JPH03254294A - White balance adjustment device - Google Patents

White balance adjustment device

Info

Publication number
JPH03254294A
JPH03254294A JP2052045A JP5204590A JPH03254294A JP H03254294 A JPH03254294 A JP H03254294A JP 2052045 A JP2052045 A JP 2052045A JP 5204590 A JP5204590 A JP 5204590A JP H03254294 A JPH03254294 A JP H03254294A
Authority
JP
Japan
Prior art keywords
evaluation value
color
white balance
color evaluation
brightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2052045A
Other languages
Japanese (ja)
Other versions
JP2521832B2 (en
Inventor
Kenichi Kikuchi
健一 菊地
Toshinobu Haruki
春木 俊宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2052045A priority Critical patent/JP2521832B2/en
Priority to US07/612,836 priority patent/US5282022A/en
Priority to CA002030144A priority patent/CA2030144C/en
Priority to EP90121972A priority patent/EP0429992B1/en
Priority to DE69028973T priority patent/DE69028973T2/en
Priority to KR1019900018625A priority patent/KR100193974B1/en
Publication of JPH03254294A publication Critical patent/JPH03254294A/en
Application granted granted Critical
Publication of JP2521832B2 publication Critical patent/JP2521832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent white balance from being unbalanced even when a high brightness object is included in a pickup picture by reducing the contribution of a color information signal to white balance from that of other region at a region where a luminance information signal exceeds a prescribed value. CONSTITUTION:When a luminance evaluation value yij as to a region is inputted to a color evaluation adjustment circuit, the luminance evaluation value is compared with a brightness threshold level Ny and when the luminance evaluation value is larger than the threshold level, it is judged that the object in the region has a high brightness and an H level switching signal S is inputted to a changeover circuit 42, both color evaluation values are attenuated by a prescribed quantity at R and B attenuators 45, 46 and the result is outputted to an output terminal. When the luminance evaluation value yij is smaller than the threshold level, both the color evaluation values are outputted to output terminals 47, 48 without any attenuation. Thus, even when a scene including a high brightness is picked up, the white balance is not unbalanced and proper white balance adjustment is realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は、撮像素子から得られる撮像映像信号を基に、
臼バランスの制御を行うカラービデオカメラの自動臼バ
ランス調整装置に関する。 (ロ) 従来の技術 カラービデオカメラに於いては、光源による光の波長分
布の違いを補正するために、臼バランスの制御を行う必
要がある。 この制御は、赤(以下R)、青(以下B)、緑(以下G
)の三原色信号の比が1:1:1となるように、各色信
号の利得を調整することで行われる。一般には、例えば
特開昭62−35792号公報(HO4N9/73)に
示される様に、画面の色差信号(R−Y )、(B −
Y )の積分値が零になるように利得を調節する方式が
用いられている。 第6図は、この方式を用いた臼バランス回路のブロック
図である。 レンズ(1)を通過した光は、撮像素子(CCD)(2
)で光電変換された後、色分離回路(3で、R,G、B
の3原色信号として取り出され、Gの色信号は直接、R
及びBの色信号はR増幅回路(4)、B増幅回路(5)
