JPH03253858A - Material and method for forming pattern - Google Patents

Material and method for forming pattern

Info

Publication number
JPH03253858A
JPH03253858A JP2051712A JP5171290A JPH03253858A JP H03253858 A JPH03253858 A JP H03253858A JP 2051712 A JP2051712 A JP 2051712A JP 5171290 A JP5171290 A JP 5171290A JP H03253858 A JPH03253858 A JP H03253858A
Authority
JP
Japan
Prior art keywords
acid
alkali
resin composition
pattern
resist resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2051712A
Other languages
Japanese (ja)
Inventor
Haruyori Tanaka
啓順 田中
Jiro Nakamura
二朗 中村
Koji Ban
弘司 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2051712A priority Critical patent/JPH03253858A/en
Publication of JPH03253858A publication Critical patent/JPH03253858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To enable a resist resin composition to be developed with an aqueous solution of alkali low in concentration by incorporating a diazonaphthoquinone derivative having a hydroxyl group in the resist resin composition. CONSTITUTION:The resist resin composition is composed essentially of an alkali- soluble polymer having hydroxyl groups and a crosslinking agent and an acid- generating agent to be allowed to generate the acid by irradiation with high- energy beams, and the diazonaphthoquinone derivative having a hydroxyl group is incorporated in the resist resin composition. When it is patternwise exposed to the energy beams, the acid is generated at the exposed parts and baking after exposure allows the hydroxyl groups of the base polymer and the diazonaphthoquinone derivative to react with the cross-linking agent by the generated acid as a catalyst and restrains the alkali-solubility of the polymer, and the solubility at the nonexposed areas is greatly improved by exposing the whole surface to ultraviolet rays to convert the naphthoquinone derivative into an indenecarboxylic acid, thus permitting a latent image to be developed with an aqueous solution of alkali low in concentration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子、光学部品の製造に用いられる化
学増感系レジスト材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a chemically sensitized resist material used in the manufacture of semiconductor devices and optical components.

〔従来の技術〕[Conventional technology]

近年、半導体集積回路の高集積化に伴い、加工寸法は0
.5μm以下に達している。リソグラフィとしては従来
の紫外線を光源とする、フォトリソグラフィが主流であ
ったが、0.5μm以下のパターン形成には遠紫外線、
電子線、X線などの高エネルギ線を光源とするりソグラ
フィの適用が必要になってきた。それに用いられるレジ
スト材料は高感度、高解像性の点からベースポリマーと
してのノボラック樹脂などの水酸基を有するポリマー、
架橋剤であるメラミン化合物、高エネルギ線照射により
架橋反応の触媒となる酸を発生する酸発生剤を含む3元
系化学増感レジストが提案されている[:W、E、  
フィ!J   (Feely) ラ、ポリマー エンジ
ニアリング アンド サイエンス(Polymer B
ngineeringand 5cience)第26
巻、第1101頁(1986年)〕。
In recent years, with the increase in the degree of integration of semiconductor integrated circuits, processing dimensions have decreased to 0.
.. It has reached 5 μm or less. Photolithography, which uses conventional ultraviolet rays as a light source, was the mainstream lithography, but deep ultraviolet rays and
It has become necessary to apply lithography using high-energy rays such as electron beams and X-rays as a light source. Resist materials used for this purpose include polymers with hydroxyl groups such as novolac resins as base polymers from the viewpoint of high sensitivity and high resolution.
A ternary chemically sensitized resist has been proposed that contains a melamine compound as a crosslinking agent and an acid generator that generates an acid as a catalyst for the crosslinking reaction when irradiated with high-energy radiation [: W, E,
Fi! J (Feely) La, Polymer Engineering and Science (Polymer B
ngineeringand 5science) No. 26
Vol., p. 1101 (1986)].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この化学増感系レジストは高エネルギ線を照射し酸発生
剤を発生させたのち、熱処理(FEB)を行うことによ
り、メラミン化合物とベースポリマーが架橋反応を起こ
し、ポリマーのアルカリ溶解性を著しく低下させる。こ
のため、アルカリ水溶液で現像することにより、高エネ
ルギ線を照射した以外の部分だけ溶解除去されるので、
ネガ型のパターンが形成できる。FEBの温度及び時間
により架橋反応量が変化し感度、解像性は大きく変化す
る。すなわち、FEB温度が高く、また時間が長いほど
高感度で高解像性が達成できる。しかしながら、FEB
温度が高くなると高エネルギ線が照射されない部分のレ
ジストのアルカリ溶解性も低下するため、現像時間が長
くなる、あるいは現像液のアルカリ濃度を高くする必要
を生じる。アルカリ濃度を高くする、あるいは現像時間
を長くすると、アルミニウム基板ではアルミニウムの溶
解を生じる欠点がある。
This chemically sensitized resist is irradiated with high-energy radiation to generate an acid generator, and then subjected to heat treatment (FEB), which causes a crosslinking reaction between the melamine compound and the base polymer, which significantly reduces the alkali solubility of the polymer. let Therefore, by developing with an alkaline aqueous solution, only the areas other than those irradiated with high-energy rays are dissolved and removed.
A negative pattern can be formed. The amount of crosslinking reaction varies depending on the temperature and time of FEB, and the sensitivity and resolution vary greatly. That is, the higher the FEB temperature and the longer the FEB time, the higher the sensitivity and resolution can be achieved. However, FEB
As the temperature rises, the alkali solubility of the resist in areas not irradiated with high-energy rays also decreases, resulting in a longer development time or a need to increase the alkali concentration of the developer. If the alkali concentration is increased or the development time is increased, aluminum substrates have the disadvantage of dissolving aluminum.

