JPH03289793A - White balance adjusting device - Google Patents

White balance adjusting device

Info

Publication number
JPH03289793A
JPH03289793A JP2090902A JP9090290A JPH03289793A JP H03289793 A JPH03289793 A JP H03289793A JP 2090902 A JP2090902 A JP 2090902A JP 9090290 A JP9090290 A JP 9090290A JP H03289793 A JPH03289793 A JP H03289793A
Authority
JP
Japan
Prior art keywords
white balance
color
balance adjustment
signal
color information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2090902A
Other languages
Japanese (ja)
Other versions
JPH0828879B2 (en
Inventor
Toshinobu Haruki
春木 俊宣
Kenichi Kikuchi
健一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2090902A priority Critical patent/JPH0828879B2/en
Priority to US07/612,831 priority patent/US5442408A/en
Priority to ES90121976T priority patent/ES2091784T3/en
Priority to DE69033743T priority patent/DE69033743T2/en
Priority to EP95119590A priority patent/EP0711082B1/en
Priority to EP95119589A priority patent/EP0708569B1/en
Priority to EP90121976A priority patent/EP0433672B1/en
Priority to DE69027751T priority patent/DE69027751T2/en
Priority to KR1019900018624A priority patent/KR100196305B1/en
Priority to CA002030142A priority patent/CA2030142C/en
Priority to DE69033744T priority patent/DE69033744T2/en
Publication of JPH03289793A publication Critical patent/JPH03289793A/en
Priority to US08/360,987 priority patent/US5489939A/en
Priority to US08/454,835 priority patent/US5555022A/en
Publication of JPH0828879B2 publication Critical patent/JPH0828879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To minimize the deviation of white balance in the pictures of objects with the same color and large area by suppressing the contribution of a color information signal to white balance adjustment in an area where the variation of the color information signal goes less than a reference value within an image pickup picture lower than another area, and varying the reference value corresponding to the focal distance of a lens. CONSTITUTION:A zooming mechanism 40 varies the focal distance of the lens system of whole camera by displacing a zoom lens, and a desired state can be selected from the area zooming from wide-angle to telephoto. A focal distance detection circuit 41 detects the position of the zoom lens, and calculates the focal distance of the lens system based on the position, and outputs a result as lens focal distance information. A same color processing circuit 57 reduces the weight of the area when the areas with the same color exist continuously. Thereby, it is possible to minimize the deviation of the white balance in the pictures of the objects with the same color and large area.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、撮像素子から得られる撮像映像信号を基に、
臼バランスの制御を行うカラービデオカメラの白バラン
ス調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention is based on a captured video signal obtained from an image sensor.
The present invention relates to a white balance adjustment device for a color video camera that controls mill balance.

(ロ)従来の技術 カラービデオカメラに於いては、光源による光の波長分
布の違いを補正するために、ホワイト/フランスの制御
を行う必要がある。
(B) Conventional Technology In a color video camera, it is necessary to perform white/French control in order to correct for differences in the wavelength distribution of light due to the light source.

この制御は、赤(以下R)、青(以下B)、緑(以下G
)の三原色信号の比が1:1:1となるように、各色信
号の利得を調節することで行われる。一般には例えば特
開昭62−35792号公報(HO4N9/73)に示
される様に、画面の色差信号R−Y、B−Yの積分値が
零になるように利得を調節する方式が用いられている。
This control includes red (hereinafter referred to as R), blue (hereinafter referred to as B), green (hereinafter referred to as G).
) by adjusting the gain of each color signal so that the ratio of the three primary color signals becomes 1:1:1. Generally, a method is used in which the gain is adjusted so that the integral value of the screen color difference signals R-Y and B-Y becomes zero, as shown in, for example, Japanese Patent Application Laid-Open No. 62-35792 (HO4N9/73). ing.

第2図は、この方式を用いた白バランス回路のブロック
図である。
FIG. 2 is a block diagram of a white balance circuit using this method.

レンズ(1)を通過した光は、撮像素子(CCD)(2
)で光電変換された後、色分離回路(3で、R,G、B
の3原色信号として取り出されるこうして得られたG信
号は直接、またR及びB信号はR増幅回路(4)、B増
幅回路(5)を経てカラープロセス及びマトリックス回
路(6)に入力され、輝度信号Y、赤及び青それぞれの
色差信号R−Y、B−Yが作られて、ビデオ回路(7)
へ送られる。
The light that has passed through the lens (1) is transferred to an imaging device (CCD) (2).
), the color separation circuit (3, R, G, B
The G signal thus obtained is directly input, and the R and B signals are input to the color process and matrix circuit (6) via the R amplification circuit (4) and the B amplification circuit (5). Signal Y, red and blue color difference signals R-Y and B-Y are generated and sent to the video circuit (7).
sent to.

同時に、二つの色差信号は、それぞれ積分回路(17)
  (18)で、十分に長い時間、積分されその結果が
零になるように利得制御回路(13)(14)がR,B
各々の増幅回路(4)、(5)の利得を調節する。
At the same time, the two color difference signals are respectively sent to the integrating circuit (17).
In (18), the gain control circuits (13) and (14) adjust R, B so that the integration is performed for a sufficiently long time and the result becomes zero.
The gain of each amplifier circuit (4), (5) is adjusted.

この方式では、ビデオカメラにより撮影される画面の、
様々な色分布に対して、積分回路(17(18)の時定
数を長くする等の工夫を施して、これらの色分布を平均
化すれば、色分布を構成する各色成分が打ち消し合い、
略白い画面状態に近似できることを前提としている。
In this method, the screen shot by a video camera,
If we take measures such as increasing the time constant of the integration circuit (17 (18)) for various color distributions and average these color distributions, each color component that makes up the color distribution will cancel each other out,
It is assumed that a substantially white screen state can be approximated.

ところが、この方式では、被写体自体の色に偏りがある
時、例えば、緑の芝生や青い空が画面上で大きな面積を
占める場合や、赤いセータを着た人物をクローズアップ
する場合等では、画面全体の色分布を平均化しても白い
画面状態とはならず白バランスがくずれることになり、
この様な被写体に対して前述の如き白バランス調整を施
せば、偏った色を打ち消す方向に利得が変化して白バラ
ンスがその補色側にずれて、適正な色の再現が行えなく
なるという欠点を有している。
However, with this method, when the color of the subject itself is biased, for example when green grass or blue sky occupies a large area on the screen, or when taking a close-up of a person wearing a red sweater, the screen may become distorted. Even if the overall color distribution is averaged, the screen will not be white and the white balance will be disrupted.
If you perform the white balance adjustment as described above for such a subject, the gain will change in the direction of canceling out the biased color, the white balance will shift to the complementary color side, and proper color reproduction will not be possible. have.

