JPH03256030A - Optical device - Google Patents

Optical device

Info

Publication number
JPH03256030A
JPH03256030A JP5525090A JP5525090A JPH03256030A JP H03256030 A JPH03256030 A JP H03256030A JP 5525090 A JP5525090 A JP 5525090A JP 5525090 A JP5525090 A JP 5525090A JP H03256030 A JPH03256030 A JP H03256030A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
substrate
harmonic
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5525090A
Other languages
Japanese (ja)
Inventor
Teruhiro Shiono
照弘 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5525090A priority Critical patent/JPH03256030A/en
Publication of JPH03256030A publication Critical patent/JPH03256030A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need for temperature control and to make an optical axis of projection constant by inputting incident light to an optical waveguide, and outputting higher-harmonic projection light with wavelength 1/n except from the optical waveguide. CONSTITUTION:The incident light 4 is made inputted to the optical waveguide 2 and the higher-harmonic projection light 6 with the wavelength 1/n is outputted except from the optical waveguide 2. Even when the projection angle of the higher harmonic varies with temperature, a voltage applied to a provided electrode 3 to vary the refractive index of the optical waveguide 2 or a substrate 1 by electrooptic effect, thereby making the projection angle constant. Consequently, the need for the temperature control is eliminated and the optical device which can be expected to perform stable operation with a constant optical axis is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明41  レーザ光の波長を1 / nに短波長化
する光学装置に関するものであり、特に 温度制御を不
用にし出射光軸一定の安定動作が期待できる光学装置に
関するものであも 従来の技術 レーザ光の波長を短波長にするものとして、SHG (
second harmonic generatio
n、  n = 2 )、T HG (third h
armonic generatioa n = 3 
)等が注目されてい4  SHGの例として、第2図に
示すものがあった(谷内 等”半導体レーザーの第2高
調波発生”、応用物塩 第56巻 第12ゑ 1637
風 1987年)。基板lとして、2次の非線形効果を
有するLiNbO5の結晶を用L\ 1部をプロトン交
換によって屈折率を高歇光導波路2としていも 光導波
路2の端面から波長0.84μmの半導体レーザ光4を
入射すると、チェレンコフ放射でSHGが生じて入射光
の波長が1/2になり波長0.42μ・mの高調波6が
基板lの端面か板 角度αで出射されるというものであ
も 発明が解決しようとする課題 第2図に示した従来の光学装置では 高調波の出射角α
力交 光導波路lの膜厚 屈折風 基板1の屈折率等に
依存しており、それらの値は温度に依存していも 従っ
て、温度が変化すると、高調波の出射角が変化するた敗
 出射光6を光源として用いる場合 光軸がくるつとい
う課題があった従って、この光学装置に1上 上敷℃の
精密温度制御系が必要でありtも 本発明1上 上記課題に鑑みてなされたちの型温度制御
を不用にし出射光軸が一定の光学装置を提供するもので
あも 課題を解決するための手段 基板と、上記基板上もしくは上記基板中に設けたn (
nは2以上の整数)次の非線形光学効果を有する光導波
路と、上記光導波路を挟むように上記光導波路上もしく
は上記光導波路中もしくは上記基板上もしくは上記基板
中に設けた 上記光導波路に電界を印加する電極とを備
丸 上記光導波路に入射光を入力させ、上記光導波路以
外から波長1 / nの高調波出射光を出力させも作用 本発明は 非線形光学効果を有する媒体(よ 通電 電
気光学効果を有することに着目し 温度変化によって高
調波の出射角度が変化してL 設けた電極に電圧を印加
して、電気光学効果により光導波路また(よ 基板の屈
折率を変化させることにより、出射角度を一定にさせる
ものであ瓜 従って、本発明の光学装置(よ 温度制御
の必要はなく、出射光軸が一定の安定動作が実現されも
実施例 M1図は本発明の一実施例の光学装置の構成国であも 
基板1に 埋め込み形の光導波路2を形成a その光導
波路2を挟み込むように電極3を設けてあも 基板lと
して、例えば体積2×2×6mm”のZ板の2次の非線
形光学効果を有するLiNbO5の結晶を使用し ビロ
リン酸(H,P!○〒〉を用いたプロトン交換により基
板lに 例えば 幅2μへ深さ0.4μへ長さ6mmの
埋め込み形の光導波路2を形成した この光導波路2を
挟み込むように 基板l上に例えばALAu等の金属で
例えば 輻0.5mrrc  長さ6mmの電極3を1
対形威した この電極3は光導波路2に電界が印加され
るように形成すればよく、光導波路2上もしくは光導波
路2中もしくは基板1中に設けてもよLl  光導波路
2の端面に波長0.84μmの半導体レーザ光4を基板
1に垂直方向に直線偏光して入射すると、大部分(よ 
基本波の出射光5となって光導波路2から出て行く力文
 一部はチェレンコフ放射によりSHGが生じて、基本
波の導波モードと高調波の放射モードの非線形結合が起
こり入射光の波長が1/2になり、光導波路2以外か板
 例えば 第1図に示した場合では基板lの端面か転 
例えば 温度が23℃では角度α=16.2°で、波長
0.42μmの高調波のレーザ光6が出射され1.  
この出射角αは CO8α= N / n n=n*rl@/Jれ6 C08α+n@S 1 nα
を満たすように与えられtラ  ここで、 n・、n・
はそれぞれLiNb0*の常光 異常光の屈折風Nは導
波光の実効屈折率であム すなわ板 出射角は 導波光
の実効屈折風 基板lの屈折率に依存し さらに−、導
波光の実効屈折率は 光導波路2の膜厚 屈折風 及び
基板lの屈折率に依存すムまた これらの屈折率の値は
 温度に依存すも次に 電極3に電圧を印加し 光導波
路2に電界がかかるようにす4LiNbOs等の2次の
非線形光学効果を有する媒体(よ 通電 大きな電気光
学効果を有するた幽 電界をかけると、電界の大きさと
方向に依存して屈折率が変化すも 前にも述べたように
 光導波路2、基板1の屈折率(よ温度に依存しており
、温度が変化すると、高調波出射光6の出射角が変化す
る。本実施例で(よ このとき電極3に電圧を印加する
と、出射角を変化させて、初期の出射角(16,2°)
に戻すことができるた吹 出射角の光軸一定の安定な動
作が実現できtラ  プロトン交換したLiNbO5で
(l  電気光学効果&よ プロトン交換前の約1/1
0程度に減少するた数 電気光学効果による屈折率変化
1よ 光導波路2中よりL 光導波路2直下の基板中に
おいて著しいことが推定されも 光導波路2を伝搬する
導波光はしみだしがあるた数 光導波路2中の屈折率の
変化がなくても基板lの屈折率が変化すれば 出射角を
変化させられも 従って、光導波路2が電気光学効果が
なくても基板1が電気光学効果を有すれば 本発明の効
果があも まt=  L i N b OsやLiTa