を経て、カラープロセス及びマトリクス回路(6)に人
力され、輝度信号(Y)、赤及び青それぞれの色差信号
(R−Y)(B −Y )が作られて、ビデオ回路へ送
られる。 同時に、二つの色差信号は、それぞれ積分回路(17)
  (18)で、十分に長い時間、積分されその結果が
零になるように利得制御回路(13)(14)がR,B
各々の利得可変な増幅回路(4)、(5)の利得を調節
する。 (ハ) 発明が解決しようとする課題 前記従来技術によると、太陽等の光源を直接撮影した場
合の様に、撮像画面の一部に著しく輝度の高い被写体が
存在する時には、撮像素子でRlG、B各色の受光部出
力のうち、少なくとも1つが飽和すると、色分離回路(
3)からのR,G、B出力の比が光源光に含まれるR、
G、Bj&分に比例しなくなり、結果として実際の色温
度とは関係のない方向へ臼バランスがずれると言う不都
合な状況が生じる。 (ニ)課題を解決するための手段 本発明は、画面を複数の領域に分割して、各領域毎に輝
度信号の量を輝度評価値として、また色信号の量を色評
価値として検出し、輝度評価値が一定値以上の領域があ
れば、これらの領域での色評価値の全画面に対する寄与
度を小さくすることを特徴とする。 (ホ) 作   用 本発明は、撮影画面中に高輝度の被写体が含まれる場合
でも、白バランスがずれることが防止される。 (へ)実施例 以下、図面に従い本発明の一実施例について説明する。 第1図は本実施例による自動白バランス調整回路の回路
ブロック図である。 レンズ(1)を通過した光は、・CCD (2)上に結
像されて光電変換された後、色分離回路(3にて、R,
G、Hの3原色信号として取り出される。これら3原色
信号の中のR及びB信号は、夫々R及びB増幅回路(4
)(,5)を経て、G(言分と共にカメラプロセス及び
マトリクス(6)に入力され、これらを基に輝度信号(
Y)及び赤、青天々の色差信号(R−Y)、(B−Y)
が作成されて、ビデオ回路(7)に供給され周知の処理
が施される。また、(Y)(R−Y)(B−Y)の各信
号は、同時に選択回路(21)にも供給される。 選択回路(21)は、タイミング回路(25)からの選
択信号(Sl)により、輝度信号(Y)または色差信号
(R−Y)(B−Y)の3つの信号の中の1つを1フイ
ールド毎に順次選択するもので1.(Y)→(’R−Y
)→(B−Y)→(Y)→・・と1フイールド毎に後段
のA/D変換器(22)に出力される。尚、選択信号
(B) Industrial Application Field The present invention is based on a captured video signal obtained from an image sensor.
The present invention relates to an automatic mill balance adjustment device for a color video camera that controls mill balance. (b) Conventional technology In color video cameras, it is necessary to control the mortar balance in order to correct for differences in the wavelength distribution of light depending on the light source. This control includes red (hereinafter referred to as R), blue (hereinafter referred to as B), green (hereinafter referred to as G).
) by adjusting the gain of each color signal so that the ratio of the three primary color signals becomes 1:1:1. Generally, as shown in Japanese Patent Application Laid-Open No. 62-35792 (HO4N9/73), color difference signals (R-Y), (B-
A method is used in which the gain is adjusted so that the integral value of Y ) becomes zero. FIG. 6 is a block diagram of a mill balance circuit using this method. The light that has passed through the lens (1) is transferred to an imaging device (CCD) (2).
), the color separation circuit (3, R, G, B
are extracted as three primary color signals, and the G color signal is directly extracted as the R color signal.
and B color signals are sent to the R amplification circuit (4) and the B amplification circuit (5).
After that, the signal is input to the color process and matrix circuit (6), and a luminance signal (Y) and red and blue color difference signals (RY) (B-Y) are generated and sent to the video circuit. At the same time, the two color difference signals are respectively sent to the integrating circuit (17).
In (18), the gain control circuits (13) and (14) adjust R, B so that the integration is performed for a sufficiently long time and the result becomes zero.