本発明の目的は、化学増感系レジストにおいてFEB温
度を高くする、あるいはFEB時間を長くしても、低濃
度のアルカリ水溶液で現像できるパターン形成材料及び
それを用いたパターン形成方法を提供することにある。
An object of the present invention is to provide a pattern forming material that can be developed with a low concentration alkaline aqueous solution even if the FEB temperature is increased or the FEB time is increased in a chemically sensitized resist, and a pattern forming method using the same. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、第1の発明はパターン形成材料に
関するものであり、水酸基を有するアルカリ可溶性ポリ
マーと架橋剤と高エネルギ線照射により酸を発生する酸
発生剤を必須成分とするレジスト樹脂組成物に水酸基を
有するジアゾナフトキノン系化合物が含有されているこ
とを特徴とする。
To summarize the present invention, the first invention relates to a pattern forming material, and relates to a resist resin composition containing as essential components an alkali-soluble polymer having a hydroxyl group, a crosslinking agent, and an acid generator that generates acid upon irradiation with high-energy beams. The product is characterized by containing a diazonaphthoquinone compound having a hydroxyl group.

そして、本発明の第2の発明は、パターン形成方法に関
するものであって、第1の発明のパターン形成材料を加
工基板上に塗布する工程、それに高エネルギ線をパター
ン状に照射する工程、次いで高エネルギ線を照射した基
板を熱処理(FEB)をする工程、次いで大気中にて紫
外線を全面に露光する工程、その後アルカリ性現像液に
よって現像することにより高エネルギ線照射部分にネガ
型パターンを形成させる工程の各工程を包含することを
特徴とする。
A second invention of the present invention relates to a pattern forming method, which includes a step of applying the pattern forming material of the first invention onto a processing substrate, a step of irradiating it with a high-energy beam in a pattern, and then A step of heat-treating (FEB) the substrate irradiated with high-energy beams, then a step of exposing the entire surface to ultraviolet rays in the atmosphere, and then developing with an alkaline developer to form a negative pattern in the areas irradiated with high-energy beams. It is characterized by including each step of the process.

