JPH03254952A - Printing element - Google Patents

Printing element

Info

Publication number
JPH03254952A
JPH03254952A JP5430490A JP5430490A JPH03254952A JP H03254952 A JPH03254952 A JP H03254952A JP 5430490 A JP5430490 A JP 5430490A JP 5430490 A JP5430490 A JP 5430490A JP H03254952 A JPH03254952 A JP H03254952A
Authority
JP
Japan
Prior art keywords
drive source
laminated
piezoelectric
linear expansion
longitudinal effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5430490A
Other languages
Japanese (ja)
Other versions
JP2890627B2 (en
Inventor
Yoshikazu Takahashi
義和 高橋
Masahiko Suzuki
雅彦 鈴木
Makoto Takeuchi
誠 竹内
Masaaki Deguchi
雅明 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP5430490A priority Critical patent/JP2890627B2/en
Priority to US07/663,662 priority patent/US5126618A/en
Priority to GB9104756A priority patent/GB2245097B/en
Priority to DE4107158A priority patent/DE4107158A1/en
Publication of JPH03254952A publication Critical patent/JPH03254952A/en
Application granted granted Critical
Publication of JP2890627B2 publication Critical patent/JP2890627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/04Gramophone pick-ups using a stylus; Recorders using a stylus
    • H04R17/08Gramophone pick-ups using a stylus; Recorders using a stylus signals being recorded or played back by vibration of a stylus in two orthogonal directions simultaneously

Landscapes

  • Impact Printers (AREA)

Abstract

PURPOSE:To obtain a highly reliable printing element at a low cost by a method wherein a driving power source is formed by alternately disposing multilaminated electro-mechanical coversion elements having a longitudinal effect, which are constituted of the lamination of piezoelectric ceramic layers, and multiple temperature-compensating members for the purpose of making the linear expansion coefficient of the whole driving power source equal to that of a frame. CONSTITUTION:For example, forty-five piezoelectric ceramic layers 42 are laminated via electrode layers 41 and unitarily sintered to form a laminated piezoelectric element 40. The laminated piezoelectric element 40 thus formed has a piezoelectric longitudinal effect. Further, aluminum is used as a temperature compensating member 12. Five laminated piezoelectric elements 40 and four temperature compensating members 12 are alternately laminated and allowed to adhere to one another with an adhesive to be converted into a driving power source 1. Furthermore, the linear expansion coefficient of the entire length of the driving power source 1 is made equal to the linear expansion coefficient of a frame 80.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、印字エレメント、特に圧電セラミックス材の
圧電或は電歪縦効果により発生した寸法歪を拡大して印
字用ワイヤに伝達しドツト印字する印字エレメントに関
するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is a printing element, in particular, a method for enlarging the dimensional distortion generated by the piezoelectric or electrostrictive longitudinal effect of a piezoelectric ceramic material and transmitting it to a printing wire to print dots. It relates to printing elements that

[従来技術] 従来、この種の印字エレメントとしては、例えば第3図
に示すようなものがある。この印字エレメントにおいて
、電圧の印加によって伸縮をする積層縦効果圧電素子か
らなる駆動源1は、該駆動源1の伸縮方向の一端を支持
する基部3を有するフレーム(メインフレーム2)に取
り付けられている。前記前記駆動源1の伸縮方向の他端
に配接された可動子5が取り付けられ、該可動子5に連
結されて前記駆動源1の伸縮運動を拡大する運動変換機
構が備えられる。この運動変換機構は、メインフレーム
2と可動子5とに一端を固着した一対の板ばね6.7と
その板ばね6.7の他端を結合している傾動体8とを主
体として構成されている。そしてこの運動変換機構は、
電圧の印加及びその電圧の遮断による駆動源1の伸縮運
動を板ばね6.7のたわみを利用して傾動体8の傾動運
動に変換させる。この傾動運動に応じてワイヤ11が図
示」二方向にインパクトしてドツト印字を行なう。
[Prior Art] Conventionally, as this type of printing element, there is one shown in FIG. 3, for example. In this printing element, a drive source 1 made of a laminated longitudinal effect piezoelectric element that expands and contracts when a voltage is applied is attached to a frame (main frame 2) having a base 3 that supports one end of the drive source 1 in the expansion and contraction direction. There is. A movable element 5 is attached to the other end of the drive source 1 in the direction of expansion and contraction, and a motion conversion mechanism connected to the movable element 5 to magnify the expansion and contraction movement of the drive source 1 is provided. This motion conversion mechanism is mainly composed of a pair of leaf springs 6.7 having one end fixed to the main frame 2 and the movable element 5, and a tilting body 8 connecting the other end of the leaf spring 6.7. ing. This motion conversion mechanism is
The expansion and contraction movement of the drive source 1 due to the application of voltage and the interruption of the voltage is converted into the tilting movement of the tilting body 8 by using the deflection of the leaf spring 6.7. In response to this tilting movement, the wire 11 impacts in two directions shown in the figure to perform dot printing.