The gain of each variable gain amplifier circuit (4), (5) is adjusted. (c) Problems to be Solved by the Invention According to the prior art described above, when there is a subject with extremely high brightness in a part of the image capture screen, such as when a light source such as the sun is directly photographed, the image sensor uses RlG, When at least one of the light receiving section outputs for each color B is saturated, the color separation circuit (
3) R, G, and B output ratio included in the light source light,
G, Bj & min, and as a result, an inconvenient situation arises in which the mill balance deviates in a direction unrelated to the actual color temperature. (d) Means for Solving the Problems The present invention divides the screen into a plurality of regions and detects the amount of luminance signal as a luminance evaluation value and the amount of color signal as a color evaluation value for each region. , if there are areas where the brightness evaluation value is greater than a certain value, the contribution of the color evaluation value in these areas to the entire screen is reduced. (E) Effect The present invention prevents the white balance from shifting even when a high-brightness subject is included in the photographic screen. (F) Example Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a circuit block diagram of an automatic white balance adjustment circuit according to this embodiment. The light that has passed through the lens (1) is imaged on the CCD (2) and photoelectrically converted, and then sent to the color separation circuit (3) by R,
It is extracted as three primary color signals of G and H. The R and B signals among these three primary color signals are processed by R and B amplification circuits (4
)(, 5), it is input to the camera process and matrix (6) along with G(word), and based on these, the luminance signal (
Y) and red, blue celestial color difference signals (RY), (B-Y)
is created, supplied to the video circuit (7), and subjected to well-known processing. Further, the signals (Y), (RY), and (B-Y) are simultaneously supplied to the selection circuit (21). The selection circuit (21) selects one of the three signals, the luminance signal (Y) or the color difference signal (R-Y) (B-Y), according to the selection signal (Sl) from the timing circuit (25). 1. Select each field in sequence. (Y)→('R-Y
) → (B-Y) → (Y) → . . . are output to the subsequent A/D converter (22) field by field. In addition, the selection signal


S】)は後述のな11<同期分離回路(24)から得ら
れる垂直同期信号に基づいて作成される。 A /’ D変換器(22)は、所定のサンプリング周
期で選択回路(21)にて選択された信号(Y(R−Y
