JPH03254843A - Disassembly of resin molding device - Google Patents

Disassembly of resin molding device

Info

Publication number
JPH03254843A
JPH03254843A JP2052180A JP5218090A JPH03254843A JP H03254843 A JPH03254843 A JP H03254843A JP 2052180 A JP2052180 A JP 2052180A JP 5218090 A JP5218090 A JP 5218090A JP H03254843 A JPH03254843 A JP H03254843A
Authority
JP
Japan
Prior art keywords
resin
resin layer
resin molded
coil
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2052180A
Other languages
Japanese (ja)
Inventor
Takeyoshi Maya
岳良 真屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2052180A priority Critical patent/JPH03254843A/en
Publication of JPH03254843A publication Critical patent/JPH03254843A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/60Glass recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Insulating Of Coils (AREA)
  • Disintegrating Or Milling (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To contrive an easy disassembly of the subject device by a method wherein notch grooves are formed in the surface of the resin layer of a resin molding device and this device is heated at least to the glass transition temp. of the resin and thereafter cooled rapidly to cause the cracking thereof. CONSTITUTION:When a resin molding device 3 having therein a metal body 5 (e.g. coil) molded with a thermosetting resin is disassembled, notch grooves 11 are formed in the surface of the resin layer 6 of the device 3. This device 3 is heated to at least the glass transition temp. of the resin and thereafter cooled rapidly, thereby causing tracks 16 to occur in the resin layer 6 starting from the notch grooves 11. As a result, neither a large amt. of energy nor a large-scale device is required and the resin molding device can be easily disassembled free from environmental pollution.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、金属体を熱硬化性の樹脂でモールドして成る
樹脂モールド機器の解体方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for dismantling resin molded equipment made by molding a metal body with a thermosetting resin.

(従来の技術) 第7図にはモールド変圧器を部分的に示している。同図
において、鉄心1における脚部1aの周囲に、夫々筒状
をなす低圧側の樹脂モールドコイル2及び高圧側の樹脂
モールドコイル3が同心状に配置されている。これら樹
脂モールドコイル23は、低圧巻線4及び高圧巻線5を
夫々エポキシ樹脂等の熱硬化性樹脂によりモールドして
構成されたものであり、それら巻線4及び5は夫々樹脂
層6で覆われている。
(Prior Art) FIG. 7 partially shows a molded transformer. In the figure, a resin molded coil 2 on the low voltage side and a resin molded coil 3 on the high voltage side, each having a cylindrical shape, are arranged concentrically around a leg portion 1a of an iron core 1. These resin molded coils 23 are constructed by molding a low-voltage winding 4 and a high-voltage winding 5 with thermosetting resin such as epoxy resin, and the windings 4 and 5 are each covered with a resin layer 6. It is being said.

このようなモールド変圧器は、助人変圧器と比べて難燃
性であることから、生産量が重加してきている。
Since such molded transformers are more flame retardant than auxiliary transformers, their production volume has increased.

(発明が解決しようとする課題) ところで、この種モールド変圧器においては、これが長
期の使用により使用寿命を越えて廃棄処分になる場合、
樹脂モールド機器たる樹脂モールドコイル2.3を解体
する必要が生ずる。しかし、この種の樹脂モールドコイ
ル2,3は、商人変圧器のコイルに比べて解体が困難で
ある。
(Problems to be Solved by the Invention) By the way, in this type of molded transformer, if it is disposed of after its useful life due to long-term use,
It becomes necessary to dismantle the resin molded coil 2.3, which is a resin molded device. However, this type of resin molded coils 2 and 3 are more difficult to dismantle than the coils of merchant transformers.

