JPH03254164A - X-ray preionized laser unit - Google Patents

X-ray preionized laser unit

Info

Publication number
JPH03254164A
JPH03254164A JP5189490A JP5189490A JPH03254164A JP H03254164 A JPH03254164 A JP H03254164A JP 5189490 A JP5189490 A JP 5189490A JP 5189490 A JP5189490 A JP 5189490A JP H03254164 A JPH03254164 A JP H03254164A
Authority
JP
Japan
Prior art keywords
ray
electrode
main discharge
metal electrode
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5189490A
Other languages
Japanese (ja)
Inventor
Setsuo Suzuki
鈴木 節雄
Etsuo Noda
悦夫 野田
Toru Sugawara
亨 菅原
Osamu Morimiya
森宮 脩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5189490A priority Critical patent/JPH03254164A/en
Publication of JPH03254164A publication Critical patent/JPH03254164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To enhance reliability of an X-ray transmitting metal film electrode and to lengthen service life by arranging an X-ray generating target, independently from one of main discharge electrodes or the X-ray transmitting metal film electrode, in a low pressure chamber. CONSTITUTION:Ions, produced through discharge in the proximity of an ionization wire anode 9, are attracted to a grid electrode 11 and impinge against an acceleration cathode 13 thus producing secondary electrons. The secondary electrons are then accelerated between the acceleration cathode 13 and the grid electrode 11 and impinge against the inclined face of an X-ray generating target 7 thus generating X-ray. Thus generated X-ray then passes through an X-ray transmitting metal film electrode 1 and irradiates the interior of a main discharge chamber 15, and a laser medium is excited by a high voltage applied between a main discharge electrode 17 and the X-ray transmitting metal film electrode 1 thus causing oscillation. When the X-ray generating target 7 is arranged independently from one main discharge electrode or the X-ray transmitting metal film electrode 1, in a low pressure chamber 3 both thermal load and mechanical load of the X-ray transmitting metal film electrode 1 are relieved, resulting in the improvement of reliability and lengthening of service life.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、エキシマレーザ、TEACO2。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) This invention is an excimer laser, TEACO2.

金属蒸気レーザ等、レーザ媒質をパルスグロー放電によ
り励起してレーザ発振を行うパルスレーザに関する。
The present invention relates to a pulsed laser such as a metal vapor laser that excites a laser medium by pulsed glow discharge to generate laser oscillation.

(従来の技術) パルスグロー放電により励起しレーザ発振を行うパルス
レーザ放電には、エキシマレーザ、TEACO2,金属
蒸気レーザ等1種々の型のものがある。これらのレーザ
が一般的に共通する問題点として、予備電離に用いるス
パークギャップのアーク放電から発生する金属蒸気混入
にょるレーザ媒質の劣化、アーク放電からの紫外線によ
る予備電離の空間的不均一性がある。
(Prior Art) There are various types of pulsed laser discharges that are excited by pulsed glow discharge to produce laser oscillation, such as excimer lasers, TEACO2, and metal vapor lasers. Common problems with these lasers include deterioration of the laser medium due to metal vapor contamination generated from arc discharge in the spark gap used for pre-ionization, and spatial non-uniformity of pre-ionization due to ultraviolet rays from arc discharge. be.

この結果、レーザ装置の長寿命を図ることや、大出力化
および高繰り返し化を図ることが現在のの課題であり、
このため、X線予備電離方式が採用されつつある。
As a result, the current challenges are to extend the lifespan of laser equipment, increase output power, and increase repetition rate.
For this reason, the X-ray preionization method is being adopted.

第3図に従来のX線予備電離方式の構成概略図を示す。FIG. 3 shows a schematic diagram of the configuration of a conventional X-ray preionization method.

X線透過膜金属電極51の背後に低気圧室53が設けら
れ、一般にヘリウムガスが数mTo r rから数10
mTo r r封入されている。
A low pressure chamber 53 is provided behind the X-ray transparent membrane metal electrode 51, and generally helium gas is in the range of several mTorr to several tens of mTorr.
mTorr is enclosed.