そこで、本出願人は先に特願平01−300239号(
平成1年11月17日付出願)にて、この欠点を解決し
た臼バランス調整装置を提案している。
Therefore, the present applicant first filed Japanese Patent Application No. 01-300239 (
(filed on November 17, 1999) proposes a mill balance adjustment device that solves this drawback.

この先願技術は、撮像画面内で色情報信号の変動量が基
準となる量を下回る領域での色情報信号の白バランス調
整への寄与を他の領域より軽減させることで、同一色、
大面積の被写体が含まれる画面にも対応しようとするも
のである。
This prior art technology reduces the contribution of the color information signal to white balance adjustment in areas where the amount of variation in the color information signal is less than the reference amount in the imaging screen compared to other areas.
This is intended to accommodate screens that include large-area objects.

第3図は同方式の回路ブロック図である。FIG. 3 is a circuit block diagram of the same system.

前記従来例と同様に、レンズ(1)を通過した光は、C
CD (2)上に結像されて光電変換された後、色分離
回路(3)にて、R,G、 Hの3原色信号として取り
出される。これら3原色信号の中のR及びB信号は、夫
々R及びB増幅回路(4(5)を経て、G信号と共にカ
メラプロセス及びマトリクス回路(6)に入力され、こ
れらを基に輝度信号(Y)及び赤、青天々の色差信号(
R−Y)、(B−Y)が作成されて、ビデオ回路(7に
供給され周知の処理が施される。また、(R−Y)(B
−Y)の各信号は、同時に選択回路(21)にも供給さ
れる。 選択回路(21)はタイミング回路(25)か
らの選択信号(Sl)により輝度信号(Y)及び色差信
号(R−Y)、(B−Y)の3つの信号の中の1つを1
フイールド毎に順次選択するもので、(Y)→(R−Y
)→(B−Y)→(Y)→(R−Y)→・・と1フイー
ルド毎に後段のA/D変換器(22)に出力される。尚
、選択信号(Sl)は後述の如く同期分離回路(24)
から得られる垂直同期信号に基づいて作成される。
Similar to the conventional example, the light passing through the lens (1) is C
After being imaged on a CD (2) and subjected to photoelectric conversion, it is extracted as three primary color signals of R, G, and H in a color separation circuit (3). The R and B signals among these three primary color signals are input to the camera process and matrix circuit (6) together with the G signal through the R and B amplifier circuits (4 (5)), and based on these, the luminance signal (Y ) and red, blue celestial color difference signals (
(RY) and (B-Y) are created and supplied to the video circuit (7) and subjected to well-known processing.
-Y) are simultaneously supplied to the selection circuit (21). The selection circuit (21) selects one of the three signals, the luminance signal (Y), the color difference signals (R-Y), and (B-Y), according to the selection signal (Sl) from the timing circuit (25).
It selects each field sequentially, (Y) → (R-Y
)→(B-Y)→(Y)→(RY)→... are output to the subsequent A/D converter (22) for each field. In addition, the selection signal (Sl) is connected to the synchronous separation circuit (24) as described later.
It is created based on the vertical synchronization signal obtained from

A/D変換器(22)は、所定のサンプリング周期で選
択回路(21)にて選択された信号(Y(R−Y)(B
−Y)の1つをディジタル値に変換し、この値を積分器
(23)に出力する。ところで、タイミング回路(25
)はカメラプロセス及びマトリクス回路(6)から垂直
、水平同期信号及びCCD (2)を駆動する固定の発
振器出力に基づいて、撮像画面を第4図に示す8×8の
64個の長方形の領域(All)、(A12)、(A1
3)・・・(A88)、即ち(Aij)(ij=1〜8
の整数)に分割して、各領域毎にこれらの領域内の選択
回路(21)出力を時分割で取り出すための切換信号(
S2)を積分器(23に出力する。
The A/D converter (22) receives the signal (Y(R-Y)(B) selected by the selection circuit (21) at a predetermined sampling period.
-Y) into a digital value and outputs this value to the integrator (23). By the way, the timing circuit (25
) is based on the camera process and the vertical and horizontal synchronization signals from the matrix circuit (6) and the fixed oscillator output that drives the CCD (2), and the imaging screen is divided into 64 8x8 rectangular areas shown in Figure 4. (All), (A12), (A1
3)...(A88), that is, (Aij) (ij=1-8
(an integer number of ), and a switching signal (
S2) is output to the integrator (23).

積分器(23)は切換信号(S2)を受けて、選択回路
(21)出力のA/D変換値を領域毎に1フイ一ルド期
間にわたって加算し、即ち64個の領域毎にディジタル
積分し、この1フイ一ルド分の積分が完了するとこの積
分値を輝度評価値あるいは色評価値としてメモリ(26
)に保持するこの結果、ある任意のフィールドで64個
の領域内に対応する輝度信号(Y)のディジタル積分値
が64個の輝度評価1(yij)(i、j:1〜8)と
して得られることになる。また次のフィールドでは選択
回路(21)にて色差信号(R−Yが選択されているの
で、加算器(23)の各領域における積分の結果、色差
信号(R−Y)の領域毎のディジタル積分値が64個の
色評価値(rij)として得られる。更に次のフィール
ドでは選択回路(21)にて色差信号(B−Y)が選択
されているので、加算器(23)の積分の結果、色差信
号(B−Y)の領域毎のディジタル積分値が64個の色
評価値(bij)として得られる。こうして、輝度信号
(Y)、色差信号(R−Y)(B−Y)の3フイールド
の積算が終了した時点で、輝度評価値(y i j )
及び色評価値(rij(bij)の64×3の値がメモ
リ(26)に保持されることになる。これ以降、上述と
同様の動作が繰り返され、次のフィールドでは輝度信号
(yij)が、更に次のフィールドでは色評価値(ri
j)と順次更新されることになる。
The integrator (23) receives the switching signal (S2) and adds the A/D converted values of the output of the selection circuit (21) for each region over one field period, that is, digitally integrates each of the 64 regions. When the integration for one field is completed, this integral value is stored in memory (26
) As a result, the digital integral value of the luminance signal (Y) corresponding to 64 regions in an arbitrary field is obtained as 64 luminance evaluations 1 (yij) (i, j: 1 to 8). It will be done. Also, in the next field, the selection circuit (21) selects the color difference signal (R-Y), so as a result of the integration in each region of the adder (23), the digital signal for each region of the color difference signal (R-Y) is The integral value is obtained as 64 color evaluation values (rij).Furthermore, in the next field, the color difference signal (B-Y) is selected by the selection circuit (21), so the integral value of the adder (23) is As a result, the digital integral value for each region of the color difference signal (B-Y) is obtained as 64 color evaluation values (bij).In this way, the luminance signal (Y), the color difference signal (R-Y) (B-Y) When the integration of the three fields is completed, the luminance evaluation value (y i j )
The 64×3 value of the color evaluation value (rij (bij)) will be stored in the memory (26). From now on, the same operation as described above will be repeated, and in the next field, the luminance signal (yij) will be stored in the memory (26). , and in the next field, the color evaluation value (ri
j) will be updated sequentially.