即ち、助人変圧器のコイルは、油浸絶縁紙と巻線導体と
を交互に巻回し、その外周に絶縁性の粘着テープ等を巻
回して構成されたものであるので、粘着テープ等を外せ
ば簡単にコイルを解体することがてきる。しかしながら
、上記モールド変圧器ノ樹脂モールドコイル2,3では
、低圧及び高圧の巻線4,5を堅い樹脂層6が覆ってい
るので、容易には解体することができない。また、解体
せずにそれを廃棄場等に放置すると、美観上及び環境上
好ましくなく、しかも導体としての巻線4゜5が回収で
きないので資源的にも重大な損失をもたらす。
In other words, the coil of the assistant transformer is constructed by alternately winding oil-impregnated insulating paper and a winding conductor, and wrapping insulating adhesive tape, etc. around the outer periphery of the coil, so remove the adhesive tape, etc. You can easily disassemble the coil. However, in the resin molded coils 2 and 3 of the molded transformer, the low voltage and high voltage windings 4 and 5 are covered with a hard resin layer 6, and therefore cannot be easily dismantled. Furthermore, if it is left in a disposal site or the like without being dismantled, it is aesthetically and environmentally undesirable, and moreover, since the winding wire 4.5 serving as a conductor cannot be recovered, it causes a serious loss in terms of resources.

上記のような樹脂モールドコイルを解体する方法として
、樹脂モールドコイルを超高温で加熱し、樹脂層を燃焼
させて除去することによって解体し、金属体(巻線)を
回収する方法が考えられる。しかしながら、このような
方法では、樹脂層は難燃性であるので、それを除去する
程度まで燃焼させるには多大なエネルギーが必要となる
。また、樹脂層の燃焼によって煤煙、有害ガス、悪臭等
の発生が懸念され、環境衛生上好ましくなく、その対策
のためには大掛かりで複雑な公害防止装置が必要となる
。しかも、燃焼の際の超高温のために燃焼炉の耐用寿命
が短く、設備費もかさむことになる。このように樹脂モ
ールドコイルの樹脂層を燃焼させて除去する方法は、種
々の問題を含んでいる。
As a method for disassembling the resin molded coil as described above, a method can be considered in which the resin molded coil is heated at an extremely high temperature, the resin layer is burned and removed, and the metal body (winding wire) is recovered. However, in such a method, since the resin layer is flame retardant, a large amount of energy is required to burn it to the extent that it can be removed. Furthermore, there is a concern that combustion of the resin layer may generate soot, harmful gas, bad odor, etc., which is unfavorable in terms of environmental hygiene, and large-scale and complicated pollution control equipment is required to take countermeasures against this problem. Moreover, the extremely high temperatures during combustion shorten the useful life of the combustion furnace and increase equipment costs. This method of burning and removing the resin layer of a resin molded coil involves various problems.

本発明は上記事情に鑑みてなされたものであり、その目
的は、多大なエネルギーや大掛かりな装置を必要とせず
、しかも環境の汚染もなく、容易に解体することができ
る樹脂モールド機器の解体方法を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a method for dismantling resin molded equipment that does not require a large amount of energy or large-scale equipment, does not pollute the environment, and can be easily dismantled. is to provide.

[発明の構成] (課題を解決するための手段) 本発明は、金属体を熱硬化性の樹脂によりモールドして
威る樹脂モールド機器を解体する方法にあって、樹脂モ
ールド機器における樹脂層の表面に切欠き溝を形成し、
その樹脂モールド機器を樹脂のガラス転移点温度以上に
加熱した後、急速に冷却することにより、樹脂層に前記
切欠き溝を起点とするクラックを生じさせるようにした
ところに特徴を有する。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a method for disassembling resin molded equipment in which a metal body is molded with a thermosetting resin. Forming notched grooves on the surface,
The resin molding device is characterized in that it is heated to a temperature higher than the glass transition point of the resin and then rapidly cooled to cause cracks in the resin layer starting from the notch grooves.