低気圧室53内にレーザ光とほぼ平行に電離用ワイヤー
陽極55が配置されている。
An ionizing wire anode 55 is arranged in the low pressure chamber 53 almost parallel to the laser beam.

また、グリッド電極57がX線透過膜金属電極51と同
電位に配置され、さらにグリッド電極57と対向配置し
て加速用陰極59が設けられている。
Further, a grid electrode 57 is placed at the same potential as the X-ray transparent membrane metal electrode 51, and an accelerating cathode 59 is provided facing the grid electrode 57.

このように構成されたX線発生装置において、電離用電
源61をスイッチ63を用いて電離用ワイヤー陽極55
に電圧を印加し、電離用ワイヤー陽極55の近傍に放電
を発生させて放電発生と同時加速用陰極5つに加速電源
65をスイッチ67により加速電圧を印加する。
In the X-ray generator configured as described above, the ionizing power source 61 is connected to the ionizing wire anode 55 using the switch 63.
A voltage is applied to generate a discharge near the ionizing wire anode 55, and at the same time as the discharge occurs, an accelerating voltage is applied to the five accelerating cathodes by the switch 67 of the accelerating power source 65.

その結果、放電により発生したイオンがグリッド電極5
7により引かれ、イオンのみ加速用陰極59の表面に衝
突して二次電子が発生する。
As a result, ions generated by the discharge are transferred to the grid electrode 5.
7, only the ions collide with the surface of the acceleration cathode 59 to generate secondary electrons.

この二次電子がグリッド電極57との間で加速されてX
線透過膜金属電極51に衝突し、主放電室69内にX線
が照射される。
These secondary electrons are accelerated between the grid electrode 57 and
The X-rays collide with the radiation-transmissive film metal electrode 51 and irradiate the main discharge chamber 69 with the X-rays.

その結果、予めコンデンサー71に蓄積されていた電荷
をコンデンサ73に移行し、主放電電極75とX線透過
膜金属電極51との間に高電圧を印加し、レーザ媒質を
励起し発振を行う。
As a result, the electric charge previously stored in the capacitor 71 is transferred to the capacitor 73, and a high voltage is applied between the main discharge electrode 75 and the X-ray transparent film metal electrode 51 to excite the laser medium and cause oscillation.

このような構成の従来のレーザ装置では、元来。In a conventional laser device with such a configuration, originally.

主放電室69内が散気圧から10気圧と高圧であるので
X線透過膜金属電極51に大きい機械的負荷が作用する
。そのうえ、X線透過膜金属電極51は、X線発生を行
うX線発生用ターゲットとレーザ媒質の励起9発振を行
う主放電電極としての機能とを兼ねているので、熱負荷
が大きく、X線透過膜金属電極のひずみがおこり、さら
には膜破壊へとつながり、装置全体に多大な悪影響を与
える恐れがある。
Since the pressure inside the main discharge chamber 69 is as high as 10 atmospheres from the diffused pressure, a large mechanical load acts on the X-ray transparent membrane metal electrode 51. Moreover, the X-ray transparent film metal electrode 51 has a large thermal load because it functions as an X-ray generation target that generates X-rays and as a main discharge electrode that excites and oscillates the laser medium. This may cause strain in the metal electrode of the permeable membrane, which may even lead to membrane destruction, which may have a significant negative impact on the entire device.

(発明が解決しようとする課題) このように、X線予備電離型レーザ装置を実用化する上
で従来の技術では、X線透過膜金属電極51に大きい機
械的負荷が作用すると共に、X線発生用ターゲットと主
放電電極とを兼ねているので、信頼性が低く短寿命であ
るという欠点を有している。
(Problems to be Solved by the Invention) As described above, in order to put an X-ray pre-ionization type laser device into practical use, in the conventional technology, a large mechanical load acts on the X-ray transparent membrane metal electrode 51, and Since it serves both as a generation target and a main discharge electrode, it has the drawbacks of low reliability and short life.