」―述したような印字エレメントでは、第4図に示した
ように、駆動源1として、例えば−層の厚みが98μm
で、圧電定数aaSが6,35X10−10 m / 
Vであり、電歪定数M33が1,32X10ゴロm/v
2である圧電セラミックス層42を、層の厚みが2μm
の電極層41を介して180枚積層し、全体の長さを1
8mmとした積層縦効果圧電素子を用いる。そのため印
字に必要な駆動源1の変位、例えば15μmを得るため
に107Vの駆動電圧を必要としていた。尚、図中にお
いて矢印45は、圧電セラミックス層41の分極方向を
示している。
In the printing element as described above, as shown in FIG.
So, the piezoelectric constant aaS is 6,35X10-10 m/
V, and the electrostriction constant M33 is 1.32X10 m/v
2, the piezoelectric ceramic layer 42 has a layer thickness of 2 μm.
180 electrode layers 41 are stacked, and the total length is 1.
A laminated longitudinal effect piezoelectric element with a thickness of 8 mm is used. Therefore, in order to obtain the displacement of the drive source 1 necessary for printing, for example, 15 μm, a drive voltage of 107 V is required. Note that in the figure, an arrow 45 indicates the polarization direction of the piezoelectric ceramic layer 41.

また、駆動源1は、分極に伴う歪が昇温時に解放される
性質を持ち、そのため他の構成材とは異なり伸縮方向に
負の線膨張係数(例えば、−3゜sppm/℃)を持つ
。このため動作中の/+111度」1昇に起因するメイ
ンフレーム2及び駆動源1.の膨張量差を補正する必要
がある。従ってメインフレーム2の材料として、低膨張
係数の構成材(例えば線膨張係数が+1.2ppm/’
Cのインバー合金)を使用し、温度補償材12.13と
して正の大きな線膨張係数を持つ剛体(例えば線膨張係
数が+23.9ppm/℃で総長4mmのアルミニウム
)を使用していた。
In addition, the driving source 1 has a property that the strain caused by polarization is released when the temperature rises, and therefore, unlike other constituent materials, it has a negative coefficient of linear expansion in the direction of expansion and contraction (for example, -3° sppm/°C). . Therefore, during operation, the main frame 2 and drive source 1. It is necessary to correct the difference in the amount of expansion. Therefore, as a material for the main frame 2, a material with a low expansion coefficient (for example, a linear expansion coefficient of +1.2 ppm/'
A rigid body having a large positive linear expansion coefficient (for example, aluminum having a linear expansion coefficient of +23.9 ppm/° C. and a total length of 4 mm) was used as the temperature compensating material 12.13.

[発明が解決しようとする課題] しかしながら」1記の装置では高圧の駆動電圧(上側で
は107V)を必要とするといった問題がある。このこ
の駆動電圧を低減するために、例えば圧電セラミックス
層42の一層の厚みを薄くし、かつ積層枚数を増やすこ
とが容易に考えられる。しかしながらこのような多層の
素子は、焼結時に於ける表面近傍の層と中央部の層との
温度差により信頼性が低下するといった新たな問題が生
じ、あまり積層枚数を増やすことができない。
[Problems to be Solved by the Invention] However, the device described in item 1 has a problem in that it requires a high driving voltage (107 V on the upper side). In order to reduce this driving voltage, it is easy to consider, for example, reducing the thickness of one layer of the piezoelectric ceramic layer 42 and increasing the number of layers laminated. However, such a multilayer element has a new problem in that reliability is lowered due to the temperature difference between the layer near the surface and the layer in the center during sintering, and the number of layers cannot be increased very much.

また上記装置における低膨張係数の構成材は非常に高価
なため、材料コストが高いという問題点もあった。
Furthermore, since the constituent materials having a low coefficient of expansion in the above-mentioned device are very expensive, there is also the problem that the material cost is high.

また、駆動源1の熱伝導率が充分に大きくない場合では
、駆動時に駆動源1と温度補償材12.13との間に温
度差を生じる。このため、」二連の温度補償効果が十分
得られず、駆動源1の熱膨張が先行して、ワイヤ11の
先端位置が温度」二昇前よりも突出する。従って、ワイ
ヤ11の先端がインクリボンに引っかかるなどの不具合
を生じ易いという問題点もあった。
Furthermore, if the thermal conductivity of the driving source 1 is not sufficiently large, a temperature difference will occur between the driving source 1 and the temperature compensating material 12, 13 during driving. Therefore, the temperature compensation effect of the two series cannot be sufficiently obtained, and the thermal expansion of the drive source 1 precedes, and the tip position of the wire 11 protrudes more than before the temperature rise. Therefore, there is a problem that problems such as the tip of the wire 11 being caught on the ink ribbon are likely to occur.