)(B−Y)の何れかをサンプリングしてディジタル値
に変換し、この値を積分器(23に出力する。ところで
、タイミング回路(25)はカメラプロセス及びマトリ
クス回路(6)から垂直、水平同期信号及びCCD (
2)を駆動する固定の発振器出力に基づいて、撮像画面
を第3図に示す8×8の64個の同一面積の長方形の領
域(Aij)(i、j=l〜8)に分割して、各領域毎
にこれらの領域内の選択回路(21)出力を時分割で取
り出すための切換信号(S2)を積分器(23)に出力
する。 積分! (23)は切換信号(S2)を受けて、選択回
路(21)出力のA /’ D変換値を領域毎に1フイ
一ルド期間にわたって加算し、即ち64個の領域毎にデ
ィジタル積分する。 第5図、この積分器(23)の内部構造を更に詳細に示
す。各A/D変換データは、切換回路(61)に供給さ
れる。この切換回路(61)は切換信号(S2)を受け
て、各A/D変換値を領域毎に用意された加算器(Fl
 1)(Fl 2)(F88)の中で該当データのサン
プリング点が存在する領域用の加算器に供給する役割を
有する。即ち、ある任意のデータのサンプリング点が領
域(All)内に含まれているならば、このデータを領
域(All)用の加li器(Fll)に供給する。尚、
以下、同様に加算器(Fij)(ij=t〜8)は領域
(Aij)用に設定され、全部で64個の加算器が用意
されている。各加算器の後段には、保持回路(Qij)
がそれぞれ配設され、各加算値は各保持回路に一旦保持
される。 各保持回路の保持データは、再び加算器に入力されて、
次に入力されるデータと加算される。また各保持回路は
、垂直同期信号に基すいて1フイールド毎にリセットさ
れ、このリセット直前の保持データのみがメモリ(26
)に供給される。従って、1組の加算器及び保持回路に
て1個のディジタル積分回路が構成され、合計64個の
積分回路が積分!(23)を構成することになり、1フ
イールド毎に各保持回路から64個の領域毎にディジタ
ル積分値がメモリ(26)に入力される。 この1フイ一ルド分の積分が完了すると、この積分値は
輝度評価値または色評価値としてメモリ(26)に保持
される。この結果、ある任意のフィールドで64個の領
域内に対応する輝度信号(Y)の領域毎のディジタル積
分値が64個の輝度評価値(yij)として得られる。 更に次のフィールドでは選択回路(21)にて色差信号
(R−Y)が選択されているので、加算器(23の積分
の結果、色差信号(R−Y )の領域毎のディジタル積
分値が64個の色評価値(r i j)として得られ、
同様に次のフィールドでは色差信号(B−Y)の色評価
値(biJ)が得られる。 こうして、輝度信号()′)及び色差信号(R−Y(B
−Y)の3フイールドの積算が終了した時点で、輝度評
価値(yi」)及び色評価値(rij(bij)がメモ
リ (26)に保持されることになる。これ以降、上述
と同様の動作が繰り返され輝度評価fui(yij)、
色評価値(rijl(blj)と順次更新される。 こ
の様にして得られた最新の輝度評価値(yij)及び色
評価値(rJ)(bij)は、後段の色評価値調整回路
(27)に供給される。 尚、A 、’ D変換5(22)に入力される両色差信
号の基準レベル即ち零レベルは、完全な無彩色面を撮影
したときに得られるレベルに予め設定されており、従っ
て、各A/D変換値は正の値だけでなく、負の値もとり
うることは言うまでもない色評価値調整回路(27)は
、各領域の輝度評価値レベルが所定値を越えているか否
かを判断して、越えている場合には該当領域の色評価値
レベルを所定量(P)だけ減するもので、第2図の様に
構成される。 各領域の輝度評価値(yiJ)は、輝度比較器(41)
に入力され、予め輝度闇値メモリ(40に格納されてい
る輝度閾値(Ny)と比較され、輝度評価値がこの閾値
(Ny)以上の時にトIレベルで、これを下回るときに
Lレベルのスイッチング信号(S)が切り換え回路(4
2)に人力される。 ここで、輝度閾fffi(Ny)は、撮像素子のRlG
、B各色の受光部出力の何れかが飽和したと認識できる
際の閾値として、予め実験的に求め設定されている。 切り換え回路(42)は、2つのスイッチ(43)(4
4)より構成され、スイッチ(43)は色評価値(r 
i j)が入力される固定接点(43a)と、R減衰器
(45)に結合された固定接点(43b)あるいは出力
端子(47)に結合された固定接点(43c)を選択的
に接続させる機能を有し、スイッチ(44)は色評価値
(bij)が人力される固定接点(44a)と、B減衰
器(46)に結合された固定接点(44b)あるいは出
力端子(48)に結合された固定接点(44C)を選択
的に接続させる機能を有している。 両スイッチ(43)(4,i)はスイッチング信号(S
)により制御され、スイッチング信号(SがLレベルの
時に夫々固定接点(43c)(44C)側にあって色評
価値(r i j)  (b i j)がそのまま調整
後の色評価ii (HRi j)  (HB 1J)(
即ち、HRi j=r i j、HBi j=biJ、
但しi、j=1〜8の整数)として出力端子(47)(
4g)に出力され、Hレベルの時に夫々固定接点(,4
3b)(44b)側に切り換わり色評価値(rij)(
bij)がR及びB減衰器(45)(46)に入力され
る。 R及びB減衰器(4s)(46)f!、入力サレる色評
価値(rij)(bij)から予め設定された一定量(
P)を減じて(r i j−P)、(bij−P)を算
出して、出力端子(47)  (48に11整後の色評
価値(HRij)(HBij)(即ち、HRi j=r
 i j −P、 HBi j=b 1−P)として導
出される。ここで、一定量(P)は高輝度の被写体を撮
影した場合に、不自然な画質となっていないと十分認識
できる様に予め実験により求められたものである。 次に上述の色評価値調U回路(27)の動作について説