この発明は、以上の問題点を解決して信頼性が高く寿命
の長いレーザ装置を提供することを目的とする。
An object of the present invention is to solve the above problems and provide a laser device with high reliability and long life.

[発明の構成] (課題を解決するための手段) 前記課題を解決するためのこの発明の構成は、一対の対
向配置された主放電電極からなり、前記主放電電極の少
なくとも一方の電極がX線透過膜金属電極で構成された
X線予備電離型レーザ装置において、前記主放電電極と
前記X線透過膜金属電極とで離隔された低気圧室を設け
、該低気圧室に前記X線透過膜金属電極の背後の該X透
過膜金属電極と同電位のX線発生用ターゲットを配置し
、該X線発生用ターゲットの面が前記X線透過膜金属電
極の面に対して傾斜状に形成され、前記X線発生用ター
ゲットの前記傾斜状面と相対して前記X線透過膜金属電
極と同電位又は負電位のグリッド電極を配置し、該グリ
ッド電極の背後に加速用陰極を配置し、前記X線発生用
ターゲットの前記傾斜状面と前記グリッド電極との間に
レーザの光軸とほぼ平行に電離用ワイヤー電極を配置し
たことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The structure of the present invention for solving the above problems consists of a pair of main discharge electrodes arranged opposite to each other, and at least one of the main discharge electrodes has an In an X-ray pre-ionization laser device configured with a radiation-transmitting membrane metal electrode, a low pressure chamber is provided which is separated by the main discharge electrode and the X-ray transmission membrane metal electrode, and the X-ray transmission An X-ray generating target having the same potential as the X-ray transparent membrane metal electrode is placed behind the membrane metal electrode, and the surface of the X-ray generating target is formed to be inclined with respect to the surface of the X-ray transparent membrane metal electrode. a grid electrode having the same potential or a negative potential as the X-ray transparent membrane metal electrode is arranged opposite to the inclined surface of the X-ray generation target, and an accelerating cathode is arranged behind the grid electrode, The present invention is characterized in that an ionizing wire electrode is disposed substantially parallel to the optical axis of the laser between the inclined surface of the X-ray generation target and the grid electrode.

また、加速用陰極の少なくとも一部を、仕事関数の低い
材料で構成している。
Furthermore, at least a portion of the acceleration cathode is made of a material with a low work function.

(作用) 電離用ワイヤ陽極の近傍で発生した放電によるイオンは
グリッド電極に引かれ、イオンは加速用陰極に衝突して
二次電子が発生する。
(Function) Ions due to the discharge generated near the ionizing wire anode are attracted to the grid electrode, and the ions collide with the accelerating cathode to generate secondary electrons.

この二次電子は加速用陰極とグリッド電極との間で加速
されてX線発生用ターゲットの傾斜状面に衝突しX線が
発生する。
These secondary electrons are accelerated between the accelerating cathode and the grid electrode, collide with the inclined surface of the X-ray generating target, and generate X-rays.

発生したX線はX線透過膜金属電極を通って主放電室内
に照射され、主放電電極とX線透過膜金属電極との間に
印加された高電圧によってレーザ媒質が励起され、発振
が行われる。
The generated X-rays pass through the X-ray transparent membrane metal electrode and are irradiated into the main discharge chamber, and the laser medium is excited by the high voltage applied between the main discharge electrode and the X-ray transparent membrane metal electrode, causing oscillation. be exposed.

このように、X線発生を行うためにX線発生用ターゲッ
トを、主放電電極の一つであるX線透過膜金属電極とは
別個に低気圧室内に設けたので、このX線透過膜金属電
極の熱負荷と機械的負荷は何れも軽減されることになっ
てその信頼性は向上し寿命は長くなる。
In this way, in order to generate X-rays, the target for X-ray generation was provided in the low-pressure chamber separately from the X-ray transparent membrane metal electrode, which is one of the main discharge electrodes. Both the thermal load and the mechanical load on the electrode are reduced, improving its reliability and extending its life.