本発明は、上述した問題点を解決するためになされたも
のであり、信頼性を低下させずに、圧電セラミックス層
の一層の厚みを薄くした積層縦効果圧電素子からなる駆
動源を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and provides a drive source made of a laminated longitudinal effect piezoelectric element in which the thickness of each piezoelectric ceramic layer is reduced without reducing reliability. With the goal.

更に、エレメントの駆動電圧の低減を図ることを目的と
する。
Furthermore, it is an object of the present invention to reduce the driving voltage of the element.

更に、積層圧電素子に対する温度補償材の長さの比率を
変えることにより、駆動源の線膨張係数を制御し、メイ
ンフレーム材料の選択の自由度を増し、よってメインフ
レーム材料の低コスト化を図ることを目的とする。
Furthermore, by changing the length ratio of the temperature compensating material to the laminated piezoelectric element, the linear expansion coefficient of the driving source can be controlled, increasing the degree of freedom in selecting the main frame material, and thereby reducing the cost of the main frame material. The purpose is to

更に、駆動源と温度補償材との駆動時の温度差を、従来
よりも少なくし、温度補償効果の信頼性を向上し、低コ
ストで信頼性の高い印字エレメントを提供することを目
的とする。
Furthermore, the purpose is to reduce the temperature difference during driving between the drive source and the temperature compensating material compared to conventional methods, improve the reliability of the temperature compensation effect, and provide a low-cost and highly reliable printing element. .

[課題を解決するための手段] 」1記目的を達成するために本発明は、電気信号の印加
により圧電縦効果或は電歪縦効果を生じる駆動源と、該
駆動源の伸縮方向の一端を支持する基部を有するフレー
ムと、前記駆動源の伸縮運動を拡大する運動変換機構と
を備えた印字エレメントにおいて、前記駆動源が、圧電
セラミックス層を積層して構成した多数の積層縦効果電
気機械変換素子と、該積層縦効果電気機械変換素子の線
膨張係数を補正して前記駆動源全体としての線膨張係数
を前記フレームと同一とする為の多数の温度補償部材と
を交互に配置してなることを特徴とするものである。
[Means for Solving the Problems] In order to achieve the object stated in item 1, the present invention provides a drive source that produces a piezoelectric longitudinal effect or an electrostrictive longitudinal effect by applying an electric signal, and one end of the drive source in the direction of expansion and contraction. In the printing element, the printing element includes a frame having a base for supporting the drive source, and a motion converting mechanism for magnifying the expansion/contraction movement of the drive source, wherein the drive source includes a plurality of laminated longitudinal effect electric machines configured by laminating piezoelectric ceramic layers. A conversion element and a large number of temperature compensating members for correcting the linear expansion coefficient of the laminated longitudinal effect electromechanical conversion element to make the linear expansion coefficient of the drive source as a whole the same as that of the frame are arranged alternately. It is characterized by:

[作用] 」1記構成を有する本発明によれば、積層縦効果電気機
械変換素子を必要な数積層することにより、 − = 6− 所望の変位量を得るので、個々の積層縦効果電気機械変
換素子の積層枚数は少なくてよい。従って焼結時におけ
る中央及び周辺部に温度差が生じることが少ない。その
ため−層の厚さを例えば40μm程度の積層縦効果電気
機械変換素子であっても、高信頼性を保持したまま得る
ことが可能となる。
[Function] According to the present invention having the configuration described in item 1, by laminating the required number of laminated longitudinal effect electromechanical transducers, a desired amount of displacement is obtained. The number of laminated conversion elements may be small. Therefore, there is little difference in temperature between the center and the periphery during sintering. Therefore, it is possible to obtain a laminated longitudinal effect electromechanical transducer with a layer thickness of, for example, about 40 μm while maintaining high reliability.

また各積層縦効果電気機械変換素子は、薄型の圧電素子
或は電歪素子を積層してなるため、少ない電圧で大きな
変位量を得ることができる。更に適切な変位を得るのに
必要な積層縦効果電気機械変換素子の長さを短く構成で
きる為、その分駆動源において占められる温度補償材の
長さを長くすることができる。そのためフレームに使用
する材料に安価なものを用いることが可能となる。駆動
源の線膨張係数を、メインフレーム材料の線膨張係数に
合わせて自由に調整することができ、メインフレーム材
料の低コスト化が実現できる。
Furthermore, since each laminated longitudinal effect electromechanical transducer is formed by laminating thin piezoelectric elements or electrostrictive elements, a large amount of displacement can be obtained with a small voltage. Furthermore, since the length of the laminated longitudinal effect electromechanical transducer required to obtain an appropriate displacement can be shortened, the length of the temperature compensation material occupied in the drive source can be increased accordingly. Therefore, it is possible to use inexpensive materials for the frame. The linear expansion coefficient of the drive source can be freely adjusted according to the linear expansion coefficient of the main frame material, and the cost of the main frame material can be reduced.