O5はその屈折率(よ温度に強く依存しているた△ 本
発明の効果が大き賎 以上説明したの1ヨ2次の非線形効果を示すLiNb0
・を基板と光導波路に用いたSHGの場合である力曳 
特に 2次の非線形効果を示す場合にg&  電気光学
効果を効率よく示し 本発明の効果は大き鶏 例えば 
LilOs、K N b Os、KTiOPO4、L 
i T a Os’P、  MNA (メチルニトロア
ニリン)等のベンゼン環をもったπ電子共役系化合物を
含む高分子等を光導波路に用いれば効果は太き鶏 また
 3次以上の非線形光学効果を示す物質を光導波路に用
いてL 2次のものより小さいバ 電気光学効果を示す
ため本発明の効果はあも このときは 基板に電気光学
効果を示すものを用いると、−層本発明の効果があも発
明の効果 本発明によれ(L 温度制御を不用にし 光軸−定の安
定動作が期待できる光学装置が構成可能であるという効
果を有すん
[Detailed Description of the Invention] Industrial Application Field Invention 41 This relates to an optical device that shortens the wavelength of laser light to 1/n, and is particularly expected to eliminate the need for temperature control and provide stable operation with a constant output optical axis. Regarding optical devices that can be used, SHG (
second harmonic generation
n, n = 2), THG (third h
armonic generation n = 3
) etc. 4 An example of SHG is the one shown in Figure 2 (Taniuchi et al. “Second harmonic generation of semiconductor lasers”, Applied Materials Science Vol. 56, No. 12, 1637
Wind 1987). As the substrate 1, a LiNbO5 crystal having a second-order nonlinear effect is used. Even if one part is made into an optical waveguide 2 with a high refractive index by proton exchange, a semiconductor laser beam 4 with a wavelength of 0.84 μm is emitted from the end face of the optical waveguide 2. When the light is incident, SHG is generated by Cerenkov radiation, the wavelength of the incident light is halved, and a harmonic wave 6 with a wavelength of 0.42 μm is emitted from the end face of the substrate l or the plate at an angle α. Problems to be Solved In the conventional optical device shown in Figure 2, the harmonic output angle α
Force exchange Film thickness of optical waveguide I Refraction wind Depends on the refractive index of the substrate 1, etc., and even though these values depend on temperature, the output angle of harmonics changes as the temperature changes. When using the incident light 6 as a light source, there was a problem that the optical axis was twisted.Therefore, this optical device required a precise temperature control system of 1°C, and the present invention 1 was made in view of the above problems. The present invention provides an optical device that does not require mold temperature control and has a constant output optical axis.To solve this problem, a substrate is provided, and an n (
(n is an integer of 2 or more) an optical waveguide having the following nonlinear optical effect, and an electric field in the optical waveguide provided on or in the optical waveguide or on or in the substrate so as to sandwich the optical waveguide. The present invention also works by inputting incident light into the optical waveguide and outputting harmonic light with a wavelength of 1/n from a source other than the optical waveguide. Focusing on the fact that it has an optical effect, the output angle of harmonics changes with temperature changes, and by applying a voltage to the electrodes provided, the electro-optical effect changes the refractive index of the optical waveguide or substrate. Therefore, although the optical device of the present invention does not require temperature control and stable operation with a constant output optical axis is achieved, FIG. The constituent countries of optical equipment
An embedded optical waveguide 2 is formed in a substrate 1. Electrodes 3 are provided to sandwich the optical waveguide 2. As a substrate 1, for example, a second-order nonlinear optical effect of a Z plate with a volume of 2 x 2 x 6 mm is used. For example, an embedded optical waveguide 2 with a width of 2μ, a depth of 0.4μ and a length of 6mm was formed on the substrate 1 by proton exchange using LiNbO5 crystal with birophosphoric acid (H,P!○〒〉). Electrodes 3 with a radius of 0.5 mrrc and a length of 6 mm are placed on the substrate 1 with a metal such as ALAu so as to sandwich the optical waveguide 2 therebetween.