加速用陰極の少なくとも一部を、仕事関数の低い材料で
構成しているので、イオンの衝突に伴う二次電子放出が
十分に行われてX線発生量は増加し、安定した発振が行
われる。
At least a portion of the accelerating cathode is made of a material with a low work function, so secondary electrons are sufficiently emitted due to ion collisions, increasing the amount of X-rays generated and providing stable oscillation. .

(実施例) 以下、この発明の実施例を図に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明のX線予備電離方式の構成概略図であ
る。
FIG. 1 is a schematic diagram of the configuration of the X-ray preionization method of the present invention.

X線透過膜金属電極1の背後に低気圧室3が設けられ、
ヘリウムガスが数mTorrから数10mTo r r
封入されている。
A low pressure chamber 3 is provided behind the X-ray transparent membrane metal electrode 1,
Helium gas ranges from several mTorr to several tens of mTorr
It is enclosed.

X線透過膜金属電極1の面に対して例えば450の傾斜
角の傾斜状面5を有するX線発生用ターゲット7を低気
圧室3内に設置し、このX線発生用ターゲット7はX線
透過膜金属電極1と同電位に配置されている。ターゲッ
ト7はニッケル、金等で成形されている。前記傾斜状面
5と相対してレーザの光軸とほぼ平行に電離用ワイヤ陽
極9を配置し、この電離用ワイヤ陽極9の背後に前記X
線透過膜金属電極1と同電位のグリッド電極11を配置
し、グリッド電極11の背後に加速用陰極13が設けら
れている。
An X-ray generating target 7 having an inclined surface 5 having an inclination angle of, for example, 450 with respect to the surface of the X-ray transparent membrane metal electrode 1 is installed in the low pressure chamber 3, and this X-ray generating target 7 It is arranged at the same potential as the permeable membrane metal electrode 1. The target 7 is made of nickel, gold, or the like. An ionizing wire anode 9 is disposed substantially parallel to the optical axis of the laser, facing the inclined surface 5, and behind the ionizing wire anode 9, the X
A grid electrode 11 having the same potential as the line-transmissive membrane metal electrode 1 is arranged, and an accelerating cathode 13 is provided behind the grid electrode 11.

低気圧室3に隣接して主放電室15が設けられ、X線透
過膜金属電極1と対向する一方の主放電電極17が主放
電室15内に設けられて前記X線透過膜電極1は、他方
の主放電電極を構成している。
A main discharge chamber 15 is provided adjacent to the low pressure chamber 3, and one main discharge electrode 17 facing the X-ray transparent membrane metal electrode 1 is provided within the main discharge chamber 15. , constitutes the other main discharge electrode.

以上の構成のX線発生装置において、スイッチ23を閉
じて電離用電源25の電圧を電離用ワイヤ陽極9に印加
してこの電離用ワイヤ陽極9の近傍に放電を発生させ、
0.1〜1マイクロ秒後にスイッチ27を閉じて加速電
源2つの加速電圧を加速用陰極13に負に印加する。
In the X-ray generator configured as above, the switch 23 is closed and the voltage of the ionizing power source 25 is applied to the ionizing wire anode 9 to generate a discharge near the ionizing wire anode 9,
After 0.1 to 1 microseconds, the switch 27 is closed to apply negative accelerating voltages from the two accelerating power supplies to the accelerating cathode 13.

その結果、放電により発生したイオンがグリッド電極1
1に引かれ、イオンのみ加速用陰極13の表面に衝突し
て二次電子が発生する。
As a result, ions generated by the discharge are transferred to the grid electrode 1.
1, only the ions collide with the surface of the acceleration cathode 13 to generate secondary electrons.

この二次電子が加速用陰極13とグリッド電極11との
間で加速され、X線発生用ターゲット7の傾斜状面5に
衝突し、X線が発生する。
These secondary electrons are accelerated between the acceleration cathode 13 and the grid electrode 11, collide with the inclined surface 5 of the X-ray generation target 7, and generate X-rays.