第6図は、この積分器(23)の内部構造を更に詳細に
示す。各A/D変換データは、切換回路(61)に供給
される。この切換回路(61)は切換信号(S2)を受
けて、各A/D変換値を領域毎に用意された加算器(F
l 1)(Fl 2)・・・・(F8g)の中で該当デ
ータのサンプリング点が存在する領域用の加算器に供給
する役割を有する。即ち、ある任意のデータのサンプリ
ング点が領域(A1.1)内に含まれているならば、こ
のデータを領域(All)用の加算器(Fil)に供給
する。尚、以下、同様に加算器(Fij)(ij=1〜
8)は領域(Aij)用に設定され、全部で64個の加
算器が用意されている。各加算器の後段には、保持回路
(Qij)がそれぞれ配設され、各加算値は各保持回路
に一旦保持される。
FIG. 6 shows the internal structure of this integrator (23) in more detail. Each A/D converted data is supplied to a switching circuit (61). This switching circuit (61) receives the switching signal (S2) and converts each A/D conversion value into an adder (F
It has the role of supplying data to the adder for the area where the sampling point of the corresponding data exists in l1) (Fl2)... (F8g). That is, if a sampling point of a certain arbitrary data is included in the area (A1.1), this data is supplied to the adder (Fil) for the area (All). Note that the adder (Fij) (ij=1~
8) is set for the area (Aij), and a total of 64 adders are prepared. A holding circuit (Qij) is provided after each adder, and each added value is temporarily held in each holding circuit.

各保持回路の保持データは、再び加算器に入力されて、
次に入力されるデータと加算される。また各保持回路は
、垂直同期信号に基ずいて1フイールド毎にリセットさ
れ、このリセット直前の保持データのみがメモリ(26
)に供給される。従って、1組の加算器及び保持回路に
て1個のディジタル積分回路が構成され、合計64個の
積分回路が積分器(23)を構成することになり、1フ
イールド毎に各保持回路から64個の領域毎にディジタ
ル積分値がメモリ(26)に入力される。
The data held in each holding circuit is input to the adder again, and
It is added to the next input data. In addition, each holding circuit is reset for each field based on the vertical synchronization signal, and only the held data immediately before this reset is stored in the memory (26
). Therefore, one set of adder and holding circuit constitutes one digital integrating circuit, and a total of 64 integrating circuits constitute the integrator (23). Digital integral values are input to the memory (26) for each region.

この1フイ一ルド分の積分が完了すると、この積分値は
輝度評価値または色評価値としてメモリ(26)に保持
される。この結果、ある任意のフィールドで64個の領
域内に対応する輝度信号(Y)の領域毎のディジタル積
分値が64個の輝度評価値(yij)として得られる。
When the integration for one field is completed, this integrated value is held in the memory (26) as a brightness evaluation value or color evaluation value. As a result, digital integral values for each region of the luminance signal (Y) corresponding to 64 regions in a certain arbitrary field are obtained as 64 luminance evaluation values (yij).

更に次のフィールドでは選択回路(21)にて色差信号
(R−Y)が選択されているので、積分器(23の積分
の結果、色差信号(R−Y)の領域毎のディジタル積分
値が64個の色評価値(r i j)として得られ、同
様に次のフィールドでは色差信号(B−Y)の色評価1
f(bij)が得られる。
Furthermore, in the next field, the color difference signal (R-Y) is selected by the selection circuit (21), so as a result of the integration by the integrator (23), the digital integral value for each region of the color difference signal (R-Y) is obtained. Similarly, in the next field, the color evaluation value 1 of the color difference signal (B-Y) is obtained as 64 color evaluation values (r ij).
f(bij) is obtained.

尚、A/D変換器(22)に入力される輝度及び間色差
信号の基準レベル即ち零レベルは、完全な無彩色面を撮
影したときに得られるレベルに予め設定されており、従
って、各A/D変換値は正の値だけでなく、負の値もと
りうることは言うまでもない。
Note that the reference level, that is, the zero level, of the luminance and color difference signals input to the A/D converter (22) is set in advance to the level obtained when photographing a completely achromatic surface, and therefore, each It goes without saying that the A/D converted value can take not only positive values but also negative values.

上述の様にして得られる最新の色評価fi(yij) 
(rij) (bjj) (i、 j:1〜8)は同一
色処理回路(27)に入力される。この同−色処8!回
路(27)は64個の領域の中の上下あるいは左右方向
に連続する複数の領域が同一色であるか否かを判断し、
同一色と判断した回数をカウントするもので、その動作
を第5図のフローチャートに示す。
The latest color evaluation fi(yij) obtained as described above
(rij) (bjj) (i, j: 1 to 8) are input to the same color processing circuit (27). This same color place 8! The circuit (27) determines whether or not a plurality of areas that are continuous in the vertical or horizontal direction among the 64 areas have the same color.
The number of times the colors are determined to be the same is counted, and its operation is shown in the flowchart of FIG.

