, the present invention is also applicable to InPlAfiGaAs and the like.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明によるショットキー障壁型
半導体装置は、m−V族化合物半導体からなる半導体と
、該半導体の一主面上に形成されたTiAQ、金属間化
合物からなるショットキー電極を含むものであるので、
ショットキー電極の経時変化がなく安定な動作が可能で
ある。
As described above, the Schottky barrier type semiconductor device according to the present invention includes a semiconductor made of an m-V group compound semiconductor, and a Schottky electrode made of TiAQ and an intermetallic compound formed on one main surface of the semiconductor. Since it includes
Stable operation is possible with no deterioration of the Schottky electrode over time.

または、GaAsを主成分とする半導体と、該半導体の
一主面上に形成されたドレイン電極およびソース電極と
、該ドレイン電極およびソース電極の間に形成されたT
iAA、金属間化合物からなるショットキー型ゲ・−ト
電極を含む電界効果型トランジスタであるので、高温で
の、特に高出力トランジスタとしての動作においてもゲ
ート電極の劣化がなく安定した動作が可能である。
Alternatively, a semiconductor mainly composed of GaAs, a drain electrode and a source electrode formed on one main surface of the semiconductor, and a T formed between the drain electrode and the source electrode.
Since it is a field effect transistor that includes a Schottky gate electrode made of iAA and an intermetallic compound, it can operate stably without deterioration of the gate electrode even at high temperatures, especially when operating as a high output transistor. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による実施例であるMESFETの断
面構造、 第2図は、本発明による実施例であるM、ESFETの
ドレイン電流とドレイン電圧の関係を示す図、 第3図は、本実施例と比較例であるMESFETを高温
で放置した場合のショットキー障壁の高さの経時変化率
を示す図、 第4図は、従来技術による劣化を生じたゲート電極とG
aAS半導体界面の深さ方向の組成分析結果を示す図で
ある。 図中において、 1・・・半絶縁性G a A s基板、2・・・バッフ
ァ層、  3・・・チャンネル層、4・・・ソース電極
、  5・・・ドレイン電極、6・・・ゲート電極、 
6A・・・T i A Q 、層、6B・・・Ti層、
  6C・・・AA層7・・・窒化シリコン膜 第1図
FIG. 1 is a cross-sectional structure of a MESFET that is an embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the drain current and drain voltage of a MESFET that is an embodiment of the present invention. Figure 4 shows the rate of change in Schottky barrier height over time when the MESFETs of Example and Comparative Example are left at high temperatures.
FIG. 4 is a diagram showing the results of compositional analysis in the depth direction of an aAS semiconductor interface. In the figure, 1... Semi-insulating GaAs substrate, 2... Buffer layer, 3... Channel layer, 4... Source electrode, 5... Drain electrode, 6... Gate electrode,
6A...T i A Q layer, 6B... Ti layer,
6C...AA layer 7...Silicon nitride film Fig. 1

Claims (2)

【特許請求の範囲】[Claims] (1)III−V族化合物半導体からなる半導体と、該半
導体の一主面上に形成されたTiAl、金属間化合物か
らなるショットキー電極を含むことを特徴とするショッ
トキー障壁型半導体装置。
(1) A Schottky barrier type semiconductor device comprising a semiconductor made of a III-V group compound semiconductor, and a Schottky electrode made of TiAl and an intermetallic compound formed on one main surface of the semiconductor.
(2)III−V族化合物半導体からなる半導体と、該半
導体の一主面上に形成されたドレイン電極およびソース
電極と、該ドレイン電極およびソース電極の間に形成さ
れたTiAl、金属間化合物からなるショットキー型ゲ
ート電極を含む電界効果型トランジスタであることを特
徴とするショットキー障壁型半導体装置。
(2) A semiconductor made of a III-V group compound semiconductor, a drain electrode and a source electrode formed on one main surface of the semiconductor, and TiAl and an intermetallic compound formed between the drain electrode and the source electrode. 1. A Schottky barrier semiconductor device characterized by being a field effect transistor including a Schottky gate electrode.
JP5354290A 1990-03-07 1990-03-07 Semiconductor device of schottky barrier type Pending JPH03256362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5354290A JPH03256362A (en) 1990-03-07 1990-03-07 Semiconductor device of schottky barrier type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5354290A JPH03256362A (en) 1990-03-07 1990-03-07 Semiconductor device of schottky barrier type

Publications (1)

Publication Number Publication Date
JPH03256362A true JPH03256362A (en) 1991-11-15

Family

ID=12945690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5354290A Pending JPH03256362A (en) 1990-03-07 1990-03-07 Semiconductor device of schottky barrier type

Country Status (1)

Country Link
JP (1) JPH03256362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218733B1 (en) * 1993-03-01 2001-04-17 Motorola Inc. Semiconductor device having a titanium-aluminum compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218733B1 (en) * 1993-03-01 2001-04-17 Motorola Inc. Semiconductor device having a titanium-aluminum compound

Similar Documents

Publication Publication Date Title
JP3209270B2 (en) Heterojunction field effect transistor
JP5313424B2 (en) III-nitride based field effect transistor (FET) with reduced trapping and method of manufacturing the transistor
US8039329B2 (en) Field effect transistor having reduced contact resistance and method for fabricating the same
US6583454B2 (en) Nitride based transistors on semi-insulating silicon carbide substrates
US7501670B2 (en) Cascode circuit employing a depletion-mode, GaN-based FET
US7105868B2 (en) High-electron mobility transistor with zinc oxide
WO2011099097A1 (en) Nitride semiconductor device and process for production thereof
JP4134575B2 (en) Semiconductor device and manufacturing method thereof
JPH10223901A (en) Field effect transistor and manufacture of the same
US20220102545A1 (en) Nitride semiconductor device and nitride semiconductor package
JPH08241983A (en) Heat-resistant gate hetero structure field-effect transistorand its method
US20070138506A1 (en) Nitride metal oxide semiconductor integrated transistor devices
Maeda et al. Doping design of GaN‐based heterostructure field‐effect transistors with high electron density for high‐power applications
US8741705B2 (en) Metal-oxide-semiconductor high electron mobility transistors and methods of fabrication
JP2758803B2 (en) Field effect transistor
JP2552058B2 (en) Method of manufacturing GaAs MESFET device
JPH03256362A (en) Semiconductor device of schottky barrier type
WO2022000362A1 (en) Semiconductor device and fabrication method thereof
JPH05335348A (en) Semiconductor device
Yoon et al. Characteristics of 80 nm T-Gate Metamorphic HEMTx with 60% Indium Channel
JPH0684960A (en) Field effect transistor
JPH01268070A (en) Heterojunction type field-effect transistor
JPH0354851B2 (en)
JPH02105425A (en) Manufacture of semiconductor device
JPH04334031A (en) Semiconductor device and its manufacture