この結果、X線はX線透過膜金属電極1を通って主放電
室15内に照射される。
As a result, the X-rays pass through the X-ray transparent membrane metal electrode 1 and are irradiated into the main discharge chamber 15 .

スイッチ1つが閉じられ、予めコンデンサ21に蓄積さ
れていた電化をコンデンサ31に移行し、主放電電極1
7とX線透過膜金属電極1との間に高電圧を印加し、レ
ーザ媒質を励起して発振が行われ、ビームは第1図の紙
面に直交して発生する。
One switch is closed, and the electricity previously stored in the capacitor 21 is transferred to the capacitor 31, and the main discharge electrode 1 is transferred to the capacitor 31.
A high voltage is applied between the laser beam 7 and the X-ray transparent membrane metal electrode 1 to excite the laser medium and oscillate, and a beam is generated perpendicular to the plane of the paper of FIG.

また、加速用陰極13は、前記のように負のパレス電圧
を印加すること以外に負の直流電圧を印加しても同様の
結果が得られる。
Furthermore, the same result can be obtained by applying a negative DC voltage to the acceleration cathode 13 in addition to applying a negative pulse voltage as described above.

以上のように、X線発生用ターゲット7を、主放電電極
の−っであるX線透過膜金属電極1とは別個に低気圧室
内に設けたので、X線透過膜金属電極1の熱負荷と機械
的負荷は小さくなって熱によるひずみは軽減されて寿命
は長くなる。さらにX線発生用ターゲット7はブロック
状に形成でき、この点からも強度が向上する。
As described above, since the X-ray generation target 7 is provided in the low pressure chamber separately from the X-ray transparent membrane metal electrode 1, which is the main discharge electrode, the heat load on the X-ray transparent membrane metal electrode 1 is This reduces mechanical load, reduces thermal strain, and extends life. Furthermore, the X-ray generating target 7 can be formed into a block shape, which also improves the strength.

加速用陰極13から放出された二次電子は、X線発生用
ターゲット7の傾斜状面5に衝突してX線を放出するが
、傾斜状面5のため、二次電子の入射方向に対してほぼ
直角な方向にX線を放出し、放出されたX線は放出方向
前方のX線透過膜金属電極1と主放電電極17に到達す
ることができる。
The secondary electrons emitted from the acceleration cathode 13 collide with the inclined surface 5 of the X-ray generation target 7 and emit X-rays, but because of the inclined surface 5, the direction of incidence of the secondary electrons is X-rays are emitted in a substantially perpendicular direction, and the emitted X-rays can reach the X-ray transparent membrane metal electrode 1 and the main discharge electrode 17 in the forward direction of the emission direction.

第2図に第2実施例のX線発生用ターゲット37を縦断
面図で示した。
FIG. 2 shows a longitudinal cross-sectional view of an X-ray generating target 37 according to a second embodiment.

このX線発生用ターゲット37の傾斜状面35は、加速
用陰極13からの二次電子により発生するX線を、X線
透過膜金属電極1と主放電電極17に到達できるような
形状の例えば放物曲面によって形成したものである。
The inclined surface 35 of the X-ray generating target 37 has a shape that allows X-rays generated by secondary electrons from the accelerating cathode 13 to reach the X-ray transparent membrane metal electrode 1 and the main discharge electrode 17, for example. It is formed by a parabolic curved surface.

X線発生用ターゲットのこの傾斜状面は、この発明の前
記効果を逸脱しない範囲で、以上の形状以外の種々の形
状を使用しても良い。
The inclined surface of the X-ray generating target may have various shapes other than those described above without departing from the effects of the present invention.

また、加速用陰極13でのイオン衝突による二次電子発
生を十分に行うために、この加速用陰極13の基材部分
は、安価なステンレス鋼、黄銅合金、アルミニウム合金
等の通常の電極材料とし、加速用陰極13の少なくとも
一部1例えばその表面は、できるだけ仕事関数の低い材
料を用いることが望ましい。
In addition, in order to sufficiently generate secondary electrons through ion collisions at the acceleration cathode 13, the base material of the acceleration cathode 13 is made of a common electrode material such as inexpensive stainless steel, brass alloy, or aluminum alloy. It is desirable to use a material with as low a work function as possible for at least a portion 1 of the acceleration cathode 13, such as its surface.