また、積層圧電素子と温度補償材とを各々複数個、交互
に配置したことにより、該素子により発生ずる熱が効率
的に温度補償材に伝わる。そのため積層縦効果電気機械
変換素子と温度補償材との駆動時の温度差を、従来より
も少なくし得る。そのため適切な温度補償効果を得るこ
とができる。
In addition, by arranging a plurality of laminated piezoelectric elements and a plurality of temperature compensating members alternately, heat generated by the elements is efficiently transmitted to the temperature compensating member. Therefore, the temperature difference between the laminated longitudinal effect electromechanical transducer and the temperature compensation material during driving can be made smaller than in the past. Therefore, an appropriate temperature compensation effect can be obtained.

[実施例] 本発明を具体化した実施例を第1乃至第2図を参照して
説明する。なお都合上、従来例と同一部位あるいは均等
部位には同一符号をイ」け、その詳細な説明を省く。
[Example] An example embodying the present invention will be described with reference to FIGS. 1 and 2. For convenience, parts that are the same or equivalent to those of the conventional example are given the same reference numerals, and detailed explanation thereof will be omitted.

駆動源1を支持するフレーム80は、線膨張係数+12
.1 p p m/’Cである焼結鉄鋼材を第1図に示
すように略U字状に形成したものである。
The frame 80 supporting the drive source 1 has a linear expansion coefficient of +12
.. As shown in FIG. 1, a sintered steel material of 1 p p m/'C is formed into a substantially U-shape.

このフレーム80は、駆動源1の伸縮方向に平行に延在
するメインフレーム部2を有し、そのメインフレーム部
2の下端部には駆動源1の伸縮方向の一端(下端)を支
持する基部3が突出している。
This frame 80 has a main frame portion 2 extending parallel to the direction of expansion and contraction of the drive source 1, and a base portion at the lower end of the main frame portion 2 that supports one end (lower end) of the drive source 1 in the direction of expansion and contraction. 3 stands out.

その基部3に連設されてメインフレーム部2と平行状を
なすサブフレーム部4が形成される。
A sub-frame part 4 is formed which is connected to the base part 3 and is parallel to the main frame part 2.

前記駆動源1の伸縮方向の他端(第1図示上側)には、
可動子5が前記メインフレーム部2の」一端部に対向し
た状態で配設されている。前記メインフレーム部2と可
動子5との対向面には、一対の板ばね6.7が、その一
端部においてそれぞれ固着されている。両板ばね6.7
は、所定の隙間を隔てて対向し、かつその他端部(延出
端部)が傾動体8により結合されている。傾動体8の」
二面には、先端に印字ワイヤ11を取り付けた傾動アー
ム10が固着されている。なお前記板ばね6.7と傾動
体8とで、一方の板ばね7の他端を板ばね6の面方向に
沿って変位させることにより傾動体8を傾ける運動をさ
せる。
At the other end of the drive source 1 in the expansion and contraction direction (upper side in the first diagram),
A mover 5 is disposed facing one end of the main frame section 2. A pair of leaf springs 6.7 is fixed at one end of the opposing surfaces of the main frame portion 2 and the movable element 5, respectively. Double leaf spring 6.7
are opposed to each other with a predetermined gap in between, and the other ends (extending ends) are connected by a tilting body 8. of tilting body 8.
A tilting arm 10 having a printing wire 11 attached to its tip is fixed to the two sides. Note that, by displacing the other end of one of the leaf springs 7 along the surface direction of the leaf spring 6, the tilting member 8 is tilted.

駆動源1とフレーム80の基部3との対向面、および駆
動源子1と可動子5との対向面は接着剤により接合され
ている。
The facing surfaces of the driving source 1 and the base 3 of the frame 80 and the facing surfaces of the driving source element 1 and the movable element 5 are bonded with an adhesive.

また前記サブフレーム部4の上端部と可動子5との間に
は、駆動源1の伸縮に基ついてその伸縮方向と平行に可
動子5を移動させるため、ばね板製の四節平行リンク機
構16が配設されている。
Further, between the upper end of the sub-frame section 4 and the movable element 5, there is provided a four-bar parallel link mechanism made of a spring plate in order to move the movable element 5 in parallel to the expansion and contraction direction of the drive source 1 based on the expansion and contraction of the drive source 1. 16 are arranged.