このフローチャートでは、5TEP (100)(10
1)にて領域(All)から判定を行うための初期設定
が為され、5TEP (102)で重み付は量(wij
)の初期設定が為され、まず全ての領域の重み付は量が
1に設定される。5TEP(104)では上下方向に連
続して並んでいる領域での色差信号(R−Y)の色評価
値の差1rij−ri−1jlが基準値(C1)を越え
るか否かの判定を為し、同様に5TEP (105)(
106)では上下方向に連続する領域での色差信号(B
−Y)の色評価値の差1bij−bi −1jl及び輝
度評価値の差1)’1j−)’1−1j1が夫々基準値
(C2)、(C3)を越えるか否かの判定を為す。そし
て、いずれの評価値の差も基準値(CI)(C2)(C
3)を越えない時には、これらの上下に連続する2領域
の画面は同一色であると判断し、5TEP (107)
にて重み付は量(wij)が半減される。
In this flowchart, 5TEP (100) (10
In 1), initial settings are made to perform judgment from the area (All), and in 5TEP (102), weighting is performed by the amount (wij
) is initialized, and the weighting of all regions is first set to an amount of 1. 5TEP (104) determines whether the difference 1rij-ri-1jl in the color evaluation values of the color difference signals (R-Y) in areas that are consecutively arranged in the vertical direction exceeds the reference value (C1). Similarly, 5TEP (105) (
106), the color difference signal (B
-Y) color evaluation value difference 1bij-bi -1jl and brightness evaluation value difference 1)'1j-)'1-1j1 are determined whether they exceed the reference values (C2) and (C3), respectively. . The difference between the evaluation values is the reference value (CI) (C2) (C
3), it is determined that these two consecutive areas above and below the screen are the same color, and 5TEP (107)
The weighting amount (wij) is halved at .

尚、基準値(CI)(C2)(C3)は同一色と見做せ
る閾値であり、予め実験による実測値に基ずいて設定さ
れた定数である。
Note that the reference value (CI) (C2) (C3) is a threshold value at which the colors can be regarded as the same, and is a constant set in advance based on experimentally measured values.

5TEP (103)は画面の最上段に並ぶ8個の領域
については、これより上側に領域が存在しないので、5
TEP (104)乃至(106)の判定を回避する働
きを有している。
5TEP (103) is 5TEP (103) because there are no areas above this for the 8 areas lined up at the top of the screen.
It has the function of avoiding the judgments of TEP (104) to (106).

5TEP (109)では画面の左右方向に連続して並
んでいる領域での色差信号(R−Y)の色評価値の差1
 r i j−r i j−11が所定値(C1)を越
えるか否かの判定を為し、同様に5TEP(110)(
111)では左右方向に連続する領域での色差信号(B
−Y)の色評価値の差1bij−bij−II及び輝度
評価値の差1yij−yij−11が夫々基準値(C2
)、(C3)を越えるか否かの判定を為す。そして、い
ずれの評価値の差も基準値(CI)(C2)(C3)を
越えない時には、これらの左右に連続する2領域の画面
は同一色であると判断し、5TEP (112)にて重
み付は量が半減される。尚、5TEP(108)は画面
の左端に並ぶ8個の領域については、これより左側に領
域が存在しないので、5TEP(109)乃至(111
)の判定を回避する働きを有している。以上の一連の同
一色か否かの判定は、5TEP (113)により全領
域について行われる。
In 5TEP (109), the difference in color evaluation values of color difference signals (R-Y) in areas that are consecutively lined up in the left and right direction of the screen is 1.
It is determined whether or not r i j-r i j-11 exceeds a predetermined value (C1), and similarly 5TEP (110) (
111), the color difference signal (B
-Y) color evaluation value difference 1bij-bij-II and brightness evaluation value difference 1yij-yij-11 are respectively the reference value (C2
), it is determined whether or not it exceeds (C3). Then, when the difference between the evaluation values does not exceed the reference value (CI) (C2) (C3), it is determined that the two consecutive left and right areas of the screen are of the same color, and in 5TEP (112) The amount of weighting is halved. Note that 5TEP (108) is 5TEP (109) to (111) because there are no areas to the left of the eight areas lined up on the left edge of the screen.
) has the function of avoiding the judgment of The above series of determinations as to whether the colors are the same or not are performed for the entire area by 5TEP (113).

こうして同一色処理回路(27)にて決定゛された各領
域の重み付は量(wij)は、画面評価回路(28)に
入力され次式(1)(2)に基づいて色差信号(R−Y
)(B−Y)の各々の画面全体についての画面色評価値
(Vr)(Vb)として算出される。
The weighting amount (wij) of each area determined in this way by the same color processing circuit (27) is inputted to the screen evaluation circuit (28), and the color difference signal (R -Y
)(B-Y) are calculated as screen color evaluation values (Vr) (Vb) for each entire screen.

この式(1)(2)は64個の各領域の色評価値(ri
j)(bjj)の全ての総和を重み付は平均することを
意味する。
These equations (1) and (2) are calculated using the color evaluation value (ri
Weighting means averaging all the sums of j)(bjj).

利得制御回路(29)(30)は画面全体の色評価値で
ある画面色評価値(Vr)(Vb)が共に零となる様に
R及びB増幅回路(4)(5)の各々の利得を制御して
いる。
The gain control circuits (29) and (30) control the respective gains of the R and B amplifier circuits (4) and (5) so that the screen color evaluation values (Vr) (Vb), which are the color evaluation values of the entire screen, are both zero. is under control.

(ハ)発明が解決しようとする課題 前述の方式は、撮像画面内で色情報信号の変動量が基準
となる量(CI)(C2)(C3)を下回る領域での色
情報信号の白バランス調整への寄与を他の領域より軽減
させることで、同一色、大面積の被写体が含まれる画面
にも対応しようとするものである。
(C) Problems to be Solved by the Invention The above-mentioned method is a white balance of the color information signal in the area where the amount of variation of the color information signal is less than the reference amount (CI) (C2) (C3) within the imaging screen. By reducing the contribution to adjustment compared to other areas, it is possible to cope with screens that include objects of the same color and large area.