This electrode 3 may be formed so that an electric field is applied to the optical waveguide 2, and may be provided on the optical waveguide 2, in the optical waveguide 2, or in the substrate 1. When the semiconductor laser beam 4 of 0.84 μm is linearly polarized in the vertical direction and is incident on the substrate 1, most of it (very much
A part of the force wave that becomes the fundamental wave output light 5 and exits from the optical waveguide 2 is SHG due to Cerenkov radiation, and a nonlinear combination of the fundamental wave guiding mode and the harmonic radiation mode occurs, which occurs at the wavelength of the incident light. For example, in the case shown in Fig. 1, the end face of the substrate l is
For example, when the temperature is 23°C, the harmonic laser beam 6 with a wavelength of 0.42 μm is emitted at an angle α=16.2°.
This exit angle α is CO8α=N/n n=n*rl@/Jre6 C08α+n@S 1 nα
given so as to satisfy t, where, n・, n・
are the refraction winds of the ordinary light and extraordinary light of LiNb0*, respectively, and the refraction wind N is the effective refractive index of the guided light.In other words, the output angle of the plate is: The refractive index depends on the film thickness of the optical waveguide 2, the refraction wind, and the refractive index of the substrate 1.The value of these refractive indexes also depends on the temperature.Next, a voltage is applied to the electrode 3 so that an electric field is applied to the optical waveguide 2. When an electric field is applied to a medium with a second-order nonlinear optical effect such as LiNbOs, which has a large electro-optic effect, the refractive index changes depending on the magnitude and direction of the electric field. As shown in FIG. When applied, the output angle changes and the initial output angle (16,2°)
It is possible to achieve stable operation with a constant optical axis at the outflow angle.
Although it is estimated that the refractive index change due to the electro-optic effect is significant in the substrate immediately below the optical waveguide 2, the guided light propagating through the optical waveguide 2 leaks. Even if there is no change in the refractive index in the optical waveguide 2, if the refractive index of the substrate l changes, the output angle can be changed. Therefore, even if the optical waveguide 2 has no electro-optic effect, the substrate 1 has an electro-optic effect. If there is, the effect of the present invention will still be t = L i N b Os or LiTa
Since the refractive index of O5 strongly depends on the temperature, the effect of the present invention is large.
・Force pulling, which is the case of SHG using for the substrate and optical waveguide
In particular, when a second-order nonlinear effect is exhibited, the effect of the present invention is that it efficiently exhibits the g & electro-optic effect.
LilOs, KNbOs, KTiOPO4, L
If a polymer containing a π-electron conjugated compound with a benzene ring, such as TaOs'P or MNA (methylnitroaniline), is used for the optical waveguide, the effect can be increased.It can also produce third-order or higher-order nonlinear optical effects. If a substance exhibiting an electro-optic effect is used as a substrate for the optical waveguide, the effect of the present invention will be less because the L-layer exhibits an electro-optic effect. Effects of the Invention The present invention has the effect of making it possible to construct an optical device that does not require temperature control and can be expected to operate stably with respect to the optical axis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の光学装置の構成を示す斜視
阻 第2図は従来の光学装置の構成を示す斜視図であも 1・・・・基[2・・・・光導波@3・・・・電極 4
・・・・入射i5・・・・基本波出射光 〇・・・・高
調波出射九
FIG. 1 is a perspective view showing the configuration of an optical device according to an embodiment of the present invention. FIG. 2 is a perspective view showing the configuration of a conventional optical device. @3... Electrode 4
...Incidence i5... Fundamental wave output light 〇... Harmonic wave output 9