本発明で用いるアルカリ可溶性ポリマーの例としてはノ
ボラック樹脂、フェノール樹脂、ポリビニルフェノール
樹脂などが挙げられるが、FEBによる高エネルギ線を
照射しない部分のアルカリ溶解性の低下をできる限り抑
制するためには、分子量は低い方がよい。FEB後の溶
解速度比(照射部分/未照射部分〉が最も高くできるの
はノボラック樹脂で重量平均分子量が5000から15
00の範囲であった。
Examples of alkali-soluble polymers used in the present invention include novolac resins, phenolic resins, and polyvinylphenol resins, but in order to suppress as much as possible the decrease in alkali solubility in areas that are not irradiated with high-energy beams by FEB, The lower the molecular weight, the better. The highest dissolution rate ratio (irradiated area/unirradiated area) after FEB is achieved with novolak resins with a weight average molecular weight of 5000 to 15.
It was in the range of 00.

架橋剤は下記−数式I: RIOC)12        CH20R6(R,、
R2、R3、R1、R5、R6は水素、アルキル基及び
フェニル基からなる群から選択された1種の基を示す)
で表されるメラミン化合物あるいは多官能性エポキシ化
合物やイソシアネート化合物が使用できる。レジスト材
料としてはメラミン化合物が最も適した架橋剤と言える
The crosslinking agent has the following formula I: RIOC)12CH20R6(R,,
R2, R3, R1, R5, R6 represent one type of group selected from the group consisting of hydrogen, an alkyl group, and a phenyl group)
Melamine compounds, polyfunctional epoxy compounds, and isocyanate compounds represented by can be used. As a resist material, a melamine compound can be said to be the most suitable crosslinking agent.

酸発生剤は下記−数式■、■、■: ArNz”MXn−−(II ) Arl”MXn−−(III ) ArsS”MXn−−−・(IV ) (式中MXnはBFl、PFs、Ashs及びSbF、
の群から選択された1種を示す〉で表されるオニウム塩
あるいはハロゲン化メチルトリアジン、テトラブロモビ
スフェノールA1ニトロベンジルエステル化物などが使
用できる。
The acid generator has the following formulas: ■, ■, ■: ArNz"MXn--(II) Arl"MXn--(III) ArsS"MXn--(IV) (where MXn represents BFL, PFs, Ashs, and SbF,
Onium salts, halogenated methyl triazines, tetrabromobisphenol A1 nitrobenzyl esters, etc. can be used.

ジアゾナフトキノン系化合物は、一般のポジ型フォトレ
ジストで使用されている1、2−ナフトキノンジアジド
−5−スルホン酸あるいは1゜2−ナフトキノンジアジ
ド−4−スルホン酸とバラストである水酸基を有する化
合物とのエステル化物のすべてが使用できる。しかし、
照射部分と未照射部分とのアルカリ溶解速度比を高くす
るためにはバラストはノボラック樹脂、フェノール樹脂
、ポリビニルフェノールなどの水酸基を有するポリマー
が好ましい。架橋剤と架橋させるため、エステル化率は
50%以下にすることが重要である。
Diazonaphthoquinone compounds are a combination of 1,2-naphthoquinonediazide-5-sulfonic acid or 1゜2-naphthoquinonediazide-4-sulfonic acid, which is used in general positive photoresists, and a compound having a hydroxyl group as a ballast. All esters can be used. but,
In order to increase the alkali dissolution rate ratio between the irradiated portion and the non-irradiated portion, the ballast is preferably a polymer having a hydroxyl group such as novolak resin, phenol resin, or polyvinylphenol. In order to crosslink with the crosslinking agent, it is important that the esterification rate is 50% or less.

アルカリ可溶性ポリマーとジアゾナフトキノン系化合物
の水酸基は高エネルギ線照射により酸発生剤から生じた
酸を触媒としてFEBにより架橋剤と反応する。これに
より、照射部分のアルカリ溶解性は著しく低下する。
The hydroxyl groups of the alkali-soluble polymer and diazonaphthoquinone compound react with the crosslinking agent by FEB using the acid generated from the acid generator by high-energy ray irradiation as a catalyst. This significantly reduces the alkali solubility of the irradiated area.