明する。ある領域について輝度評価値(yij)が色評
価値調整回路(27)に入力されると、この輝度評価値
が輝度閾値(NyJと比較され、閾値よりも大きい時に
は、この領域内の被写体は高輝度であると判断され、H
レベルのスイッチング信号(S)が切り換え回路(42
)に入力されて、肉色評価値はR及びB減衰器(45(
46)にて一定量(P)だけ減衰されて出力端子に出力
される。また、輝度評価値(yij)が閾値よりも小さ
い場合には、被写体は高輝度ではないと判断され、肉色
評価値は何ら減衰することなく出力端子(47)(48
)に出力される。この結果、高輝度の被写体が存在する
領域の色評価値のみが減衰されることになる。 出力端子(47)(4g)に導出される非減衰あるいは
減衰の調整後の色評価値(HRij)(HBij)は、
画面評価回路(28)に送られ次式(1)(2)に基づ
いて各色差信号の画面全体の色評価値(Vr)(Vb)
として算出される8 Vr  =  Σ ΣHRij/64  ・・・11)
i冨1 >−1 8 vb  =  Σ・ΣHBij/64  ・・・ (2
)i←1j冨1 この式(1)(2)は色評価値調整回路(27を経た6
4個の各領域の調整後の色評価値の全ての総和を領域数
で割算して、1個の領域についての平均値を各色の画面
色評価値として算出する。 利得制御回路(29)(30)は、画面全体の色評価値
である画面色評価値(Vr)(Vb)が共に零となる様
に、R及びB増幅回路(4)  (5の夫々の利得を制
御している。こうして画面色評価値(Vr)(Vb)が
零になれば、臼バランス調整が完了したことになる。 尚、各領域の色評価値の全内面に対する寄与度を小さく
する方法としては、各領域の色評価値を直接域する以外
に、領域毎に重み付けを行い、高輝度領域での重みを減
する方法も考えられる。 (トン 発明の効果 上述の如く本発明によれば、自バランス調整には適さな
い高輝度部分を含む場面を撮影した場合でも、臼バラン
スがずれることなく、適切な臼バランス調整が実現でき
る。
[
S]) is created based on a vertical synchronization signal obtained from a synchronization separation circuit (24), which will be described later. The A/'D converter (22) receives the signal (Y(R-Y) selected by the selection circuit (21) at a predetermined sampling period.
)(B-Y), converts it into a digital value, and outputs this value to the integrator (23).By the way, the timing circuit (25) receives vertical and horizontal signals from the camera process and matrix circuit (6). Synchronization signal and CCD (
2) Based on the fixed oscillator output that drives , and outputs a switching signal (S2) to the integrator (23) for time-divisionally extracting the outputs of the selection circuit (21) in these regions for each region. Integral! (23) receives the switching signal (S2) and adds the A/'D converted value of the output of the selection circuit (21) for each region over one field period, that is, performs digital integration for each of 64 regions. FIG. 5 shows the internal structure of this integrator (23) in more detail. Each A/D converted data is supplied to a switching circuit (61). This switching circuit (61) receives the switching signal (S2) and converts each A/D converted value into an adder (Fl) prepared for each area.
1) (Fl 2) It has the role of supplying to the adder for the area where the sampling point of the corresponding data exists in (F88). That is, if a certain arbitrary data sampling point is included in the area (All), this data is supplied to the adder (Fll) for the area (All). still,
Hereinafter, adders (Fij) (ij=t to 8) are similarly set for the area (Aij), and a total of 64 adders are prepared. A holding circuit (Qij) is provided after each adder.