(作用) 樹脂モールド機器の樹脂層においては温度変化に応じて
内部に熱応力が発生する。その熱応力は、温度に依存し
、樹脂のガラス転移点温度以上でほぼはゼロであるが、
ガラス転移点温度から低下するに従って応力値は上昇す
る。また、応力値は形状に′よっても変化し、樹脂層の
表面に切欠き溝を形成した場合には、その切欠き溝に応
力が集中し、切欠き溝の部分は他の部分よりも応力値が
高くなる。さらに、高温状態の樹脂モールド機器を急速
に冷却すると、樹脂層の熱応力が急激に上昇し、樹脂層
には上記切欠き溝を起点とするクラックが生じるように
なる。そして、樹脂層に発生したクラックが金属体まで
達すると、樹脂層と金属体との境界部分では他の部分よ
りも強度が弱いため、金属体に沿って剥離が生ずるよう
になる。
(Function) In the resin layer of a resin molding device, thermal stress is generated internally in response to temperature changes. The thermal stress depends on the temperature and is almost zero above the glass transition temperature of the resin.
The stress value increases as the temperature decreases from the glass transition point. In addition, the stress value also changes depending on the shape. If a notch groove is formed on the surface of the resin layer, stress will be concentrated in the notch groove, and the stress will be higher in the notch groove part than in other parts. The value becomes higher. Furthermore, when a resin molding device in a high temperature state is rapidly cooled, the thermal stress in the resin layer rapidly increases, and cracks starting from the notch grooves occur in the resin layer. When the cracks generated in the resin layer reach the metal body, peeling occurs along the metal body because the strength is weaker at the boundary between the resin layer and the metal body than at other parts.

このように樹脂層にクラックを生じさせると共に、樹脂
層と金属体との境界部分に剥離を生じさせれば、樹脂層
と金属体とを容易に分離することができるようになり、
よって容易に解体する事ができるようになる。
By creating cracks in the resin layer and peeling at the boundary between the resin layer and the metal body in this way, the resin layer and the metal body can be easily separated.
Therefore, it can be easily dismantled.

(実施例) 以下、本発明の一実施例について、モールド変圧器に用
いられる高圧側の樹脂モールドコイルを例にして第1図
乃至第6図を参照して説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 6, taking as an example a resin molded coil on the high voltage side used in a molded transformer.

第1図及び第2図において、樹脂モールド機器としての
樹脂モールドコイル3を解体するには、まず樹脂モール
ドコイル3における樹脂層6の表面に、例えばハンドグ
ライダ−のような工具を用いてV字状の切欠き溝11を
複数本形成する。切欠き溝11は、例えば樹脂モールド
コイル3の内周面及び外周面において巻線5の上下の端
部と略同じ高さに位置させて円周方向に夫々ループ状に
形成すると共に、樹脂モールドコイル3の外周面におい
て対角位置に位置させて上下の切欠き溝11.11を繋
ぐようにして軸方向(上下方向)にも形成する。
In FIGS. 1 and 2, in order to disassemble the resin molded coil 3 as a resin molded device, first, use a tool such as a hand glider to create a V shape on the surface of the resin layer 6 of the resin molded coil 3. A plurality of notch grooves 11 having a shape are formed. The notch grooves 11 are formed in loop shapes in the circumferential direction, for example, at substantially the same height as the upper and lower ends of the winding 5 on the inner and outer circumferential surfaces of the resin molded coil 3. They are also formed in the axial direction (vertical direction) so as to be located diagonally on the outer peripheral surface of the coil 3 and connect the upper and lower notch grooves 11.11.

次に、このように切欠き溝11を形成した樹脂モールド
コイル3を加熱する。第3図に加熱装置の一例を示す。
Next, the resin molded coil 3 with the cutout grooves 11 formed therein is heated. FIG. 3 shows an example of a heating device.

この場合、樹脂モールドコイル3における巻線5の口出
し部5aには、温度調整機能付きの電源回路12を接続
している。また、樹脂モールドコイル3の外周面の所定
部位には熱電対13を取り付けている。
In this case, a power supply circuit 12 with a temperature adjustment function is connected to the lead portion 5a of the winding 5 in the resin molded coil 3. Further, a thermocouple 13 is attached to a predetermined portion of the outer peripheral surface of the resin molded coil 3.

而して、電源回路12にて巻線5に電流を流すことによ
り巻線5か発熱し、その熱により樹脂モールドコイル3
全体が加熱される。樹脂モールドコイル3の温度は熱電
対13により検出される。
By passing a current through the winding 5 in the power supply circuit 12, the winding 5 generates heat, and the heat causes the resin molded coil 3 to
The whole thing gets heated. The temperature of the resin molded coil 3 is detected by a thermocouple 13.