一方、PEB後、レジスト全面に紫外線を露光するとジ
アゾナフトキノン系化合物は相応するインデンカルボン
酸に変化する。インデンカルボン酸はアルカリ溶解促進
の効果があるため、高エネルギ線の未照射部分のレジス
トのアルカリ溶解性を高めることができる。このため、
低濃度のアルカリ水溶液で現像することができる。
On the other hand, when the entire surface of the resist is exposed to ultraviolet rays after PEB, the diazonaphthoquinone compound changes to the corresponding indenecarboxylic acid. Since indene carboxylic acid has the effect of promoting alkali dissolution, it is possible to increase the alkali solubility of the resist in the portions not irradiated with the high-energy beam. For this reason,
It can be developed with a low concentration alkaline aqueous solution.

また、照射部分もインデンカルボン酸が紫外線露光によ
り生成するが、この部分においてはPEBにより、既に
バラストの水酸基が架橋反応を起こしているので、アル
カリ溶解性を促進することができない。このため、照射
部分と未照射部分の溶解速度比を高くすることができる
ので、解像性を高くできる。
Furthermore, indenecarboxylic acid is generated in the irradiated area by exposure to ultraviolet light, but in this area, the hydroxyl groups of the ballast have already undergone a crosslinking reaction due to PEB, so that alkali solubility cannot be promoted. Therefore, the dissolution rate ratio between the irradiated portion and the non-irradiated portion can be increased, so that resolution can be increased.

ジアゾナフトキノン系化合物を添加しない化学増感系レ
ジストの場合、FEB温度が105℃で2分間で熱処理
したとき、2.38%テトラメチルアンモニウムヒドロ
キシド水溶液に対する未照射部分の溶解速度は約10 
nm7秒であったが、本発明のジアゾナフトキノン系化
合物を添加したものは添加しないものより100 nm
/m/上は高くできた。したがって、現像時間は添加し
ない場合の1/10に短縮できるため、アルミニウム基
板の場合でも、アルミニウムの溶解を抑制できるのでプ
ロセスでの問題を解決できる。また、レジストコントラ
ストが向上したことにより、パターン形成プロセスにお
けるマージンを広くできる。
In the case of a chemically sensitized resist that does not contain a diazonaphthoquinone compound, when heat treated at an FEB temperature of 105°C for 2 minutes, the dissolution rate of the unirradiated area in a 2.38% tetramethylammonium hydroxide aqueous solution is approximately 10%.
nm 7 seconds, but the one to which the diazonaphthoquinone compound of the present invention was added was 100 nm faster than the one not added.
/m/ The top was made high. Therefore, the development time can be shortened to 1/10 of that without addition, so even in the case of aluminum substrates, dissolution of aluminum can be suppressed, and problems in the process can be solved. Furthermore, since the resist contrast is improved, the margin in the pattern formation process can be widened.

本発明のパターン形成材料の組成はアルカリ可溶性のベ
ースポリマーが100重量部に対し、架橋剤が5〜50
重量部、酸発生剤がl〜30重量部、ジアゾナフトキノ
ン系化合物が10〜50重量部の範囲で有効な特性が得
られる。
The composition of the pattern forming material of the present invention is that the alkali-soluble base polymer is 100 parts by weight, and the crosslinking agent is 5 to 50 parts by weight.
Effective properties can be obtained within the range of 1 to 30 parts by weight of the acid generator and 10 to 50 parts by weight of the diazonaphthoquinone compound.