are respectively arranged, and each added value is temporarily held in each holding circuit. The data held in each holding circuit is input to the adder again, and
It is added to the next input data. In addition, each holding circuit is reset for each field based on the vertical synchronization signal, and only the held data immediately before this reset is stored in the memory (26
). Therefore, one set of adder and holding circuit constitutes one digital integration circuit, and a total of 64 integration circuits perform integration! (23), and digital integral values are input to the memory (26) for each 64 area from each holding circuit for each field. When the integration for one field is completed, this integrated value is held in the memory (26) as a brightness evaluation value or color evaluation value. As a result, digital integral values for each region of the luminance signal (Y) corresponding to 64 regions in a certain arbitrary field are obtained as 64 luminance evaluation values (yij). Furthermore, in the next field, the color difference signal (R-Y) is selected by the selection circuit (21), so as a result of the integration by the adder (23), the digital integral value for each region of the color difference signal (R-Y) is Obtained as 64 color evaluation values (r i j),
Similarly, in the next field, the color evaluation value (biJ) of the color difference signal (B-Y) is obtained. In this way, the luminance signal ()′) and the color difference signal (RY(B
-Y), the luminance evaluation value (yi'') and color evaluation value (rij (bij) will be stored in the memory (26). From this point on, the same process as described above will be carried out. The operation is repeated and the brightness evaluation fui(yij),
The color evaluation value (rijl (blj)) is updated sequentially. The latest luminance evaluation value (yij) and color evaluation value (rJ) (bij) obtained in this way are sent to the subsequent color evaluation value adjustment circuit (27). ). Note that the reference level, that is, the zero level, of both the color difference signals input to the A and D conversion 5 (22) is set in advance to the level obtained when a completely achromatic surface is photographed. Therefore, it goes without saying that each A/D conversion value can take not only a positive value but also a negative value. If the color evaluation value level of the corresponding area is exceeded by a predetermined amount (P), it is configured as shown in Figure 2.The brightness evaluation value of each area ( yiJ) is the brightness comparator (41)
The brightness evaluation value is input to the brightness value memory (40) and compared with the brightness threshold value (Ny) stored in advance. When the brightness evaluation value is above this threshold value (Ny), it is at the I level, and when it is below this, it is at the L level. The switching signal (S) is connected to the switching circuit (4
2) is done manually. Here, the brightness threshold fffi(Ny) is RlG of the image sensor
, B is experimentally determined and set in advance as a threshold value at which it can be recognized that any one of the light receiving section outputs of each color is saturated. The switching circuit (42) includes two switches (43) (4
4), and the switch (43) selects the color evaluation value (r
Selectively connect the fixed contact (43a) to which the input signal i j) is input, and the fixed contact (43b) coupled to the R attenuator (45) or the fixed contact (43c) coupled to the output terminal (47). The switch (44) is connected to a fixed contact (44a) to which the color evaluation value (bij) is input manually, and a fixed contact (44b) connected to the B attenuator (46) or an output terminal (48). It has a function of selectively connecting fixed contacts (44C) that have been connected. Both switches (43) (4, i) receive a switching signal (S
), and when the switching signal (S is at the L level), the color evaluation values (r i j) (b i j) are on the fixed contact (43c) and (44C) sides, respectively, and the color evaluation values (r i j) (b i j) are the adjusted color evaluation ii (HRi j) (HB 1J) (
That is, HRi j=r i j, HBi j=biJ,
However, the output terminal (47) (i, j = integer from 1 to 8) (
4g), and each fixed contact (, 4g) is output at H level.
3b) (44b) side and the color evaluation value (rij) (
bij) is input to the R and B attenuators (45) (46). R and B attenuator (4s) (46) f! , a preset constant amount (
P) is subtracted to calculate (ri j-P) and (bij-P), and the output terminal (47) (48 is the color evaluation value (HRij) after 11 adjustment (HBij) (that is, HRi j= r
i j −P, HBij=b 1−P). Here, the certain amount (P) is determined in advance through experiments so that it can be sufficiently recognized that the image quality is not unnatural when photographing a subject with high brightness. Next, the operation of the color evaluation value tone U circuit (27) described above will be explained. When the brightness evaluation value (yij) for a certain area is input to the color evaluation value adjustment circuit (27), this brightness evaluation value is compared with the brightness threshold (NyJ), and when it is larger than the threshold, the object in this area is It is determined that the brightness is H
The level switching signal (S) is connected to the switching circuit (42
), and the flesh color evaluation value is input to the R and B attenuator (45 (
46), the signal is attenuated by a certain amount (P) and output to the output terminal. Furthermore, when the brightness evaluation value (yij) is smaller than the threshold value, it is determined that the subject is not of high brightness, and the flesh color evaluation value is output to the output terminals (47) (48) without any attenuation.