電源回路12は、熱電対13の検出信号に基づいて巻線
5への出力電圧を調整し、樹脂モールドコイル3の温度
が樹脂のガラス転移点温度以上となるように制御する。
The power supply circuit 12 adjusts the output voltage to the winding 5 based on the detection signal of the thermocouple 13, and controls the temperature of the resin molded coil 3 to be equal to or higher than the glass transition temperature of the resin.

雪して、樹脂モールドコイル3の温度が設定温度に達し
たら巻線5への通電を断ち、直ちにその樹脂モールドコ
イル3を、容器14に貯留された例えば液体窒素から成
る冷媒15に浸して急速に冷却する。
When it snows and the temperature of the resin-molded coil 3 reaches the set temperature, the power to the winding 5 is cut off, and the resin-molded coil 3 is immediately immersed in a refrigerant 15 made of liquid nitrogen, for example, stored in a container 14 to quickly cool it down. Cool to

このように高温状態の樹脂モールドコイル3を急速に冷
却すると、特に樹脂層6の表面部と内部との間に温度差
が生じ、その温度差により樹脂層6に熱応力が発生する
。このとき発生する熱応力の方向は、第4図に矢印で示
すように、主に円周方向及び軸方向である。冷却時にお
ける樹脂層6の表面部と内部との温度差は、第5図(a
)に示すように、冷却開始後のある時間で最大になり、
その後は徐々に小さくなっていく。また、第5図(b)
に示すように、上記温度差が最大の時には樹脂層6の熱
応力も最大となる。このようにして樹脂層6に熱応力か
発生すると、樹脂層6の表面に形成された各切欠き満1
1に応力か集中し、樹脂層6には、第6図に示すように
切欠き満11の底部を起点とするクラック16か発生す
る。また、そのクラック16か巻線5まで達すると、樹
脂層6と巻線5との境界部分ては他の部分よりも強度が
弱いため、巻線5に沿って剥M17が生しるようになる
。この場合、切欠き満11を樹脂モールドコイル3の円
周方向及び軸方向に形成していることにより、切欠き満
11に効果的な応力集中をもたらす。また、切欠き溝1
1は、底部(先端)が鋭い程、溝の深さか深い程、応力
集中の度合いが大きくなって効果的である。
When the resin molded coil 3 in a high temperature state is rapidly cooled in this manner, a temperature difference occurs particularly between the surface portion and the inside of the resin layer 6, and thermal stress is generated in the resin layer 6 due to the temperature difference. The directions of the thermal stress generated at this time are mainly the circumferential direction and the axial direction, as shown by arrows in FIG. The temperature difference between the surface and inside of the resin layer 6 during cooling is shown in Figure 5 (a).
), it reaches its maximum at a certain time after the start of cooling, and
After that, it gradually becomes smaller. Also, Fig. 5(b)
As shown in FIG. 2, when the temperature difference is at its maximum, the thermal stress in the resin layer 6 is also at its maximum. When thermal stress is generated in the resin layer 6 in this way, each notch formed on the surface of the resin layer 6 fills up.
Stress is concentrated on the notch 1, and a crack 16 is generated in the resin layer 6 starting from the bottom of the notch 11, as shown in FIG. Furthermore, when the crack 16 reaches the winding 5, peeling M17 occurs along the winding 5 because the strength of the boundary between the resin layer 6 and the winding 5 is weaker than other parts. Become. In this case, by forming the notches 11 in the circumferential direction and the axial direction of the resin molded coil 3, effective stress concentration is brought about in the notches 11. In addition, notch groove 1
1 is more effective as the sharper the bottom (tip) and the deeper the groove, the greater the degree of stress concentration.

このように冷却した後、樹脂モールドコイル3を冷媒1
5から取り出す。その樹脂モールドコイル3には上述し
たようにクラック16及び♂り離17が生じているので
、例えばハンマー等の簡単な工具を用いて叩くことによ
り樹脂層6と巻線5とを簡単に分離することができる。
After cooling in this way, the resin molded coil 3 is heated with refrigerant 1.
Take it out from 5. As described above, the resin molded coil 3 has cracks 16 and separation 17, so the resin layer 6 and the winding 5 can be easily separated by hitting it with a simple tool such as a hammer. be able to.