ところが、この方式では、変動量の大小を判定する基準
値を固定のものとしており、例えば、レンズの焦点距離
が短い広角側や、被写体との距離が遠い場合などには、
各領域の中に様々な被写体が入りやすく、その平均とな
る各領域の評価値はばらつきにくくなる。このため、複
数の色が混じった状態であるにもかかわらず同一色と判
断されることが生じ、結果として、白バランス調整の精
度を低下させる。
However, in this method, the reference value for determining the amount of variation is fixed, and for example, when the focal length of the lens is short at the wide-angle end or when the distance to the subject is long
Various objects are likely to be included in each area, and the average evaluation value of each area is less likely to vary. Therefore, even though a plurality of colors are mixed, they may be determined to be the same color, resulting in a decrease in the accuracy of white balance adjustment.

また、評価値の絶対値が大きい領域では、同じ比率で変
化したときの変化量は大きくなり、結果として同一色と
判定されにくくなる。しかし、実際には、評価値の絶対
値の低い、無彩色に近い領域はど白バランス調整の制御
に対する寄与を大きくすべきであり、調整の精度を低下
させる原因となる。
Further, in a region where the absolute value of the evaluation value is large, the amount of change when changing at the same ratio becomes large, and as a result, it becomes difficult to determine that the colors are the same. However, in reality, an area close to an achromatic color with a low absolute value of the evaluation value should make a large contribution to the white balance adjustment control, which causes a decrease in the accuracy of the adjustment.

(ニ)課題を解決するための手段 本発明は、撮像信号中の色信号情報を基に白バランス調
整を行うものであり、撮像画面内で色情報信号の変動量
が基準値を下回る領域での色情報信号の白バランス調整
への寄与を他の領域より軽減させるにあたり、レンズの
焦点距離、被写体との距離、色信号情報の絶対値に応じ
て、基準となる量を可変するかもしくは、寄与の軽減量
を変化させることを特徴とする。
(d) Means for Solving the Problems The present invention performs white balance adjustment based on the color signal information in the imaging signal, and adjusts the white balance in an area where the amount of variation in the color information signal is below a reference value within the imaging screen. In order to reduce the contribution of the color information signal to the white balance adjustment compared to other areas, the reference amount is varied depending on the focal length of the lens, the distance to the subject, and the absolute value of the color signal information, or It is characterized by changing the amount of contribution reduction.

(ホ)作用 本発明は、上述のごとく構成したので、様々な撮影状況
に対して、常に正確に同一色、大面積の被写体の影響を
軽減することが可能となる。
(E) Function Since the present invention is constructed as described above, it is possible to always accurately reduce the influence of objects of the same color and large area under various photographing situations.

(へ)実施例 図面に従い本発明の実施例について説明する。(f) Example Embodiments of the present invention will be described according to the drawings.

第1図は第1実施例による自動白バランス回路の回路ブ
ロック図である。
FIG. 1 is a circuit block diagram of an automatic white balance circuit according to a first embodiment.

尚、従来例と共通の部分については、説明を割愛する。Note that explanations of parts common to the conventional example will be omitted.

(40)は一般のビデオカメラに用いられている周知の
ズーム機構であり、このズーム機構を構成するズームレ
ンズを変位させることによりカメラ全体のレンズ系の焦
点距離を変化させて広角〜望遠のズーム領域から所望の
状態を選択することが可能となる。
(40) is a well-known zoom mechanism used in general video cameras, and by displacing the zoom lens that makes up this zoom mechanism, the focal length of the entire lens system of the camera is changed, allowing zooming from wide-angle to telephoto. It becomes possible to select a desired state from the area.

焦点距離検出回路(41)は、ズームレンズの位置を検
出し、この位置よりレンズ系の焦点距離(f)を算出し
、レンズ焦点距離情報として出力する。
The focal length detection circuit (41) detects the position of the zoom lens, calculates the focal length (f) of the lens system from this position, and outputs it as lens focal length information.

同一色処理回路(57)は、基本的には第2図と同じ(
同一色の領域が連続的に存在する場合に該当領域の重み
付は量を軽減する働きを均すが、レンズ焦点距離情報を
基に第7図のフローチャートの如く重み付は量決定に際
して用いた基準値(CI)(C2)(C3)を変更する
基準値変更ルーチン(200)が付加されている。
The same color processing circuit (57) is basically the same as in Fig. 2 (
When areas of the same color exist consecutively, weighting of the corresponding areas will even out the effect of reducing the amount, but weighting is used when determining the amount as shown in the flowchart in Figure 7 based on the lens focal length information. A reference value change routine (200) for changing the reference value (CI) (C2) (C3) is added.

基準値変更ルーチン(200)は、第8図に示す様に、
まず5TEP (201)の如く、焦点距離(f)が予
め設定された基準焦点距離(f、)よりも短い、即ち広
角側にあるか否かの判定が為され、広角側にあれば5T
EP (202)にて基準値(CI)(C2)(C3)
はいずれも半減され、逆に基準焦点距離(f、)よりも
長い、即ち望遠側にあれば基準値(CI)(C2)(C
3)がそのまま維持される。こうして得られた基準値を
基に、以下、従来例と同様の動作が為される。
The reference value change routine (200) is as shown in FIG.
First, as in 5TEP (201), it is determined whether the focal length (f) is shorter than a preset reference focal length (f, ), that is, on the wide-angle side, and if it is on the wide-angle side, 5T
Standard value (CI) (C2) (C3) at EP (202)
On the other hand, if it is longer than the reference focal length (f,), that is, on the telephoto side, the reference value (CI) (C2) (C
3) is maintained as is. Based on the reference value obtained in this way, the same operation as in the conventional example is performed.

従って、画面に特定の被写体が大きな面積を占めて、特
定の色に偏りが生じ易い望遠時に比べ、各領域内に様々
な被写体が入り色の偏りが生じにくい広角時には、基準
値はいずれも小さくなるため、5TEP (104)乃
至(106)または5TEP (109)乃至(111
)での同一色の判定動作において、変動量が著しく小さ
くなければ同一色と判断されにくくなり、同一色との誤
った判定が阻止可能となる。
Therefore, compared to telephoto mode, where a specific subject occupies a large area of the screen and tends to bias certain colors, the standard values are smaller at wide-angle mode, where there are various subjects within each area and color bias is less likely to occur. Therefore, 5TEP (104) to (106) or 5TEP (109) to (111)
), unless the amount of variation is extremely small, it is difficult to determine that the colors are the same, and it is possible to prevent erroneous determination that the colors are the same.