本発明の第2の発明は高エネルギ線をパターン状に照射
した後に熱処理そして現像を行う通常のパターン形成法
に、現像前に紫外線を全面露光する工程を追加したこと
を特徴とするパターン形成方法である。前記したように
、この工程によりジアゾナフトキノン系化合物が相応す
るインデンカルボン酸に変化するため、高エネルギ線を
照射しない部分のアルカリ溶解性を高めることができ、
低濃度のアルカリ水溶液で現像できる。そして、照射部
と未照射部の溶解速度比を高めることができるため、レ
ジストコントラストを高くできると同時に基板を損傷す
ることがない。
A second invention of the present invention is a pattern forming method characterized by adding a step of exposing the entire surface to ultraviolet rays before development to the usual pattern forming method of irradiating high energy beams in a pattern, followed by heat treatment and development. It is. As mentioned above, this step converts the diazonaphthoquinone compound into the corresponding indenecarboxylic acid, so it is possible to increase the alkali solubility of the part that is not irradiated with high-energy radiation.
Can be developed with a low concentration alkaline aqueous solution. Furthermore, since the dissolution rate ratio between the irradiated area and the unirradiated area can be increased, the resist contrast can be increased and at the same time, the substrate is not damaged.

高エネルギ線の例としては電子線、X線又は遠紫外線が
挙げられる。
Examples of high-energy radiation include electron beams, X-rays or deep ultraviolet radiation.

〔実施例〕〔Example〕

以下、本発明を実施例で説明するが、本発明はこれに限
るものではない。
EXAMPLES The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

実施例1 ノボラック樹脂(分子量=8000)   100 g
メチル化メチロールメラミン     15 g酸発生
剤(後述)       2〜10 gを2−エトキシ
エチルアセテート400−に溶解したレジスト溶液を調
製し、シリコン基板に塗布し1μm厚さのレジスト膜を
形成した。ホットプレートを用い100℃で1分間プリ
ベークしたのち、電子線(加圧電圧20kV)、X線C
CuL線ターゲット〉又は遠紫外線(1kw Xe−H
g)を高エネルギ線源としてパターン状に照射した。
Example 1 Novolac resin (molecular weight = 8000) 100 g
A resist solution was prepared by dissolving 15 g of methylated methylolmelamine and 2 to 10 g of an acid generator (described later) in 400 g of 2-ethoxyethyl acetate, and applied to a silicon substrate to form a resist film with a thickness of 1 μm. After prebaking at 100℃ for 1 minute using a hot plate, electron beam (pressure voltage 20kV), X-ray C
CuL ray target> or far ultraviolet (1kw Xe-H
g) was irradiated in a pattern as a high-energy radiation source.

次いで105℃のホットプレート上で2分間熱処理した
。次いで紫外線(超高圧水銀灯)を全面に500 mJ
/ cm’照射し、1.5%テトラメチルアンモニウム
ヒドロキシド(TMA)l)水溶液で3分間現像した。
Then, it was heat-treated on a 105°C hot plate for 2 minutes. Next, 500 mJ of ultraviolet light (ultra high pressure mercury lamp) was applied to the entire surface.
/cm' and developed for 3 minutes with a 1.5% tetramethylammonium hydroxide (TMA) aqueous solution.

現像後高エネルギ線照射部の膜0 厚を測定し、初期膜厚の50%のところの照射量を感度
(D5゜〉とした。表1に感度と解像性をまとめて示す
。表1において市販の化学増感レジスト5AL601(
シラプレー社)のレジスト溶液100gに対し、同じジ
アゾナフトキノン化合物を6g添加した材料を同一の方
法で評価した結果を比較例として掲げたが、同等の解像
性を得るためには2.0%TMAH水溶液で現像する必
要があった。本発明では分子量が低いノボラック樹脂を
用いているため、低濃度のTMAHで現像できる。
After development, the film 0 thickness of the high-energy beam irradiated area was measured, and the irradiation dose at 50% of the initial film thickness was defined as the sensitivity (D5゜). Table 1 summarizes the sensitivity and resolution. Table 1 Commercially available chemically sensitized resist 5AL601 (
As a comparative example, a material in which 6 g of the same diazonaphthoquinone compound was added to 100 g of a resist solution (Silapray) was evaluated using the same method, but in order to obtain the same resolution, 2.0% TMAH It was necessary to develop with an aqueous solution. In the present invention, since a novolac resin having a low molecular weight is used, development can be performed with a low concentration of TMAH.