前記した印字エレメントにおいて、駆動源1に電圧が印
加されると、駆動源1が伸長し、これに基づいて可動子
5は変位(上昇)される。このとき、可動子5の変位力
を受けて、板ばね6及び板ばね7がたわむことによって
、傾動アーム10が第1図において反時計方向に傾動さ
れる。この傾動アーム10の傾動により、印字ワイヤ1
1は、印字位置まで前進される。
In the printing element described above, when a voltage is applied to the drive source 1, the drive source 1 expands, and the movable element 5 is displaced (raised) based on this. At this time, the leaf springs 6 and 7 are bent in response to the displacement force of the movable element 5, so that the tilting arm 10 is tilted counterclockwise in FIG. By tilting the tilting arm 10, the printing wire 1
1 is advanced to the printing position.

また前記駆動源1に対する電圧の印加が遮断されると、
駆動源1が元の状態に短縮する。これに基づいて、可動
子5および板ばね6及び板ばね7が元の状態に復帰する
ことにより、印字ワイヤ11が待機位置に復帰される。
Further, when the application of voltage to the drive source 1 is cut off,
The driving source 1 is shortened to its original state. Based on this, the movable element 5, the leaf springs 6, and the leaf springs 7 return to their original states, thereby returning the printing wire 11 to the standby position.

このとき傾動アーム10がストッパ35に当接して待機
位置に支持される。
At this time, the tilting arm 10 contacts the stopper 35 and is supported at the standby position.

また前記可動子5の変位に基づいて平行リンク機構16
が弾性変形することにより、可動子5が駆動源1の伸縮
方向に平行に変位される。
Also, based on the displacement of the movable element 5, the parallel link mechanism 16
By elastically deforming, the movable element 5 is displaced in parallel to the direction of expansion and contraction of the drive source 1.

前記駆動源1は、第2図に示すように積層圧電素子40
と温度補償材12から構成される。−層の厚みが40μ
mで、圧電定数(Iaaが6. 35X10−10m/
V、電歪定数Ma3が1.32X109− 10− ”m/V2である圧電セラミックス層42を、−層の厚
みが2μmの電極層41を介して45枚に積層しく第2
図では積層数を3枚として簡略化して示す)、長さを1
.89mmとして一体焼結して、前記積層圧電素子40
とする。」1記のように構成された積層圧電素子40は
、圧電縦効果を有する。また前記温度補償材12として
、長さ3゜15mmのアルミニウムを使用する。そして
、5個の」1記積層圧電素子40と、4個の−に記温度
補償部材12を交互に積層して公知の接着剤により接着
し、本実施例の駆動源1とする。この駆動源1は長さ2
2mmであり、電圧の印加およびその印加の遮断によっ
て長手方向(第2図」1下方向)に伸縮する。
The drive source 1 includes a laminated piezoelectric element 40 as shown in FIG.
and a temperature compensating material 12. -layer thickness 40μ
m, the piezoelectric constant (Iaa is 6.35X10-10m/
45 piezoelectric ceramic layers 42 having an electrostriction constant Ma3 of 1.32×109−10−” m/V2 are laminated via electrode layers 41 each having a thickness of 2 μm.
In the figure, the number of laminated layers is simplified as 3), and the length is 1.
.. The laminated piezoelectric element 40 is integrally sintered to have a thickness of 89 mm.
shall be. The laminated piezoelectric element 40 configured as described in item 1 has a piezoelectric longitudinal effect. Further, as the temperature compensating material 12, aluminum having a length of 3° and 15 mm is used. Then, the five laminated piezoelectric elements 40 and the four temperature compensating members 12 are alternately laminated and bonded using a known adhesive to form the drive source 1 of this embodiment. This driving source 1 has a length of 2
2 mm, and expands and contracts in the longitudinal direction (downward direction 1 in FIG. 2) by applying voltage and cutting off the application.

この駆動源1に用いられた積層圧電素子40の線膨張係
数は素子の分極に伴う歪の昇温時における解放の効果に
より、−3,8ppm10Cとなる。
The coefficient of linear expansion of the laminated piezoelectric element 40 used in this drive source 1 is -3.8 ppm10C due to the effect of releasing strain caused by polarization of the element when the temperature rises.

しかしアルミニウムからなる温度補償材12が正の大き
な線膨張係数+23. 9 p pm/’Cを持つため
、駆動源1全長についての線膨張係数は、実質的に+1
2. 1 p pm/’Cとなる。この値は、前記フレ
ーム80の線膨張係数と同一となる。
However, the temperature compensation material 12 made of aluminum has a large positive coefficient of linear expansion +23. 9 p pm/'C, the linear expansion coefficient for the entire length of the driving source 1 is substantially +1
2. 1 pp pm/'C. This value is the same as the linear expansion coefficient of the frame 80.