よって樹脂モールドコイル3を容易に解体して巻線5を
回収でき、解体後の樹脂も埋立て用あるいは建築用の資
材として用いることができる。
Therefore, the resin molded coil 3 can be easily dismantled and the winding 5 can be recovered, and the resin after disassembly can also be used as a landfill or construction material.

このような本実施例によれば、樹脂モールドコイル3は
樹脂のガラス転移点温度まで加熱すれば良いのであるか
ら、樹脂層を燃焼させて除去する場合とは違い、多大な
エネルギーや樹脂層の燃焼による対策のための大掛かり
な装置も必要とせず、しかも環境の汚染もない。
According to this embodiment, the resin molded coil 3 only needs to be heated to the glass transition point temperature of the resin, so unlike the case where the resin layer is removed by burning, a large amount of energy and the resin layer are removed. There is no need for large-scale equipment for countermeasures using combustion, and there is no environmental pollution.

尚、本発明は、樹脂モールドコイル以外の樹脂モールド
機器、例えば樹脂モールドブッシングや樹脂モールド碍
子、絶縁スペーサ等を解体する場合にも適用できる。
The present invention can also be applied to the case of dismantling resin molded equipment other than resin molded coils, such as resin molded bushings, resin molded insulators, and insulating spacers.

その他、本発明は上記し且つ図面に示した実施例にのみ
限定されるものではなく、例えば樹脂モールド機器の加
熱は加熱炉や電磁誘導加熱を用いても良く、また、冷却
は冷凍機やドライアイス等を用いても良い等、要旨を逸
脱しない範囲内で適宜変更して実施することかできる。
In addition, the present invention is not limited to the embodiments described above and shown in the drawings; for example, the resin molded equipment may be heated using a heating furnace or electromagnetic induction heating, and the cooling may be performed using a refrigerator or a dryer. It may be carried out with appropriate changes within the scope of the gist, such as using ice cream or the like.

[発明の効果] 以上の記述にて明らかなように、本発明によれば、樹脂
モールド機器における樹脂層の表面に切欠き満を形成し
、その樹脂モールド機器を樹脂のガラス転移点温度以上
に加熱した後、急速に冷却することにより、樹脂層に前
記切欠き溝を起点とするクラックを生しさせるようにし
たから、多大なエネルギーや大掛かりな装置を必要とせ
す、しかも環境の汚染もなく、樹脂モールド機器を容易
に解体することかできるという優れた効果を奏する。
[Effects of the Invention] As is clear from the above description, according to the present invention, a notch is formed on the surface of the resin layer in a resin molding device, and the resin molding device is heated to a temperature higher than the glass transition point temperature of the resin. By rapidly cooling after heating, cracks are generated in the resin layer starting from the notched grooves, which eliminates the need for a large amount of energy and large-scale equipment, and does not pollute the environment. This has the excellent effect of allowing resin molded equipment to be easily dismantled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明の一実施例を示し、第1図は
樹脂モールドコイルの破断斜視図、第2図は同コイルの
拡大縦断面図、第3図は樹脂モールドコイルを加熱する
ための装置及び冷却するための装置の概略的構成図、第
4図は熱応力の作用方向を説明するための図、第5図は
冷却時における樹脂層の表面部と内部との温度差及び熱
応力の時間的変化を示す図、第6図は冷却後の樹脂モー
ルドコイルの縦断面図である。第7図はモールド変圧器
の部分断面図である。 図面中、3は樹脂モールドコイル(樹脂モールド機器)
、5は巻線(金属体)、6は樹脂層、11は切欠き溝、
12は電源回路、13は熱電対、15は冷媒、16はク
ラックを示す。
1 to 6 show one embodiment of the present invention, FIG. 1 is a cutaway perspective view of a resin molded coil, FIG. 2 is an enlarged vertical sectional view of the same coil, and FIG. 3 is a heating of the resin molded coil. A schematic configuration diagram of a device for cooling and a device for cooling. Figure 4 is a diagram for explaining the direction of action of thermal stress. Figure 5 shows the temperature difference between the surface and inside of the resin layer during cooling. FIG. 6 is a longitudinal cross-sectional view of the resin molded coil after cooling. FIG. 7 is a partial sectional view of the molded transformer. In the drawing, 3 is a resin molded coil (resin molded equipment)
, 5 is a winding (metal body), 6 is a resin layer, 11 is a notched groove,
12 is a power supply circuit, 13 is a thermocouple, 15 is a refrigerant, and 16 is a crack.