しかし、5AL601の特性を通常のパターン形成方法
で評価する場合は2.5%TMAH水溶液で10分間現
像する必要があり、これから本発明の方法はSALレジ
ストにも有効であることが判った。
However, when evaluating the characteristics of 5AL601 using a normal pattern forming method, it was necessary to develop it with a 2.5% TMAH aqueous solution for 10 minutes, and it was found from this that the method of the present invention is also effective for SAL resist.

て、実施例1と同様の方法で感度及び解像性を評価した
。現像は1.0%TMAH水溶液で行った。結果を表2
に示す。
Sensitivity and resolution were evaluated in the same manner as in Example 1. Development was performed with a 1.0% TMAH aqueous solution. Table 2 shows the results.
Shown below.

実施例2 実施例1におけるノボラック樹脂の代りにポリヒニルフ
ェノール樹脂(分子量5000)を用い実施例3 実施例1におけるノボラック樹脂の代りに水酸基を有す
るアルカリ可溶性シリコーンポリマー(分子量2000
) 〔上式におイテX = Cll3CO−1Y=CH3、
R′〜R′″′#= 7 ニー’−JL/基、1=0.
05、m = 0115、n=0.05、p=0.1.
q=0.65であるもの〕を用いた。実施例1と同様の
方法で感度及び解像性を評価した。現像は1.0%TM
AH水溶液で行った。結果を表3に示す。
Example 2 A polyhinylphenol resin (molecular weight 5,000) was used instead of the novolac resin in Example 1. Example 3 An alkali-soluble silicone polymer having a hydroxyl group (molecular weight 2,000) was used instead of the novolac resin in Example 1.
) [According to the above formula, X = Cll3CO-1Y=CH3,
R'~R''''#=7 Ni'-JL/group, 1=0.
05, m = 0115, n = 0.05, p = 0.1.
q=0.65] was used. Sensitivity and resolution were evaluated in the same manner as in Example 1. Development is 1.0%TM
This was done using an AH aqueous solution. The results are shown in Table 3.

6 実施例4 実施例1におけるノボラック樹脂の代りにフェノール樹
脂(分子量12000)を用いて、実施例1と同様の方
法でレジスト特性を評価した。現像は1.5%TMAH
水溶液を用いた。その結果を表4に示す。
6 Example 4 Resist properties were evaluated in the same manner as in Example 1, using a phenol resin (molecular weight 12,000) instead of the novolak resin in Example 1. Developed with 1.5% TMAH
An aqueous solution was used. The results are shown in Table 4.

実施例5 実施例1におけるジアゾナフトキノン化合物に代えて、
ノボラック樹脂(分子量1000)のジアゾナフトキノ
ン−4−スルホン酸エステルを用い、実施例1と同様の
方法でレジスト特性を評価した。現像は1.5%TMA
Hを用いた。結果は表1に示す結果と同じであった。
Example 5 Instead of the diazonaphthoquinone compound in Example 1,
Resist properties were evaluated in the same manner as in Example 1 using diazonaphthoquinone-4-sulfonic acid ester of novolac resin (molecular weight 1000). Developed with 1.5% TMA
H was used. The results were the same as those shown in Table 1.

実施例6 実施例1におけるジアゾナフトキノン化合物に代えて、
ノボラック樹脂(分子量800〉、ポリビニルフェノー
ル樹脂(分子量1500) 、テトラヒドロキシベンゾ
フェノンの各ジアゾナフトキノン−4−スルホン酸エス
テルを用い、また酸発生剤として、ジニトロベンジルト
シレートを用い、実施例1と同様の方法でレジスト特性
を評価した。現像は1.5%TMAHを用いた。結果を
表5に示す。
Example 6 Instead of the diazonaphthoquinone compound in Example 1,
The same procedure as in Example 1 was carried out using novolac resin (molecular weight 800), polyvinylphenol resin (molecular weight 1500), diazonaphthoquinone-4-sulfonic acid ester of tetrahydroxybenzophenone, and dinitrobenzyl tosylate as the acid generator. The resist properties were evaluated using the following method. 1.5% TMAH was used for development. The results are shown in Table 5.