上記実施例では、76Vの駆動電圧で、印字するために
必要な15μmの駆動源1の変位を得ることができた。
In the above example, a displacement of 15 μm of the drive source 1 necessary for printing could be obtained with a drive voltage of 76V.

従って駆動電圧として107Vを必要とした従来の装置
に対し、大幅に駆動電圧の低減がなされた。。また、積
層圧電素子40は、圧電セラミックス層42の一層の厚
みが40μmと極めて薄いが、積層枚数が45枚と少な
く、長さも1.89mmと小型であるため、層の厚み、
結晶粒径の均−性及び緻密化等の制御が容易であり、圧
電特性、絶縁特性等に対する信頼性の低下は全く無い。
Therefore, the driving voltage has been significantly reduced compared to the conventional device which required a driving voltage of 107V. . In addition, although the laminated piezoelectric element 40 has an extremely thin thickness of 40 μm for each layer of the piezoelectric ceramic layer 42, the number of laminated layers is small at 45 and the length is small at 1.89 mm.
It is easy to control the uniformity of crystal grain size, densification, etc., and there is no decrease in reliability of piezoelectric properties, insulation properties, etc.

そのため、従来の装置に比べ安定した性能を維持するこ
とが可能となり、又、駆動源1の歩留まりも向上する。
Therefore, it is possible to maintain stable performance compared to conventional devices, and the yield of the drive source 1 is also improved.

また、駆動源1の電気機械変換素子として上述のように
低電圧駆動の積層型のものを用いているために、全長に
対する該素子の長さを短くしても充分な変位が得ること
ができる。従って、温度補償vJ12の占める長さの比
率を高くする事が容易となり、駆動源1の高い線膨張係
数を得ることができる。従って例えば上記のように線膨
張係数を+12. 1 p pm/’Cに設定すること
により、フレームとして比較的に安価な焼結鉄鋼材を用
いることができる。また、全長に対する温度補償材12
の長さの比率を変えることにより、駆動源全体としての
線膨張係数を調整することができ、フレームに他の材質
のものを利用することができる。
Furthermore, since the electromechanical transducer of the drive source 1 is a multilayer type driven by a low voltage as described above, sufficient displacement can be obtained even if the length of the element is shortened relative to the overall length. . Therefore, it becomes easy to increase the ratio of the length occupied by the temperature compensation vJ12, and a high coefficient of linear expansion of the drive source 1 can be obtained. Therefore, for example, as mentioned above, the linear expansion coefficient is +12. By setting it to 1 ppm/'C, a relatively inexpensive sintered steel material can be used as the frame. In addition, the temperature compensating material 12 for the entire length
By changing the ratio of the lengths of the frame, the linear expansion coefficient of the drive source as a whole can be adjusted, and other materials can be used for the frame.

また、本実施例では印字動作中の駆動源からの発熱によ
り生ずる駆動源1と温度補償材12との間の温度差が、
従来例に比べ著しく小さい。例えば−実験例では、駆動
源1の中心部と温度補償材12との温度差は25°C前
後である、これに対し本実施例を適用したものでは、積
層圧電素子40と温度補償材12との温度差は2°C前
後である。
Furthermore, in this embodiment, the temperature difference between the drive source 1 and the temperature compensating material 12 caused by heat generated from the drive source during printing operation is
It is significantly smaller than the conventional example. For example, in the experimental example, the temperature difference between the center of the drive source 1 and the temperature compensating material 12 is around 25°C. The temperature difference is around 2°C.

この結果、温度補償の効果の信頼性が高くなり、従来の
ようなワイヤ11の先端がインクリボンに引っかけるな
どの不具合の発生を防止することができる。
As a result, the reliability of the temperature compensation effect is increased, and it is possible to prevent the occurrence of problems such as the tip of the wire 11 getting caught on the ink ribbon as in the conventional case.

また本発明は、前記実施例に限定されるものではなく、
本発明の要旨を逸脱しない範囲で、用途に応じた変更が
可能である。
Furthermore, the present invention is not limited to the above embodiments,
Changes can be made according to the purpose without departing from the gist of the invention.