Claims (4)

【特許請求の範囲】[Claims] (1)基板と、上記基板上もしくは上記基板中に設けた
n(nは2以上の整数)次の非線形光学効果を有する光
導波路と、上記光導波路を挟むように、上記光導波路上
、上記光導波路中、上記基板上もしくは上記基板中の少
なくともいずれかに設けた、上記光導波路に電界を印加
する電極とを備え、上記光導波路に入射光を入力させ、
上記光導波路以外から波長1/nの高調波出射光を出力
させることを特徴とする光学装置。
(1) a substrate, an optical waveguide provided on or in the substrate and having an n-th order nonlinear optical effect (n is an integer of 2 or more); an electrode for applying an electric field to the optical waveguide, provided in at least one of the optical waveguide, on the substrate, or in the substrate, and inputting incident light into the optical waveguide;
An optical device characterized in that harmonic output light having a wavelength of 1/n is output from a source other than the optical waveguide.
(2)nは2であることを特徴とする請求項1に記載の
光学装置。
(2) The optical device according to claim 1, wherein n is 2.
(3)基板が電気光学効果を有することを特徴とする請
求項1に記載の光学装置。
(3) The optical device according to claim 1, wherein the substrate has an electro-optic effect.
(4)基板がLiNbO_3またはLiTaO_3であ
ることを特徴とする請求項1に記載の光学装置。
(4) The optical device according to claim 1, wherein the substrate is LiNbO_3 or LiTaO_3.
JP5525090A 1990-03-06 1990-03-06 Optical device Pending JPH03256030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5525090A JPH03256030A (en) 1990-03-06 1990-03-06 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5525090A JPH03256030A (en) 1990-03-06 1990-03-06 Optical device

Publications (1)

Publication Number Publication Date
JPH03256030A true JPH03256030A (en) 1991-11-14

Family

ID=12993352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5525090A Pending JPH03256030A (en) 1990-03-06 1990-03-06 Optical device

Country Status (1)

Country Link
JP (1) JPH03256030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424188B2 (en) 2005-07-14 2008-09-09 Fujitsu Limited Optical module and mounting deviation compensation method for optical waveguide part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424188B2 (en) 2005-07-14 2008-09-09 Fujitsu Limited Optical module and mounting deviation compensation method for optical waveguide part

Similar Documents

Publication Publication Date Title
US4865406A (en) Frequency doubling polymeric waveguide
Kolinsky New materials and their characterization for photonic device applications
Kanbara et al. All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide
Bosshard Cascading of Second‐Order Nonlinearities in Polar Materials
US5131068A (en) Thickness variation insensitive frequency doubling polymeric waveguide
US4973118A (en) Second harmonic wave generating device
JPH03256030A (en) Optical device
JPH021831A (en) Waveguide type wavelength conversion element
Ito et al. Phase-matched guided, optical second-harmonic generation in nonlinear ZnS thin-film waveguide deposited on nonlinear LiNbO3 substrate
JPS59109026A (en) Light modulator
Feng et al. A bond-free PPLN thin film ridge waveguide
JPH0651359A (en) Wavelength conversion element, short wavelength laser device and wavelength variable laser device
US5093882A (en) Wavelength conversion device
JPH06273816A (en) Optical waveguide type second higher harmonic generating element
US20230335969A1 (en) Intracavity harmonic generation with layered nonlinear optic
JP2658381B2 (en) Waveguide type wavelength conversion element
US5018810A (en) Method for producing a second harmonic wave generating device
Itoh et al. Dichroism of 2-methyl-4-nitroaniline
JP2666540B2 (en) Waveguide type wavelength conversion element
JP3178849B2 (en) Waveguide type SHG element
JPH03245131A (en) Optical device
JPH0643513A (en) Wavelength converting element
JPH1068976A (en) Optically driven wavelength converter
Lim et al. Second harmonic generation of blue and green light in periodically-poled planar lithium niobate waveguides
Sanford et al. Optical sum-frequency generation in proton exchanged LiNbO3 and LiTaO3 channel waveguides