0 表 〔発明の効果〕 以上説明したように、本発明によるジアゾナフトキノン
系化合物を含有する化学増感系レジスト材料は高エネル
ギ線をパターン状に照射した部分には酸を発生し、照射
後の熱処理(PEB〉において、その酸を触媒としてベ
ースポリマーあるいはジアゾナフトキノン系化合物の水
酸基が架橋剤と反応し、ポリマーのアルカリ溶解性が抑
制される。PEB後、全面に紫外線を露光することによ
りジアゾナフトキノン系化合物はインデンカルボン酸に
変化するため、未照射部分の溶解性は大幅に改善される
。このため、低濃度のアルカリ水溶液で現像できる利点
があり、それにより、照射部と未照射部の溶解性の選択
比が大きくなる、また、アルミニウム基板を損傷しない
。また、この材料を用いたパターン形成方法は微細なパ
ターンを高感度に形成できるので、半導体集積素子の加
工に使用できる。
0 Table [Effects of the Invention] As explained above, the chemically sensitized resist material containing the diazonaphthoquinone compound according to the present invention generates acid in the areas irradiated with high-energy radiation in a pattern, and In heat treatment (PEB), the hydroxyl groups of the base polymer or diazonaphthoquinone compound react with the crosslinking agent using the acid as a catalyst, and the alkali solubility of the polymer is suppressed.After PEB, the entire surface is exposed to ultraviolet light to dissolve diazonaphthoquinone. Since the system compound changes to indene carboxylic acid, the solubility of the unirradiated area is greatly improved.Therefore, it has the advantage of being able to be developed with a low-concentration alkaline aqueous solution, which allows the dissolution of the irradiated and unirradiated areas. In addition, the pattern forming method using this material can form fine patterns with high sensitivity, so it can be used for processing semiconductor integrated devices.

Claims (1)

【特許請求の範囲】 1、水酸基を有するアルカリ可溶性ポリマーと架橋剤と
高エネルギ線照射により酸を発生する酸発生剤を必須成
分とするレジスト樹脂組成物に水酸基を有するジアゾナ
フトキノン系化合物が含有されていることを特徴とする
パターン形成材料。 2、請求項1記載のパターン形成材料を加工基板上に塗
布する工程、それに高エネルギ線をパターン状に照射す
る工程、次いで高エネルギ線を照射した基板を熱処理を
する工程、次いで大気中にて紫外線を全面に露光する工
程、その後アルカリ性現像液によって現像することによ
り高エネルギ線照射部分にネガ型パターンを形成させる
工程の各工程を包含することを特徴とするパターン形成
方法。
[Scope of Claims] 1. A diazonaphthoquinone compound having a hydroxyl group is contained in a resist resin composition which has an alkali-soluble polymer having a hydroxyl group, a crosslinking agent, and an acid generator that generates an acid upon irradiation with high-energy radiation as essential components. A pattern-forming material characterized by: 2. A step of applying the pattern forming material according to claim 1 onto a processed substrate, a step of irradiating it with a high-energy beam in a pattern, a step of heat-treating the substrate irradiated with the high-energy beam, and then a step of exposing it to the atmosphere. A pattern forming method comprising the steps of exposing the entire surface to ultraviolet rays, and then developing with an alkaline developer to form a negative pattern in the high-energy ray irradiated areas.
JP2051712A 1990-03-05 1990-03-05 Material and method for forming pattern Pending JPH03253858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2051712A JPH03253858A (en) 1990-03-05 1990-03-05 Material and method for forming pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2051712A JPH03253858A (en) 1990-03-05 1990-03-05 Material and method for forming pattern