例えば、メインフレーム2の低コスト化は考えずに、駆
動電圧の低減のみを目指す場合は、駆動源1として、−
層の厚みが40μmである圧電セラミックス層42を、
−層の厚みが2μmの電極層41を介して86枚に積層
し、長さを3.61mmとした一体焼結の圧電縦効果の
積層圧電素子40(圧電定数、電歪定数は前記実施例と
同じ)を5個と、温度補償材12として長さ1mmのア
ルミニウム4個とを、配置して接着剤にて接合し、長さ
22mmとしたものを用いれば、印字に必要な駆動電圧
は45Vにまで低減できる。さらに、低電圧駆動の駆動
源1として、−層の厚みが20μmである圧電セラミッ
クス層42を、−層の厚みが2μmの電極層41を介し
て164枚に積層し、長さを3.61mmとした一体焼
結の圧電縦効果の積層圧電素子40(圧電定数、電歪定
数は前記実施例と同じ)を5個と、温度補償材12とし
て長さ1mmのアルミニウム4個とを、配置し 13− 4 − て接着剤にて接合し、長さ22mmとしたものを用いれ
ば、印字に必要な駆動電圧は23Vにまで低減できる。
For example, if you are aiming only to reduce the drive voltage without considering the cost reduction of the main frame 2, as the drive source 1, -
A piezoelectric ceramic layer 42 having a layer thickness of 40 μm,
- A monolithically sintered piezoelectric longitudinal effect laminated piezoelectric element 40 in which 86 pieces are laminated via electrode layers 41 with a layer thickness of 2 μm and a length of 3.61 mm (piezoelectric constants and electrostrictive constants are the same as those in the example described above). ) and four pieces of aluminum with a length of 1 mm as the temperature compensating material 12 are arranged and bonded with adhesive to make the length 22 mm, the driving voltage required for printing is It can be reduced to 45V. Furthermore, as a drive source 1 for low voltage drive, 164 piezoelectric ceramic layers 42 each having a thickness of 20 μm are laminated via electrode layers 41 each having a thickness of 2 μm, and the length is 3.61 mm. Five integrally sintered piezoelectric longitudinal effect laminated piezoelectric elements 40 (the piezoelectric constant and electrostrictive constant are the same as in the previous example) and four aluminum pieces each having a length of 1 mm as the temperature compensating material 12 were arranged. If the length is 22 mm and the length is 22 mm, the driving voltage required for printing can be reduced to 23 V.

[発明の効果] 以」二詳述したことから明らかなように、本発明の印字
エレメントによれば、信頼性を低下させずに、圧電セラ
ミックス層の一層の厚みを薄くした積層縦効果圧電素子
からなる駆動源か得られ、駆動電圧の低減が図れる。ま
た、積層圧電素子に対する温度補償材の長さの比率を変
えることにより、駆動源の線膨張係数を制御でき、メイ
ンフレーム材料の選択の自由度が増し、よってメインフ
レーム材料の低コスト化が図れ、また、積層縦効果圧電
素子と温度補償材との駆動時の温度差が従来よりも少な
く、温度補償効果の信頼性を向」二が図れる。
[Effects of the Invention] As is clear from the detailed description below, according to the printing element of the present invention, a laminated longitudinal effect piezoelectric element in which the thickness of each layer of the piezoelectric ceramic layer is reduced without reducing the reliability. A driving source consisting of the following can be obtained, and the driving voltage can be reduced. In addition, by changing the ratio of the length of the temperature compensating material to the laminated piezoelectric element, the linear expansion coefficient of the drive source can be controlled, increasing the degree of freedom in selecting the main frame material and reducing the cost of the main frame material. Furthermore, the temperature difference between the laminated longitudinal effect piezoelectric element and the temperature compensating material during operation is smaller than that in the past, and the reliability of the temperature compensating effect can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図までは本発明を具体化した実施例を示
すもので、第1図は、印字エレメントの側面図、第2図
は駆動源の斜視略図である。 また第3図及び第4図は従来の装置を示すもので、第3
図は印字エレメントの側面図、第4図は駆動源の斜視略
図である。 図中1は駆動源、3は基部、5は可動子、12は温度補
償材、42は圧電セラミックス層、80はフレームであ
る。
1 and 2 show embodiments embodying the present invention; FIG. 1 is a side view of a printing element, and FIG. 2 is a schematic perspective view of a drive source. Furthermore, Figures 3 and 4 show conventional devices;
The figure is a side view of the printing element, and FIG. 4 is a schematic perspective view of the drive source. In the figure, 1 is a drive source, 3 is a base, 5 is a mover, 12 is a temperature compensator, 42 is a piezoelectric ceramic layer, and 80 is a frame.