Claims (1)

【特許請求の範囲】[Claims] 1.金属体を熱硬化性の樹脂によりモールドして成る樹
脂モールド機器を解体する方法であって、樹脂モールド
機器における樹脂層の表面に切欠き溝を形成し、その樹
脂モールド機器を樹脂のガラス転移点温度以上に加熱し
た後、急速に冷却することにより、樹脂層に前記切欠き
溝を起点とするクラックを生じさせるようにしたことを
特徴とする樹脂モールド機器の解体方法。
1. A method of disassembling a resin molded device made by molding a metal body with a thermosetting resin, in which notches are formed on the surface of the resin layer in the resin molded device, and the resin molded device is heated to the glass transition point of the resin. A method for dismantling a resin molded device, characterized in that the resin layer is heated to a temperature higher than that temperature and then rapidly cooled to generate cracks starting from the notch grooves in the resin layer.
JP2052180A 1990-03-02 1990-03-02 Disassembly of resin molding device Pending JPH03254843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2052180A JPH03254843A (en) 1990-03-02 1990-03-02 Disassembly of resin molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2052180A JPH03254843A (en) 1990-03-02 1990-03-02 Disassembly of resin molding device

Publications (1)

Publication Number Publication Date
JPH03254843A true JPH03254843A (en) 1991-11-13

Family

ID=12907611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2052180A Pending JPH03254843A (en) 1990-03-02 1990-03-02 Disassembly of resin molding device

Country Status (1)

Country Link
JP (1) JPH03254843A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193215B2 (en) 2004-12-09 2012-06-05 Xention Limited Thieno[2 3-b]pyridines as potassium channel inhibitors
US9216992B2 (en) 2005-12-09 2015-12-22 Xention Limited Thieno[3,2-c]pyridine potassium channel inhibitors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193215B2 (en) 2004-12-09 2012-06-05 Xention Limited Thieno[2 3-b]pyridines as potassium channel inhibitors
US9216992B2 (en) 2005-12-09 2015-12-22 Xention Limited Thieno[3,2-c]pyridine potassium channel inhibitors

Similar Documents

Publication Publication Date Title
US4355221A (en) Method of field annealing an amorphous metal core by means of induction heating
KR101123229B1 (en) Method for manufacturing a transformer winding and method for curing adhesive on an insulating material in a transformer winding
JPH01118088A (en) High-frequency induction melting furnace
JPH03254843A (en) Disassembly of resin molding device
CN201467499U (en) Bearing heater
CN209232549U (en) A kind of liquid-cooling type high-frequency switch power transformer
CN203675355U (en) Electro-magnetic-induction energy-gathered heating device
US2363994A (en) Electric induction furnace
JP2001189221A (en) Transformer having core with gap
US2517098A (en) Induction furnace
CN105321703A (en) Manufacturing method for power transformer core
JPH03221668A (en) Construction method of taking down concrete structure by means of electromagnetic induction heating
US2948797A (en) Annealing furnace
CA2976293C (en) Electromagnetic induction device configured as a multiple magnetic circuit
CN212102930U (en) Induction heating device for annealing large-diameter stainless steel pipe
KR200244148Y1 (en) A Internal Iron Core type of Three Phases Potential Transformer for a Welding Machine
CN202749928U (en) Motor with inner cooling device arranged inside rotor shaft
RU225492U1 (en) Transformer type electric heating device
SU148842A1 (en) Installation for kapp turbogenerator heating
CN221262109U (en) Coil assembly of transformer and transformer
JP2000077176A (en) Induction heating coil for heating inner circumferential surface of tube body
JPH0424909A (en) Electromagnetic induction apparatus
KR870002287A (en) Annealing method of thermal insulation core
RU1817191C (en) Massive ferromagnetic rotor of electric motor and method for manufacturing it
SU1683081A1 (en) High current winding