Publications (1)

Publication Number Publication Date
JPH03253858A true JPH03253858A (en) 1991-11-12

Family

ID=12894507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2051712A Pending JPH03253858A (en) 1990-03-05 1990-03-05 Material and method for forming pattern

Country Status (1)

Country Link
JP (1) JPH03253858A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276157A (en) * 1990-03-27 1991-12-06 Matsushita Electric Ind Co Ltd Pattern forming method
WO1999032935A1 (en) * 1997-12-19 1999-07-01 Kansai Research Institute Photosensitive resin composition and process for producing the same
JPH11352702A (en) * 1997-11-17 1999-12-24 Sumitomo Chem Co Ltd Forming method of resist pattern excellent in heat resistance and positive resist composition used for that method
JP2009122588A (en) * 2007-11-19 2009-06-04 Asahi Kasei Electronics Co Ltd Positive photosensitive resin composition
US20150056557A1 (en) * 2013-08-23 2015-02-26 Tokyo Ohka Kogyo Co., Ltd. Chemically amplified positive-type photosensitive resin composition and method for producing resist pattern using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276157A (en) * 1990-03-27 1991-12-06 Matsushita Electric Ind Co Ltd Pattern forming method
JPH11352702A (en) * 1997-11-17 1999-12-24 Sumitomo Chem Co Ltd Forming method of resist pattern excellent in heat resistance and positive resist composition used for that method
WO1999032935A1 (en) * 1997-12-19 1999-07-01 Kansai Research Institute Photosensitive resin composition and process for producing the same
US6440632B2 (en) 1997-12-19 2002-08-27 Kansai Research Institute Photosensitive resin composition and process for producing the same
JP2009122588A (en) * 2007-11-19 2009-06-04 Asahi Kasei Electronics Co Ltd Positive photosensitive resin composition
US20150056557A1 (en) * 2013-08-23 2015-02-26 Tokyo Ohka Kogyo Co., Ltd. Chemically amplified positive-type photosensitive resin composition and method for producing resist pattern using the same
US9323152B2 (en) * 2013-08-23 2016-04-26 Tokyo Ohka Kogyo Co., Ltd Chemically amplified positive-type photosensitive resin composition and method for producing resist pattern using the same

Similar Documents

Publication Publication Date Title
JP2505033B2 (en) Electron beam resist composition and method for forming fine pattern using the same
US5532113A (en) Method of making microelectronic structures utilzing photoresists containing C3 C12 water soluble sugar crosslinking agents
JPH054662B2 (en)
JP3425243B2 (en) Electronic component pattern formation method
JP3441167B2 (en) Photosensitive composition and pattern forming method using the same
JP2583600B2 (en) Negative electron beam resist composition
JPH03253858A (en) Material and method for forming pattern
JPH05249681A (en) Acid decomposable compound and positive radiation sensitive resist composition containing the same
JPH02248952A (en) Photosensitive composition
US6383715B1 (en) Strongly water-soluble photoacid generator resist compositions
JP2661317B2 (en) Pattern formation method
JP3383564B2 (en) Pattern forming method and photosensitive composition
JP2583651B2 (en) Negative radiation sensitive resist composition
JP2527811B2 (en) Developer for positive resist
KR100300935B1 (en) Radiation sensitive resist composition
TW200807500A (en) Forming method of resist pattern and writing method using electric charge corpuscular ray
JPH02108053A (en) Pattern forming material and pattern forming method
JP2943138B2 (en) Pattern formation method
JP2538118B2 (en) Negative radiation-sensitive resist composition
JPH09134015A (en) Pattern forming material, pattern forming method and production of semiconductor device
JPH10268520A (en) Pattern forming method
JP2856593B2 (en) Method of forming resist pattern
JP4612013B2 (en) Electron beam drawing method
JP3502469B2 (en) Negative resist composition
JPH07146557A (en) Pattern forming material