仕事関数の低い材料として、例えばエミッタ材料に使用
する酸化バリュウム、炭化チタン、ランタンへキサポラ
イドランタンモリブデンなどを用いると、二次電子の放
出効果は一層向上する。
If a material with a low work function, such as barium oxide, titanium carbide, or lanthanum molybdenum hexaporide used for the emitter material, is used, the effect of emitting secondary electrons will be further improved.

加速用陰極13の基材部分に対する前記表面材の取付け
は、例えば表面コーティング、蒸着、或いは薄板の固着
、酸化バリウムの塗布など、種々の方法を使用できる。
Various methods can be used to attach the surface material to the base material portion of the acceleration cathode 13, such as surface coating, vapor deposition, fixing of a thin plate, and coating of barium oxide.

第1図、s2図において、符号33は絶縁材である。In FIG. 1 and s2, the reference numeral 33 is an insulating material.

[発明の効果] この発明のX線予備電離レーザ装置は上述のように、X
線発生を行うためのX線発生用ターゲットを、主放電電
極の一つであるX線透過膜金属電極とは別個に低気圧室
内に設けたのでX線透過膜金属電極の熱負荷と機械的負
荷は何れも小さくなってひずみは軽減され、X線予備電
離型レーザ装置を実用化する上で従来装置に比べて信頼
性が高く、長寿命のレーザ装置が実現できる。
[Effects of the Invention] As described above, the X-ray preionization laser device of the present invention
The X-ray generation target for generating rays was installed in the low-pressure chamber separately from the X-ray transparent membrane metal electrode, which is one of the main discharge electrodes. Both loads are reduced and strain is reduced, making it possible to realize a laser device with higher reliability and longer life than conventional devices when putting the X-ray pre-ionization laser device into practical use.