) is output. As a result, only the color evaluation value of the area where the high-brightness object exists is attenuated. The non-attenuated or attenuated adjusted color evaluation values (HRij) (HBij) derived from the output terminal (47) (4g) are as follows:
The color evaluation value (Vr) (Vb) of the entire screen of each color difference signal is sent to the screen evaluation circuit (28) based on the following equations (1) and (2).
8 Vr = Σ ΣHRij/64...11)
iFu1 >-1 8 vb = Σ・ΣHBij/64 ... (2
) i ← 1 j to 1 These equations (1) and (2) are expressed by the color evaluation value adjustment circuit (6
The total sum of all adjusted color evaluation values for each of the four regions is divided by the number of regions, and the average value for one region is calculated as the screen color evaluation value for each color. The gain control circuits (29) and (30) control the R and B amplifier circuits (4) and (5) so that the screen color evaluation values (Vr) and (Vb), which are the color evaluation values of the entire screen, are both zero. The gain is controlled. In this way, when the screen color evaluation values (Vr) (Vb) become zero, the mill balance adjustment is completed. Note that the degree of contribution of each area's color evaluation value to the total inner surface is reduced. In addition to directly calculating the color evaluation value of each region, there is also a method of weighting each region and reducing the weight in high-brightness regions. According to the present invention, even when a scene including a high-brightness portion that is not suitable for self-balance adjustment is photographed, appropriate mill balance adjustment can be achieved without shifting the mill balance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第5図は本発明の一実施例の回路ブ
ロック図、第3図は画面分割の説明図、第4図は従来例
の回路ブロック図である。 (23)・・積分器、(27)・・色評価値調整回路、
(28)・・画面評価回路、(29)(30)・・利得
制御回路。
1, 2, and 5 are circuit block diagrams of one embodiment of the present invention, FIG. 3 is an explanatory diagram of screen division, and FIG. 4 is a circuit block diagram of a conventional example. (23)... Integrator, (27)... Color evaluation value adjustment circuit,
(28)... Screen evaluation circuit, (29) (30)... Gain control circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)撮像映像信号中の色情報信号を基に白バランス調
整を行う白バランス調整装置において映像画面内で輝度
情報信号が所定値を越える領域での色情報信号の白バラ
ンス調整への寄与度を他の領域より軽減させることを特
徴とする白バランス調整装置。
(1) In a white balance adjustment device that adjusts white balance based on color information signals in captured video signals, the degree of contribution of color information signals to white balance adjustment in areas on the video screen where the luminance information signal exceeds a predetermined value A white balance adjustment device characterized by reducing the white balance compared to other areas.
(2)撮像画面を分割して設定された複数の領域毎に輝
度情報信号レベルを輝度評価値として得る輝度評価値検
出手段と、 前記領域毎に色情報信号レベルを各色の色評価値として
得る色評価値検出手段と、 輝度評価値が所定値を越えない領域についての色評価値
をそのままに、且つ所定値以上の領域についての色評価
値を所定量だけ減じて出力する色評価値調整手段と、 該色評価値調整手段出力より画面全体についての色評価
値を画面色評価値として算出する画面色評価値算出手段
と、 該画面色評価値を基に各色信号の増幅利得を制御する利
得制御手段、 を備える白バランス調整装置。
(2) A brightness evaluation value detection means for obtaining a brightness information signal level as a brightness evaluation value for each of a plurality of areas set by dividing an imaging screen, and obtaining a color information signal level for each of the areas as a color evaluation value for each color. a color evaluation value detecting means; and a color evaluation value adjusting means for outputting a color evaluation value for areas where the luminance evaluation value does not exceed a predetermined value while leaving the color evaluation value unchanged for the area and reducing the color evaluation value for the area where the brightness evaluation value is equal to or greater than the predetermined value by a predetermined amount. a screen color evaluation value calculation means for calculating a color evaluation value for the entire screen as a screen color evaluation value from the output of the color evaluation value adjustment means; and a gain for controlling the amplification gain of each color signal based on the screen color evaluation value. A white balance adjustment device comprising a control means.