また、第9図は第2実施例の回路ブロック図である。こ
の図中、(42)は被写体までの距離を赤外線等を用い
て測定し、この被写体距離に応じてレンズ(1)を光軸
方向に進退させて合焦状態とする周知のフォーカス機構
であり、7オ=カス機構にて得られた被写体距離(L)
の情報は、同一色処理回路(67)に入力され、同一色
判定に用いられる。
Further, FIG. 9 is a circuit block diagram of the second embodiment. In this figure, (42) is a well-known focusing mechanism that measures the distance to the subject using infrared rays, etc., and moves the lens (1) forward or backward in the optical axis direction according to this subject distance to bring it into focus. , object distance (L) obtained with the 7-o-cus mechanism
The information is input to the same color processing circuit (67) and used for the same color determination.

同一色処理回路(67)は、第1実施例と同様に基本的
には第7図の70−チャートと同様の動作を為す。但し
、基準値変更ルーチン(200’)は、第10図の様に
被写体距離を基に重み付は量決定に際して用いた基準値
(CI)(C2)(C3)を変更するものである。即ち
、被写体が遠い位置にある時、画面の各領域内に入る被
写体の実面積が大きくなり、様々な被写体が領域内に入
るため、領域間の色差及び輝度信号の差が小さくなり易
いことを考慮して、5TEP (210)にて被写体距
離(L)が予め設定された基準被写体距離(L、)より
大きいか否かの判断を為し、大きい、即ち、被写体が遠
い位置にあると判断された時には、5TEP (211
)にて基準値(C1)(C2)(C3)を第1実施例と
同様に半減して、以下同様の同一色判定動作を行うこと
により、被写体が遠くにある場合には各評価値に極端に
大きな変動が得られなければ同一色と判断されなくなり
、誤った同一色判定が阻止される。
The same color processing circuit (67) basically operates in the same way as the chart 70 in FIG. 7, as in the first embodiment. However, the reference value changing routine (200') changes the reference values (CI) (C2) (C3) used in determining the weighting amount based on the subject distance as shown in FIG. In other words, when the subject is far away, the actual area of the subject that falls within each area of the screen becomes large, and various objects fall within the area, which tends to reduce the differences in color and luminance signals between the areas. Taking this into consideration, it is determined in 5TEP (210) whether the subject distance (L) is greater than a preset reference subject distance (L,), and it is determined that it is greater, that is, the subject is in a far position. 5 TEP (211
), the reference values (C1), (C2, and C3) are halved in the same manner as in the first embodiment, and the same color determination operation is performed thereafter, so that when the subject is far away, each evaluation value is Unless an extremely large variation is obtained, the colors will not be determined to be the same, and erroneous determination of the same color will be prevented.

尚、本実施例では、フォーカス機構として赤外線を用い
た測距方式を示したが、これに限定されるものではなく
、例えば輝度信号の高周波成分が最も大きくとり出せる
様にレンズを進退させる方式を用いてもよく、この場合
、被写体距離はCCDに対する7オーカスレンズの位置
に対応させればよい。
In this embodiment, a distance measuring method using infrared rays is shown as a focusing mechanism, but the method is not limited to this. For example, a method of moving the lens forward and backward so that the highest frequency component of the luminance signal can be extracted can be used. In this case, the object distance may be made to correspond to the position of the 7 orcus lens with respect to the CCD.

また、第11図は第3実施例のフローチャートであり、
第5図との相違点は、5TEP (300)  (30
1)が付加されている点である。即ち、予め一定値であ
る基準値(CI)(C2)(C3)を設定せずに各評価
値の絶対値から算出しようとするもので、具体的には5
TEP (300)(301)にて、その時点の評価値
の1/8を各領域の基準値とする。即ちC1=r i 
j/8、C2=bij/8、C3−yij/8としてい
る。これにより、一定量上の比率で評価値が変化する領
域は、同一色領域とは見做されず、結果的に各評価値の
絶対値が同一色判定に影響を及ぼすことが阻止される。
Moreover, FIG. 11 is a flowchart of the third embodiment,
The difference with Figure 5 is 5TEP (300) (30
1) is added. That is, it attempts to calculate from the absolute value of each evaluation value without setting a constant reference value (CI) (C2) (C3) in advance.
At TEP (300) (301), 1/8 of the evaluation value at that time is set as the reference value for each area. That is, C1=r i
j/8, C2=bij/8, and C3-yij/8. As a result, an area where the evaluation value changes at a rate above a certain amount is not considered to be an area of the same color, and as a result, the absolute value of each evaluation value is prevented from influencing the same color determination.

更に第12図は第4実施例のフローチャートであり、第
11図との相違点は、5TEP(107)  (112
)に代えて5TEP (400)(401)が付加され
ている点である。即ち、重み付けの軽減量を色評価値の
絶対値からのずれに応じて可変としている。ここで色評
価値の大きさとして、各色評価値(rij)(bij)
の2乗和の平方根、即ち色事面上での白からの距離を用
いている。
Further, FIG. 12 is a flowchart of the fourth embodiment, and the difference from FIG. 11 is that 5TEP (107) (112
), 5TEP (400) (401) are added. That is, the weighting reduction amount is made variable in accordance with the deviation of the color evaluation value from the absolute value. Here, as the size of the color evaluation value, each color evaluation value (rij) (bij)
The square root of the sum of the squares of , that is, the distance from white on the color plane is used.

5TEP(400)(401)では、 a=  r  1)+   i J/R=(3)w i
 j = w i j / a        ・・・
(4)(但しRは予め実測値に基づいて設定された定数
) が算出される。これは、5TEP(104)乃至(10
6)及び5TEP (109)乃至(111)にて同一
色と判定された領域について、この同一色の色彩の無彩
色からの離れ具合を式(3)にてaとして求め、更に式
(4)にて重み付は量(wij)をaに反比例させ、白
から遠い彩度の高い領域の重み付は量を大きく軽減して
、白に近い彩度の低い部分の寄与度が落ちることを防い
でいる。尚、aの値が一定の大きさ以下の場合には、寄
与の軽減を行わないことも可能であることは言うまでも
ない。
In 5TEP (400) (401), a= r 1)+ i J/R=(3) w i
j = w i j / a...
(4) (where R is a constant set in advance based on actual measurement values) is calculated. This is 5TEP (104) to (10
6) and 5TEP For the areas determined to be the same color in (109) to (111), the degree of departure of the same color from the achromatic color is determined as a using equation (3), and further, equation (4) The weighting makes the amount (wij) inversely proportional to a, and the weighting of the highly saturated areas far from white greatly reduces the amount, preventing the contribution of the low chroma areas close to white from dropping. I'm here. It goes without saying that if the value of a is less than a certain value, it is possible not to reduce the contribution.