Claims (1)

【特許請求の範囲】 1、電気信号の印加により圧電縦効果或は電歪縦効果を
生じる駆動源と、 該駆動源の伸縮方向の一端を支持する基部を有するフレ
ームと、 前記駆動源の伸縮運動を拡大する運動変換機構とを備え
た印字エレメントにおいて、 前記駆動源が、圧電セラミックス層を積層して構成した
多数の積層縦効果電気機械変換素子と、該積層縦効果電
気機械変換素子の線膨張係数を補正して前記駆動源全体
としての線膨張係数を前記フレームと同一とする為の多
数の温度補償部材とを交互に配置してなることを特徴と
する印字エレメント。
[Claims] 1. A drive source that produces a piezoelectric longitudinal effect or an electrostrictive longitudinal effect by application of an electric signal; a frame having a base that supports one end of the drive source in an expansion/contraction direction; and an expansion/contraction of the drive source. A printing element equipped with a motion converting mechanism for amplifying motion, wherein the drive source includes a large number of laminated longitudinal effect electromechanical transducers formed by laminating piezoelectric ceramic layers, and a line of the laminated longitudinal effect electromechanical transducer elements. A printing element characterized in that a plurality of temperature compensating members are arranged alternately to correct the coefficient of expansion so that the coefficient of linear expansion of the drive source as a whole is the same as that of the frame.
JP5430490A 1990-03-06 1990-03-06 Printing element Expired - Lifetime JP2890627B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5430490A JP2890627B2 (en) 1990-03-06 1990-03-06 Printing element
US07/663,662 US5126618A (en) 1990-03-06 1991-03-04 Longitudinal-effect type laminar piezoelectric/electrostrictive driver, and printing actuator using the driver
GB9104756A GB2245097B (en) 1990-03-06 1991-03-06 Longitudinal-effect type laminar piezoelectric/electrostrictive driver,and printing actuator using the driver
DE4107158A DE4107158A1 (en) 1990-03-06 1991-03-06 LAMINARY PIEZOELECTRIC / ELECTROSTRICTIVE DRIVER WITH LONGITUDINE EFFECT AND PRESSURE ACTUATOR WITH THIS DRIVER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5430490A JP2890627B2 (en) 1990-03-06 1990-03-06 Printing element

Publications (2)

Publication Number Publication Date
JPH03254952A true JPH03254952A (en) 1991-11-13
JP2890627B2 JP2890627B2 (en) 1999-05-17

Family

ID=12966835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5430490A Expired - Lifetime JP2890627B2 (en) 1990-03-06 1990-03-06 Printing element

Country Status (1)

Country Link
JP (1) JP2890627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109917A1 (en) * 2015-12-24 2017-06-29 オリンパス株式会社 Ultrasonic transducer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109917A1 (en) * 2015-12-24 2017-06-29 オリンパス株式会社 Ultrasonic transducer
JPWO2017109917A1 (en) * 2015-12-24 2017-12-28 オリンパス株式会社 Ultrasonic vibrator, ultrasonic treatment device, and ultrasonic therapy apparatus
US11383271B2 (en) 2015-12-24 2022-07-12 Olympus Corporation Ultrasound transducer

Also Published As

Publication number Publication date
JP2890627B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
US5126618A (en) Longitudinal-effect type laminar piezoelectric/electrostrictive driver, and printing actuator using the driver
EP0065784B1 (en) Lever actuator comprising a longitudinal-effect electroexpansive transducer and designed to prevent actuation from degrading the actuator
US6222302B1 (en) Piezoelectric actuator, infrared sensor and piezoelectric light deflector
US6864620B2 (en) Matrix type actuator
JPH0373468B2 (en)
US20120250130A1 (en) Piezoelectric actuator, variable capacitor, and optical deflection device
Takahashi Multilayer piezoelectric ceramic actuators and their applications
JP2006281418A (en) Actuator and mems device
US6931698B2 (en) Method for fabricating piezoelectric/electrostrictive device
US6498419B1 (en) Piezoelectric/electrostrictive device having mutually opposing end surfaces and method of manufacturing the same
US5005994A (en) Printing head of wire-dot impact printer
JP2965763B2 (en) Holding structure of piezoelectric actuator
KR101601871B1 (en) Displacement member, driving member, actuator, and driving apparatus
JP4447250B2 (en) Piezoelectric actuator array and manufacturing method
JPH03254952A (en) Printing element
KR860000749B1 (en) Printer head
US5165809A (en) Piezoelectric actuator and print head using the actuator, having means for increasing durability of laminar piezoelectric driver
JP2009050142A (en) Drive unit
JPH0455355B2 (en)
JP2002328319A (en) Piezoelectric/electrostrictive device and its manufacturing method
JP2932663B2 (en) Driving device having piezoelectric element
KR102363206B1 (en) Precision return actuator
JP2550583B2 (en) Motion conversion mechanism of piezoelectric element
JP3003724B2 (en) Built-in structure of piezoelectric element
JPH0364313B2 (en)