JP2052045A 1989-11-17 1990-03-02 Color video camera Expired - Lifetime JP2521832B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2052045A JP2521832B2 (en) 1990-03-02 1990-03-02 Color video camera
US07/612,836 US5282022A (en) 1989-11-17 1990-11-13 White balance adjusting apparatus for automatically adjusting white balance in response to luminance information signal and color information signal obtained from image sensing device
CA002030144A CA2030144C (en) 1989-11-17 1990-11-16 White balance adjusting apparatus for automatically adjusting white balance in response to luminance information signal and color information signal obtained from image sensing device
EP90121972A EP0429992B1 (en) 1989-11-17 1990-11-16 A white balance adjusting apparatus for automatically adjusting white balance in response to luminance information signal and color information signal obtained from image sensing device
DE69028973T DE69028973T2 (en) 1989-11-17 1990-11-16 White balance adjustment device for automatic adjustment of the white balance depending on the luminance information signal and color information signal from an image recording device
KR1019900018625A KR100193974B1 (en) 1989-11-17 1990-11-16 A white balance adjustment device for automatically performing white balance adjustment based on the luminance information signal and the color information signal obtained from the image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2052045A JP2521832B2 (en) 1990-03-02 1990-03-02 Color video camera

Publications (2)

Publication Number Publication Date
JPH03254294A true JPH03254294A (en) 1991-11-13
JP2521832B2 JP2521832B2 (en) 1996-08-07

Family

ID=12903850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2052045A Expired - Lifetime JP2521832B2 (en) 1989-11-17 1990-03-02 Color video camera

Country Status (1)

Country Link
JP (1) JP2521832B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191A (en) * 1983-06-15 1985-01-05 Canon Inc Color temperature compensating device of color television camera
JPS62159083U (en) * 1986-03-31 1987-10-08
JPS6424586A (en) * 1987-07-20 1989-01-26 Sharp Kk Automatic white balance adjusting circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191A (en) * 1983-06-15 1985-01-05 Canon Inc Color temperature compensating device of color television camera
JPS62159083U (en) * 1986-03-31 1987-10-08
JPS6424586A (en) * 1987-07-20 1989-01-26 Sharp Kk Automatic white balance adjusting circuit

Also Published As

Publication number Publication date
JP2521832B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
EP0429992B1 (en) A white balance adjusting apparatus for automatically adjusting white balance in response to luminance information signal and color information signal obtained from image sensing device
KR100199322B1 (en) White balance adjusting apparatus automatically adjusting white balance on the basis of color information signal obttained from image sensing device
JPH11298792A (en) Electronic still camera
JP2523036B2 (en) Color video camera
JP2002185977A (en) Video signal processor and recording medium with video signal processing program recorded thereon
KR100504974B1 (en) Video camera apparatus capable of simply extracting brightness information used in auto-iris control
JP2532962B2 (en) Color video camera
JPH03254294A (en) White balance adjustment device
JP3033102B2 (en) Exposure control device for electronic imager
JP3113518B2 (en) Video camera
JP2532956B2 (en) Color video camera
JP3075888B2 (en) White balance adjustment device
JPH04179388A (en) White balance control circuit
JP3628856B2 (en) Imaging device
JP2523034B2 (en) White balance adjustment device
JP2523033B2 (en) White balance adjustment device
JP2532975B2 (en) Color video camera
JP3277051B2 (en) Automatic control device for digital camera
JP3701058B2 (en) Imaging device
JPH03289793A (en) White balance adjusting device
JP2523038B2 (en) Color video camera
JP2002185976A (en) Video signal processor and recording medium with video signal processing program recorded thereon
JP3378697B2 (en) White balance adjustment device
JPH03160891A (en) White balance adjusting device
JPH07143509A (en) Chromanoise suppressing method for video camera

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 14