以上のように、レンズの焦点距離、被写体との距離、色
信号情報の絶対値に応じて、基準となる量を可変するか
もしくは、寄与の軽減量を変化させることで、白バラン
ス調整に対して有効な領域をより適切に選び出し、処理
することができるようになる。
As described above, white balance adjustment can be adjusted by varying the reference amount or the amount of contribution reduction depending on the focal length of the lens, the distance to the subject, and the absolute value of color signal information. This makes it possible to more appropriately select and process effective areas.

第1から4の実施例の一つ又は複数を同時に用いること
も可能である。
It is also possible to use one or more of the first to fourth embodiments simultaneously.

更に、同一色処理回路、及び画面評価回路(28)の動
作をマイクロコンピュータを用いてソフトウェア的に処
理することも可能であり、また、この処理自身があいま
いさを含んでいることを考慮して、ファジィ推論を用い
た制御も可能である。
Furthermore, it is also possible to process the operations of the same color processing circuit and the screen evaluation circuit (28) in software using a microcomputer, and considering that this process itself includes ambiguity, , control using fuzzy inference is also possible.

(ト)発明の効果 上述の如く本発明によれば、同一色で大面積の被写体を
含む様々な画面に対して、白バランスのずれを最小限に
抑えることができる。
(G) Effects of the Invention As described above, according to the present invention, deviations in white balance can be minimized for various screens including objects of the same color and large area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の回路ブロック図、第7図
及び98図は同フローチャート、第9図は第2実施例の
回路ブロック図、ts10図は同フローチャート、第1
1図は第3実施例のフローチャート、第12図は第4実
施例のフローチャー図である。 (4)・・・R増幅回路、(5)・・・B増幅回路、(
57)(67)・・・同一色処理回路、(28)・・・
画面評価回路。
FIG. 1 is a circuit block diagram of the first embodiment of the present invention, FIGS. 7 and 98 are the same flowchart, FIG. 9 is a circuit block diagram of the second embodiment, and ts10 is the same flowchart.
FIG. 1 is a flowchart of the third embodiment, and FIG. 12 is a flowchart of the fourth embodiment. (4)...R amplifier circuit, (5)...B amplifier circuit, (
57) (67)... Same color processing circuit, (28)...
Screen evaluation circuit.

Claims (7)

【特許請求の範囲】[Claims] (1)撮像映像信号中の色情報信号を基に、各色信号の
利得を制御する白バランス調整を行う白バランス調整装
置において、 撮像画面内で色情報信号の変動量が基準値を下回る領域
での色情報信号の白バランス調整への寄与を他の領域よ
り軽減させ、且つ該基準値をレンズの焦点距離に応じて
可変とすることを特徴とする白バランス調整装置。
(1) In a white balance adjustment device that performs white balance adjustment that controls the gain of each color signal based on the color information signal in the captured video signal, the white balance adjustment device adjusts the white balance by controlling the gain of each color signal based on the color information signal in the captured video signal. A white balance adjustment device characterized by reducing the contribution of a color information signal to white balance adjustment compared to other areas, and making the reference value variable according to a focal length of a lens.
(2)焦点距離が短くなるほど、基準値を小さくするこ
とを特徴とする第1項記載の白バランス調整装置。
(2) The white balance adjustment device according to item 1, wherein the reference value is made smaller as the focal length becomes shorter.
(3)撮像映像信号中の色情報信号を基に、各色信号の
利得を制御する白バランス調整を行う白バランス調整装
置において、 撮像画面内で色情報信号の変動量が基準値を下回る領域
での色情報信号の白バランス調整への寄与を他の領域よ
り軽減させ、且つ該基準値を被写体までの距離に応じて
可変とすることを特徴とする白バランス調整装置。
(3) In a white balance adjustment device that performs white balance adjustment that controls the gain of each color signal based on the color information signal in the captured video signal, the white balance adjustment device adjusts the white balance to control the gain of each color signal based on the color information signal in the captured image signal. A white balance adjustment device characterized by reducing the contribution of a color information signal to white balance adjustment compared to other areas, and making the reference value variable according to the distance to a subject.
(4)被写体との距離が長くなるほど、該基準値を小さ
くすることを特徴とする第3項記載の白バランス調整装
置。
(4) The white balance adjustment device according to item 3, wherein the reference value decreases as the distance to the subject increases.
(5)撮像映像信号中の色情報信号を基に、各色信号の
利得を制御する白バランス調整を行う白バランス調整装
置において、 撮像画面内で色情報信号の変動量が基準値を下回る領域
での色情報信号の白バランス調整への寄与を他の領域よ
り軽減させ、且つ該基準値を色情報信号の絶対値に応じ
て可変とすることを特徴とする白バランス調整装置。
(5) In a white balance adjustment device that performs white balance adjustment that controls the gain of each color signal based on the color information signal in the captured video signal, the white balance adjustment device adjusts the white balance to control the gain of each color signal based on the color information signal in the captured image signal. A white balance adjustment device characterized by reducing the contribution of a color information signal to white balance adjustment compared to other areas, and making the reference value variable according to the absolute value of the color information signal.
(6)色情報信号の絶対値が大きくなるほど該基準値を
大きくすることを特徴とする第5項記載の白バランス調
整装置。
(6) The white balance adjustment device according to item 5, wherein the reference value is increased as the absolute value of the color information signal increases.
(7)撮像映像信号中の色情報信号を基に、各色信号の
利得を制御する白バランス調整を行い且つ撮像画面内で
色情報信号の変動量が基準値を下回る領域での色情報信
号の白バランス調整への寄与を他の領域より軽減させる
白バランス調整装置において、 色情報信号が無彩色に近い領域では、前記軽減動作の軽
減量を小さくすることを特徴とする白バランス調整装置
(7) Based on the color information signal in the captured video signal, perform white balance adjustment to control the gain of each color signal, and adjust the color information signal in the area where the variation amount of the color information signal is less than the reference value within the captured image screen. A white balance adjustment device that reduces contribution to white balance adjustment compared to other areas, characterized in that in areas where color information signals are close to achromatic colors, the reduction amount of the reduction operation is made smaller.
JP2090902A 1989-11-17 1990-04-05 White balance adjuster Expired - Fee Related JPH0828879B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2090902A JPH0828879B2 (en) 1990-04-05 1990-04-05 White balance adjuster
US07/612,831 US5442408A (en) 1989-11-17 1990-11-13 White balance adjusting apparatus for automatically adjusting white balance in response to luminance information signal and color information signal obtained from image sensing device
DE69027751T DE69027751T2 (en) 1989-11-17 1990-11-16 White balance adjustment device for automatic adjustment of the white balance depending on the luminance information signal and color information signal from an image recording device
CA002030142A CA2030142C (en) 1989-11-17 1990-11-16 White balance adjusting apparatus for automatically adjusting white balance in response to color information signal obtained from image sensing device
EP95119590A EP0711082B1 (en) 1989-11-17 1990-11-16 A white balance adjusting apparatus for automatically adjusting white balance in response to color information signal obtained from image sensing device
EP95119589A EP0708569B1 (en) 1989-11-17 1990-11-16 A white balance adjusting apparatus for automatically adjusting white balance in response to color information signal obtained from image sensing device
EP90121976A EP0433672B1 (en) 1989-11-17 1990-11-16 White balance adjusting apparatus for automatically adjusting white balance in response to colour information signal obtained from image sensing device
ES90121976T ES2091784T3 (en) 1989-11-17 1990-11-16 WHITE BALANCE REGULATION CIRCUIT TO AUTOMATICALLY ADJUST THE WHITE BALANCE IN RESPONSE TO LIGHTING INFORMATION SIGNS AND COLOR INFORMATION SIGNALS FROM AN IMAGE CAPTURER.
KR1019900018624A KR100196305B1 (en) 1989-11-17 1990-11-16 Automatic white balance adjusting apparatus for white balance adjusting on the basis of color information abtained from ccd
DE69033743T DE69033743T2 (en) 1989-11-17 1990-11-16 White balance adjustment device for automatically adjusting the white balance depending on the color information signal from an image pickup device
DE69033744T DE69033744T2 (en) 1989-11-17 1990-11-16 White balance adjustment device for automatic adjustment of the white balance in dependence on the color information signal from an image recording device
US08/360,987 US5489939A (en) 1989-11-17 1994-12-20 White balance adjusting apparatus for automatically adjusting white balance in response to a color information signal obtained from an image sensing device
US08/454,835 US5555022A (en) 1989-11-17 1995-05-31 White balance adjusting apparatus for automatically adjusting white balance in response to color information signal obtained from image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090902A JPH0828879B2 (en) 1990-04-05 1990-04-05 White balance adjuster