加速用陰極の少なくとも一部を、仕事関数の低い材料で
構成したときは、イオンの衝突に伴う二次電子放出が十
分に行われてX線発生量は増加し、安定した発振が行わ
れる。
When at least a portion of the accelerating cathode is made of a material with a low work function, secondary electrons are sufficiently emitted due to ion collisions, the amount of X-rays generated increases, and stable oscillation is performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例におけるX線予備電離レ
ーザ装置のビーム方向からみた断面図。 第2図は第2実施例を示す要部断面図、第3図は従来の
X線予備電離レーザ装置の要部断面を含む構成鎖略図で
ある。 1・・・X線透過膜金属電極 3・・・低気圧室5・・
・傾斜状面 7.37・・・X線発生用ターゲット 9・・・電離用ワイヤ陽極 11・・・グリッド電極 13・・・加速用陰極 17・・・主放電電極代私弁理
士三好秀和 第1図 第2図
FIG. 1 is a cross-sectional view of an X-ray preionization laser device according to a first embodiment of the present invention, viewed from the beam direction. FIG. 2 is a cross-sectional view of a main part showing a second embodiment, and FIG. 3 is a schematic structural diagram including a cross-section of a main part of a conventional X-ray preionization laser device. 1... X-ray transparent membrane metal electrode 3... Low pressure chamber 5...
・Slanted surface 7.37... Target for X-ray generation 9... Wire anode for ionization 11... Grid electrode 13... Cathode for acceleration 17... Main discharge electrode, private patent attorney Hidekazu Miyoshi Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)一対の対向配置された主放電電極からなり、前記
主放電電極の少なくとも一方の電極がX線透過膜金属電
極で構成されたX線予備電離型レーザ装置において、前
記主放電電極と前記X線透過膜金属電極とで隔離された
低気圧室を設け、該低気圧室に前記X線透過膜金属電極
の背後に該X線透過膜金属電極と同電位のX線発生用タ
ーゲットを配置し、該X線発生用ターゲットの面が前記
X線透過膜金属電極の面に対して傾斜状に形成され、前
記X線発生用ターゲットの前記傾斜状面と相対して前記
X線透過膜金属電極と同電位又は負電位のグリッド電極
を配置し、該グリッド電極の背後に加速用陰極を配置し
、前記X線発生用ターゲットの前記傾斜状面と前記グリ
ッド電極との間にレーザの光軸とほぼ平行に電離用ワイ
ヤー陽極を配置したことを特徴とするX線予備電離型レ
ーザ装置。
(1) In an X-ray pre-ionization laser device comprising a pair of main discharge electrodes arranged opposite to each other, and at least one electrode of the main discharge electrodes is constituted by an X-ray transparent film metal electrode, the main discharge electrode and the A low pressure chamber isolated from the X-ray transparent membrane metal electrode is provided, and an X-ray generation target having the same potential as the X-ray transparent membrane metal electrode is placed behind the X-ray transparent membrane metal electrode in the low pressure chamber. The surface of the X-ray generating target is formed to be inclined with respect to the surface of the X-ray transparent film metal electrode, and the surface of the X-ray transparent film metal is formed opposite to the inclined surface of the X-ray generating target. A grid electrode having the same potential or a negative potential as the electrode is arranged, an acceleration cathode is arranged behind the grid electrode, and the optical axis of the laser is arranged between the inclined surface of the X-ray generation target and the grid electrode. An X-ray pre-ionization laser device characterized in that an ionization wire anode is arranged substantially parallel to the ionization wire anode.
(2)前記加速用陰極の少なくとも一部を、仕事関数の
低い材料で構成していることを特徴とするX線予備電離
型レーザ装置。
(2) An X-ray preionization laser device, wherein at least a portion of the acceleration cathode is made of a material with a low work function.
JP5189490A 1990-03-05 1990-03-05 X-ray preionized laser unit Pending JPH03254164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5189490A JPH03254164A (en) 1990-03-05 1990-03-05 X-ray preionized laser unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5189490A JPH03254164A (en) 1990-03-05 1990-03-05 X-ray preionized laser unit

Publications (1)

Publication Number Publication Date
JPH03254164A true JPH03254164A (en) 1991-11-13

Family

ID=12899587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5189490A Pending JPH03254164A (en) 1990-03-05 1990-03-05 X-ray preionized laser unit

Country Status (1)

Country Link
JP (1) JPH03254164A (en)

Similar Documents

Publication Publication Date Title
US4955045A (en) Plasma X-ray tube, in particular for X-ray preionization of gas lasers and method for produicng X-radiation with such an X-ray tube
US5134641A (en) Plasma x-ray tube, in particular for x-ray preionizing of gas lasers, and an electron gun using the plasma x-ray tube
US8081734B2 (en) Miniature, low-power X-ray tube using a microchannel electron generator electron source
JPH02248094A (en) X-ray pre-ionization pulse laser device
JPH0421357B2 (en)
JP2007042458A (en) Electron emitting device
JPH03254164A (en) X-ray preionized laser unit
US4024465A (en) Generation of corona for laser excitation
JP2592821B2 (en) Gas laser device
JPS6212059A (en) Luminous radiation electron tube
JP3490770B2 (en) Target device and X-ray laser device
JPH04118981A (en) X-ray spare ionization type laser
JP2913743B2 (en) X-ray preionization gas laser device
JPS61168973A (en) Gas laser unit
JPH03139890A (en) X-ray preliminary ionization pulse laser device
JPS5949149A (en) Plasma cathode electron beam generator and generating method
US20050199982A1 (en) High power diode utilizing secondary emission
JPS63217678A (en) Pulse laser
JPH0135509B2 (en)
RU2380805C1 (en) Gas laser with electron beam
JPH01274485A (en) Pulse laser device
JPS63217681A (en) Pulse gas laser device
JPH06265696A (en) High-speed atomic beam source
JPH06338279A (en) Electron gun
JPS63224277A (en) Pulse gas laser equipment