Publications (2)

Publication Number Publication Date
JPH03289793A true JPH03289793A (en) 1991-12-19
JPH0828879B2 JPH0828879B2 (en) 1996-03-21

Family

ID=14011334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090902A Expired - Fee Related JPH0828879B2 (en) 1989-11-17 1990-04-05 White balance adjuster

Country Status (1)

Country Link
JP (1) JPH0828879B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165883A (en) * 1990-10-30 1992-06-11 Canon Inc Image pickup device
US5448292A (en) * 1991-09-04 1995-09-05 Fuji Photo Film Co., Ltd. White balance control device employing zoom information for photographing an object without the occurrence of color failure
US5760831A (en) * 1992-08-28 1998-06-02 Canon Kabushiki Kaisha Image processing apparatus with white balance control
JP2008035069A (en) * 2006-07-27 2008-02-14 Matsushita Electric Ind Co Ltd Video signal processor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165883A (en) * 1990-10-30 1992-06-11 Canon Inc Image pickup device
US5448292A (en) * 1991-09-04 1995-09-05 Fuji Photo Film Co., Ltd. White balance control device employing zoom information for photographing an object without the occurrence of color failure
US5565913A (en) * 1991-09-04 1996-10-15 Fuji Photo Film Co., Ltd. White balance control device for use in both an outdoor and indoor mode
US5751349A (en) * 1991-09-04 1998-05-12 Fuji Photo Film Co., Ltd. White balance control device and method using a variable region to reduce deterioration of reproduced color when a user manually selects a light source
US5760831A (en) * 1992-08-28 1998-06-02 Canon Kabushiki Kaisha Image processing apparatus with white balance control
JP2008035069A (en) * 2006-07-27 2008-02-14 Matsushita Electric Ind Co Ltd Video signal processor

Also Published As

Publication number Publication date
JPH0828879B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
KR100196305B1 (en) Automatic white balance adjusting apparatus for white balance adjusting on the basis of color information abtained from ccd
KR100199322B1 (en) White balance adjusting apparatus automatically adjusting white balance on the basis of color information signal obttained from image sensing device
US6906744B1 (en) Electronic camera
JP4042432B2 (en) Imaging device
JPH03289793A (en) White balance adjusting device
JP2523036B2 (en) Color video camera
JP2002185977A (en) Video signal processor and recording medium with video signal processing program recorded thereon
JP2532962B2 (en) Color video camera
JP3138152B2 (en) White balance adjustment device
JP3075888B2 (en) White balance adjustment device
JP2532975B2 (en) Color video camera
JP2532968B2 (en) Color video camera
JP2523038B2 (en) Color video camera
JP2532956B2 (en) Color video camera
JP2523034B2 (en) White balance adjustment device
JP2614542B2 (en) White balance adjustment device
JPH03219790A (en) White balance adjustment device
JP2523033B2 (en) White balance adjustment device
JP2708970B2 (en) Color video camera
JP2523040B2 (en) Color video camera
JPH03160891A (en) White balance adjusting device
JP2521832B2 (en) Color video camera
JPH0657067B2 (en) Color temperature compensation device for color television cameras
JPH04989A (en) White balance adjusting device
JP3378697B2 (en) White balance adjustment device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100321

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees