JPH03252780A - Feature quantity extracting method - Google Patents

Feature quantity extracting method

Info

Publication number
JPH03252780A
JPH03252780A JP4943790A JP4943790A JPH03252780A JP H03252780 A JPH03252780 A JP H03252780A JP 4943790 A JP4943790 A JP 4943790A JP 4943790 A JP4943790 A JP 4943790A JP H03252780 A JPH03252780 A JP H03252780A
Authority
JP
Japan
Prior art keywords
image
resolution
images
hierarchy
feature quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4943790A
Other languages
Japanese (ja)
Other versions
JP2961174B2 (en
Inventor
Hidetomo Sakaino
英朋 境野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4943790A priority Critical patent/JP2961174B2/en
Publication of JPH03252780A publication Critical patent/JPH03252780A/en
Application granted granted Critical
Publication of JP2961174B2 publication Critical patent/JP2961174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To efficiently detect the rotating amount of a head part by detecting feature quantity from an image to which an address where effective feature quantity exists in every hierarchy from a low resolution image to a high resolution image sequentially is inputted by limiting. CONSTITUTION:An portrait image is fetched from a camera input part 1, and the low resolution image is generated sequentially based on the images in which the images with plural kinds of resolution are inputted at a plural resolution image generating part 2, and plural generated images are stored in a hierarchical image storage part 3. Processing is performed independently at every hierarchy i.e. a first hierarchy processing part 4-1, a second hierarchy processing part 4-2,... an (n)-th hierarchy processing part 4-n to perform the extraction of the effective feature quantity corresponding to the resolution. The locating position and the key of motion of the effective feature quantity extracted from every hierarchy in each image are unified at a general processing part 5, and since all the feature quantities obtained from each hierarchy are feature candidates, they are selected by using plural hierarchies. In such a way, it is possible to efficiently detect the rotating amount and direction of the head part from the effective feature quantity extracted from the general processing part 5 at a head part motion quantity detecting part 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、画像について、複数の解像度の画像を生成
して階層構造を形成して、階層画像より特徴量を検出す
る特徴量抽出方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a feature amount extraction method for generating images with a plurality of resolutions to form a hierarchical structure and detecting feature amounts from the hierarchical images. It is something.

〔従来の技術1 知的符号化通信分野やマンマシンインターフェースを必
要とする技術分野において、人の頭部の向き、移動量等
の検出は重要な課題の1つである。特に、特殊な装置を
頭部に装着せずに検出を行うことが強(望まれている。
[Prior Art 1] In the field of intelligent encoded communications and technical fields that require man-machine interfaces, detection of the direction and amount of movement of a person's head is one of the important issues. In particular, there is a strong desire to perform detection without having to wear special equipment on the head.

画像処理依存の非接触な検出方法があるが、頭部の動を
検出するには、第1に頭部、顔部領域から特徴量の抽出
がなされていることが前提条件の1つとして挙げられる
There are non-contact detection methods that rely on image processing, but in order to detect head movements, one of the prerequisites is to first extract features from the head and face regions. It will be done.

第11図は従来方法による特徴抽出例である。FIG. 11 is an example of feature extraction using the conventional method.

正面画像101の顔部領域から諸有効特微量の抽出を人
為的な作業を通じて行った例である。すなわち、眉毛1
02.目103.鼻1041口105等の存在する位置
を見いだすこと自体、解決されていないためである。各
セグメントの重心付近において、エツジ検出、形状検出
等の処理を行う。このような処理では各セグメントを抽
出する過程が自動化されていないことが問題である。
This is an example in which various effective feature amounts are extracted from the facial region of the frontal image 101 through manual operations. That is, eyebrow 1
02. Eye 103. This is because finding the location of the nose 1041, mouth 105, etc. has not yet been solved. Processing such as edge detection and shape detection is performed near the center of gravity of each segment. A problem with such processing is that the process of extracting each segment is not automated.

第12図は従来方法による頭部向き検出方法の説明図で
ある。顔部領域上の諸特微量がすべて弾性体上にあるた
め、表情に伴ない移動する。各特微量、特に、目尻10
3a、口もと105a等は比較的移動が少な(一般に不
動点と呼ばれている。これら不動点を検出したと仮定し
た場合、頭部の向き検出の精度は高い。しかしながら、
各点とも頭部の回転等により消失する問題がある。また
、各特微量が抽出されていることが前提条件となってい
る。
FIG. 12 is an explanatory diagram of a conventional head orientation detection method. Since the various features on the facial region are all on the elastic body, they move along with facial expressions. Each feature amount, especially the outer corner of the eye 10
3a, the mouth 105a, etc., move relatively little (generally called fixed points).Assuming that these fixed points are detected, the accuracy of head orientation detection is high.However,
There is a problem that each point disappears due to rotation of the head or the like. Furthermore, it is a prerequisite that each feature quantity has been extracted.

第13図(a)、(b)は従来方法による頭部向き検出
方法の主な問題点に関しての説明図である。従来方法で
は、顔部上から諸セグメントを抽出する場合には、平常
顔であると仮定している。
FIGS. 13(a) and 13(b) are explanatory diagrams regarding the main problems of the conventional head orientation detection method. In the conventional method, when extracting various segments from a face part, it is assumed that the face is a normal face.

表情のある顔部の場合には、第13図(a)のように多
くのしわ106が発生し、諸特微量の検出が難しくなる
ためである。すなわち、諸セグメントとしわ106が連
結してしまうため、互いの分離が問題となる。また、第
13図(b)のようにある程度槽を向いた場合には、例
えば目103゜眉毛102等は欠落、消失してしまうた
め、正面画像から特徴量抽出が主要な課題であり、実用
的なレベルまではまだ到達していない。
This is because, in the case of facial parts with expressions, many wrinkles 106 occur as shown in FIG. 13(a), making it difficult to detect various characteristic quantities. That is, since the various segments and wrinkles 106 are connected, their separation from each other becomes a problem. Furthermore, when facing the tank to a certain extent as shown in Fig. 13(b), for example, the eyes 103, eyebrows 102, etc. are missing or disappear, so extracting features from the frontal image is a major challenge, and practical has not yet reached that level.

〔発明が解決しようとする課題] このように、従来の特徴量抽出方法は、特微量を抽出す
るための各セグメントの抽出が自動化されておらず、特
に顔部の場合には、頭部の回転によりセグメントが消失
してしまったり、また、顔に表情があるときには特微量
の抽出が困難である等の問題点があった。
[Problems to be Solved by the Invention] As described above, in the conventional feature extraction method, the extraction of each segment for extracting the feature amount is not automated, and especially in the case of the face, the extraction of each segment is not automated. There have been problems such as segments disappearing due to rotation, and it is difficult to extract special quantities when the face has expressions.

この発明は、上記のような従来の問題点を解消するため
になされたもので、比較的簡単に頭部領域から有効特微
量候補を選定して頭部の回転量を効率よく検出すること
ができる特徴量抽出方法を得ることを目的とするもので
ある。
This invention was made to solve the above-mentioned conventional problems, and it is possible to relatively easily select effective feature amount candidates from the head region and efficiently detect the amount of rotation of the head. The purpose of this study is to obtain a method for extracting feature quantities that is possible.

[課題を解決するための手段] この発明にかかる特徴量抽出方法は、上記目的を達成す
るために、請求項 (1)に記載の発明においては、カ
メラ入力した画像について、この画像から解像度の異な
る複数の解像度画像を生成して階層構造を形成し、これ
らの各階層から有効特微量をそれぞれ抽出し、低解像度
画像から高解像度画像へ順次各階層相互に有効特微量の
存在するアドレスを限定することにより、入力した画像
から特微量を検出するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the feature extraction method according to the present invention, in the invention set forth in claim (1), calculates the resolution of an image input by a camera from this image. Generate multiple images with different resolutions to form a hierarchical structure, extract effective feature quantities from each of these layers, and limit addresses where effective feature quantities exist in each layer from low resolution images to high resolution images. By doing so, the feature quantity is detected from the input image.

また、請求項(2)に記載の発明においては、カメラ入
力した画像について、この画像から解像度の異なる複数
の解像度画像を生成して階層構造を形成し、これらの各
階層について解像度に応じた有効特徴量候補抽出を行う
ことにより、各階層相互に解像度の1つ低い画像の有効
特微量の存在するアドレスを手がかりにして選定を行い
、入力した画像から特微量を検出するものである。
In addition, in the invention described in claim (2), a plurality of resolution images having different resolutions are generated from the image input by the camera to form a hierarchical structure, and each layer has an effective function according to the resolution. By extracting feature quantity candidates, selection is made using the addresses where effective feature quantities exist in images with one resolution lower than each other in each layer as clues, and feature quantities are detected from the input image.

〔作用〕[Effect]

この発明にかかる請求項 (1)に記載の発明は、カメ
ラ入力した、例えば人物画像について、この画像から解
像度の異なる複数枚の画像を階層構造として形成し、頭
部上、顔部上の有効特微量候補を各層から抽出し、低解
像度画像から高解像度画像へ順次有効特徴量候補を選定
し、最終的に選定された有効特徴の位置変化から頭部の
向き、回転量を検出する。
The invention described in claim (1) of the invention forms a hierarchical structure of a plurality of images with different resolutions from a camera-input image of a person, for example, and creates an image of a person on the head and face. Feature quantity candidates are extracted from each layer, effective feature quantity candidates are selected sequentially from low-resolution images to high-resolution images, and finally, the orientation and rotation amount of the head are detected from the positional change of the selected effective features.

また、この発明にかかる請求項(2)に記載の発明は、
各階層から有効特微量を抽出した後、各階層相互に解像
度の1つ低い画像の有効特微量の存在するアドレスを手
がかりにして選定を行うものであり、複数の解像度の異
なる画像を用いて頭部領域から有効特微量を抽出するの
で、従来技術のように、単一の画像から有効特微量の抽
出を行い、頭部の向き検出を行う場合と異なって効率よ
(頭部向き検出が行える。
Furthermore, the invention described in claim (2) of this invention is:
After extracting the effective feature amount from each layer, the selection is made using the address where the effective feature amount exists in the image with one resolution lower than that of each layer. Since the effective feature amount is extracted from the partial region, it is more efficient than the conventional technology, which extracts the effective feature amount from a single image and detects the head orientation. .

〔実施例] 第1図はこの発明にかかる特徴量抽出の方法を実施する
ための装置のブロック図である。
[Embodiment] FIG. 1 is a block diagram of an apparatus for implementing the feature extraction method according to the present invention.

この図で、1はカメラ入力部、2は複数解像度画像生成
部、3は階層画像記憶部、4−1.4−2.・・・・・
・4−nは第1層処理部、第2層処理部。
In this figure, 1 is a camera input section, 2 is a multi-resolution image generation section, 3 is a hierarchical image storage section, 4-1.4-2.・・・・・・
- 4-n is a first layer processing section and a second layer processing section.

・・・・・・第3層処理部、5は統合処理部、6は頭部
動き量検出部である。
. . . A third layer processing section, 5 is an integrated processing section, and 6 is a head movement amount detection section.

次に動作について説明する。Next, the operation will be explained.

カメラ入力部1から人物像を取り込み、複数解像度画像
生成部2で複数の解像度の画像を入力した画像をもとに
して、順次低解像度画像を生成し、生成した複数の画像
を階層画像記憶部3に記憶させておく。解像度に応じた
有効特徴量の抽出を行うため、各階層、つまり第1層処
理部4−1、第2層処理部4−2.・・・・・・第3層
処理部4−nで独立に処理を行う。各階層から抽出され
た有効特徴量について、各画像での存在位置、動きの手
がかりを統合処理部5で一括する。各階層から得られた
特微量はすべて特徴候補であるので、複数の階層を用い
て選定する。統合処理部5より抽出された有効特徴量か
ら頭部の回転量、方向が頭部動き量検出部6で検出され
る。
A human image is input from the camera input unit 1, and the multi-resolution image generation unit 2 sequentially generates low-resolution images based on the input images of multiple resolutions, and the generated images are stored in the hierarchical image storage unit. Please remember it in 3. In order to extract effective feature amounts according to the resolution, each layer, that is, the first layer processing section 4-1, the second layer processing section 4-2. . . . Processing is performed independently in the third layer processing section 4-n. Regarding the effective features extracted from each layer, the presence position and movement clues in each image are collectively processed by the integration processing unit 5. Since the feature amounts obtained from each layer are all feature candidates, selection is made using multiple layers. The head movement amount detection section 6 detects the rotation amount and direction of the head from the effective feature amount extracted by the integration processing section 5.

第2図、第3図(a)、(b)は複数解像度画像生成部
2と階層画像記憶部3に関しての説明図である。第3図
(a)のように、原画像10をもとに順次、(mXn)
のブロックの平均をとり、第3図(b)のように1つ解
像度の低い画像の画素Mを生成する。この手法を用いて
第2図にように第1層(原画像)10−1〜第n層10
−nの各階層画像を生成する。各画像間のアドレスは、
例えば低解像度画像のある画素Mのアドレス(i、j)
は、解像度の1つ高い画像では、(i−ユ〜i+n、j
 m〜j十−) 2  2  2  2 の範囲内にある画素が候補となる。また、このように平
均処理を施していくことから、従来方法で問題であった
表情を伴なった顔におけるしわ106の除去効果があり
、低解像度画像はど顔部領域における°゛強い”特微量
のみしか画像に存在しなくなる。そのため、低解像度画
像での大まかな”特微量が、高解像度画像での゛微細°
°な有効特徴量の存在の手がかり”となり、探索時間が
大幅に軽減される。すなわち、大まかな°゛特機微量あ
るほど、演算回数はほぼ反比例して少なくてすむ利点を
有する。各層の画像は、階層画像記憶部3に置かれる。
FIGS. 2, 3(a) and 3(b) are explanatory diagrams regarding the multi-resolution image generation section 2 and the hierarchical image storage section 3. As shown in FIG. 3(a), based on the original image 10, (mXn)
The average of the blocks is taken to generate a pixel M of an image with one resolution lower as shown in FIG. 3(b). Using this method, the first layer (original image) 10-1 to the nth layer 10 are
- Generate each n hierarchical image. The address between each image is
For example, the address (i, j) of a pixel M in a low resolution image
For an image with one higher resolution, (i−u~i+n,j
Pixels within the range m~j10-) 2 2 2 2 are candidates. In addition, since the averaging process is performed in this way, it is effective to remove wrinkles 106 on faces with facial expressions, which were a problem with conventional methods, and the low-resolution image has the effect of removing "strong" features in facial areas. Only a minute amount will be present in the image.Therefore, the rough “feature amount” in the low-resolution image will be “fine degree” in the high-resolution image.
The search time is greatly reduced by providing clues to the existence of effective feature quantities.In other words, the larger the number of rough features, the more the number of calculations can be reduced in almost inverse proportion to the number of calculations required.Image of each layer is placed in the hierarchical image storage section 3.

第4図は各階層での処理の例である。最上位層(低解像
度画像)(第n層)画像1O−na。
FIG. 4 is an example of processing at each layer. Top layer (low resolution image) (nth layer) image 1O-na.

1O−nbでは、頭髪部が頭部領域では最も強い有効特
徴量である。そこで、頭部領域での頭髪部と顔部の面積
変化を検出することで頭部の回転の向きが検出できる。
At 1O-nb, the hair part is the strongest effective feature amount in the head region. Therefore, the direction of rotation of the head can be detected by detecting changes in the area of the hair and face in the head region.

次に、n−1層の画像1O−(n−1)a、10− (
n−1)bでは眉毛102、口105付近の陰影が手が
がりとなる。こうして、各解像度から有効特徴量を検出
していく。
Next, images 1O-(n-1)a, 10-(
In n-1)b, the shadows near the eyebrows 102 and the mouth 105 become hand-shaped. In this way, effective feature quantities are detected from each resolution.

原画像の第1層10−1の画像1O−1a、1O−1b
では表情に伴なう多くのしわ106が存在する。しかし
ながら、上位の各階層から有効な特微量の存在位置が検
出されていることから、顔部領域の外側から内側へ探索
する必要はない。すなわち、例えば°゛目”103にお
いて、第5図に示すように存在の手がかり103Xが得
られているので、目103の内側からの探索を行うこと
で、目103を形成する複数の特徴候補点103Yを選
定しやすくなる。
Images 1O-1a and 1O-1b of the first layer 10-1 of the original image
There are many wrinkles 106 associated with facial expressions. However, since the effective position of the feature amount is detected from each upper layer, there is no need to search from the outside of the face area to the inside. That is, for example, in the eye 103, a clue 103X of its existence has been obtained as shown in FIG. It becomes easier to select 103Y.

第6図(a)、(b)、第7図は階層相互間の主な情報
の゛引き渡し°゛の例についての説明図である。第6図
(a)、(b)に示す原画像10−1 (正面画像1O
−1a、横向き画像1o−1b)について、第7図のよ
うに複数の解像度の画像を生成する(なお横向き画像1
O−1bについてのみ示した)。最も低い解像度の画像
10Aでは頭部の存在領域検出11ができる。また、頭
髪部の変化から頭部の向きの右方向検出12が得られる
。1つ上の解像度の画像10Bでは、頭部の向きと頭部
存在領域が第1の手ががりとして得られていることから
、この階層では特徴量探索範囲を狭めることができる。
FIGS. 6(a), 6(b), and 7 are explanatory diagrams of examples of "transferring" main information between layers. Original image 10-1 (front image 1O
-1a, landscape image 1o-1b), generate images with multiple resolutions as shown in FIG.
(shown only for O-1b). In the image 10A with the lowest resolution, the head existing region can be detected 11. Further, the rightward direction detection 12 of the head direction can be obtained from the change in the hair part. In the image 10B with one higher resolution, the orientation of the head and the region where the head exists are obtained as the first clues, so the feature amount search range can be narrowed in this layer.

そして、この範囲内における頭領域な゛肌色”領域とし
て抽出する。この操作により、眉毛、目の存在領域検出
13をさらに狭めることができる。この眉毛、目の存在
領域検出13に関する情報を手がかりにして、1つ上の
解像度画像10Cで無彩色として目、眉毛を抽出し、こ
れらの眉毛、目の重心領域検出14を行う。原画像1O
−1bのエツジ画像を生成し、低解像度の画像10Aで
得られた諸特徴量の存在アドレス((ax、ay) 、
 (bx、by) 、 (ex、cy) 、 (dx、
dyl )近傍の目103を構成する特徴量候補点選定
15を行う。なお、各階層間のアドレスは、上位層での
各画素は下位層でのmXnブロック内の画素に相当する
。よって、眉毛1o2.目103の重心領域検出14が
なされた後、原画像上ではさらにm×nの範囲内につい
て重心を求めて眉毛102.目103についてそれぞれ
1つの画素で代表させる処理を行っている。このように
、頭部画像については、解像度に応じた処理を施すこと
で、表情に伴なった゛しわ”106等の有効でない特微
量の発生に影響されることなく、また、頭髪部のような
大まかな”特微量についてはわずかな計算コストで効率
よ(処理を施すことができる利点を有する。第8図は第
1図に示した統合処理部5と頭部動き量検出部6での処
理の説明図である。第6図(a)に示す正面向きの画像
1O−1aにおいて、統合処理部5より眉毛102.目
103が抽出される。この画像には、表情に伴なう多く
のしわ(点線)106が存在するが特微量の内部から探
索検出したので、従来方法のような有効特微量としわ1
06の連結問題ははじめから解決している。階層画像か
ら抽出された各セグメントの重心(三角印)を算出する
。ここでは、眉毛102゜目103の重心21.22で
ある。これら重心21.22の相対的な位置変化から頭
部の回転量を検出する。この眉毛1o2.目103の重
心21.22を互いに結ぶ仮想的なバネ31,32゜3
3.34を用いたモデル30を考える。正面画像1O−
1aでの互いのバネ30〜34の距離を記憶しておき、
横向き画像1O−1bR,1O−1bLでのバネ31〜
34の伸び、縮みから回転量を算出する。
Then, the head region within this range is extracted as a "skin color" region. Through this operation, the eyebrow and eye existing region detection 13 can be further narrowed. Using information regarding this eyebrow and eye existing region detection 13 as a clue, Then, the eyes and eyebrows are extracted as achromatic colors in the higher resolution image 10C, and the center of gravity region of these eyebrows and eyes is detected 14.Original image 1O
-1b edge image is generated, and the presence address ((ax, ay),
(bx, by), (ex, cy), (dx,
dyl) Selection 15 of feature quantity candidate points constituting the neighboring eyes 103 is performed. Note that in the address between each layer, each pixel in the upper layer corresponds to a pixel in an mXn block in the lower layer. Therefore, eyebrows 1o2. After the center of gravity region of the eye 103 is detected 14, the center of gravity is further determined within an m×n range on the original image and the center of gravity of the eyebrows 102. A process is performed in which each eye 103 is represented by one pixel. In this way, by processing head images according to their resolution, they can be processed without being affected by the occurrence of ineffective features such as "wrinkles"106 associated with facial expressions, and by processing head images according to their resolution. It has the advantage that rough "feature quantities" can be processed efficiently with a small calculation cost. FIG. 6(a), eyebrows 102 and eyes 103 are extracted by the integrated processing unit 5. This image includes many images associated with facial expressions There is a wrinkle (dotted line) 106, but since it was searched and detected from inside the feature quantity, the effective feature quantity and wrinkle 1 are different from those in the conventional method.
The connection problem in 06 was solved from the beginning. The center of gravity (triangle mark) of each segment extracted from the hierarchical image is calculated. Here, the center of gravity of the 102° eyebrow 103 is 21.22. The amount of rotation of the head is detected from the relative positional changes of these centers of gravity 21 and 22. This eyebrow 1o2. Virtual springs 31 and 32°3 that connect the centers of gravity 21 and 22 of the eye 103 to each other
Consider model 30 using 3.34. Front image 1O-
Remember the distances between the springs 30 to 34 in 1a,
Spring 31 ~ in landscape images 1O-1bR and 1O-1bL
The amount of rotation is calculated from the expansion and contraction of 34.

第9図、第10図(a)、(b)は頭部向き検出を行っ
た結果である。眉毛102の重心21と目103の重心
22との間を仮想的なバネ31〜34で連結する。これ
ら4点を画像内の直交座標に当てはめる。正面での4点
の位置を初期登録する。被験者に頭部の動作を左右のみ
行わせた場合の結果を第10図(a)に示す。ここでは
、バネ31 (○印)、32(△印)の初期位置からの
相対変位である。次に、上下のみを行わせた場合の位置
変位を第10図(b)に示す。ここでは、バネ33(○
印)、34(△印)の初期位置からの相対変位である。
FIG. 9, FIG. 10 (a), and (b) show the results of head orientation detection. The center of gravity 21 of the eyebrows 102 and the center of gravity 22 of the eye 103 are connected by virtual springs 31 to 34. These four points are applied to orthogonal coordinates within the image. Initial registration of the positions of the four points in front is performed. FIG. 10(a) shows the results when the subject made head movements only to the left and right. Here, it is the relative displacement from the initial position of the springs 31 (○ mark) and 32 (△ mark). Next, FIG. 10(b) shows the positional displacement when only the vertical movement is performed. Here, spring 33 (○
mark), 34 (△ mark) from the initial position.

共に頭部の動きを良好に検出することができた。また、
最大位置変位幅は左右の動きの場合の方が大きく得られ
た。
In both cases, head movements could be detected well. Also,
The maximum positional displacement width was larger in the case of left and right movements.

カメラより人物像を取り込み、有効な特微量を検出し、
移動量の検出まで、従来方法にはない一貫した処理を効
率よ(行えた。
Capturing a person's image with a camera and detecting effective features,
We were able to perform consistent processing efficiently, which was not possible with conventional methods, up to the detection of the amount of movement.

[発明の効果〕 この発明は以上説明したように、カメラ入力した画像に
ついて、この画像から解像度の異なる複数の解像度画像
を生成して階層構造を形成し、これらの各階層から有効
特微量をそれぞれ抽出し、低解像度画像から高解像度画
像へ順次各階層相互に有効特微量の存在するアドレスを
限定することにより、入力した画像から特微量を検出す
るようにしたので、階層画像形成の概念を頭部の動き検
出を目的に適用し、各層で解像度に応じた有効特微量の
抽出を行うことで、表情のある顔部領域から効率よ(移
動量を検出することができる効果がある。
[Effects of the Invention] As described above, the present invention generates a plurality of images with different resolutions from an image input by a camera to form a hierarchical structure, and extracts effective feature quantities from each of these layers. The feature quantity is detected from the input image by sequentially limiting the addresses where the effective feature quantity exists in each layer from the low-resolution image to the high-resolution image. By applying this method to detect facial movements, and extracting effective feature amounts according to the resolution in each layer, it is possible to efficiently detect the amount of movement from facial areas with facial expressions.

さらに、各層相互に解像度の1つ低い画像の有効特微量
の存在するアドレスを手がかりにして選定を行うので、
確実に特徴、量を抽出できる利点がある。
Furthermore, since the selection is made based on the address where the effective feature quantity of the image with one resolution lower than that of each layer is used as a clue,
It has the advantage of being able to reliably extract features and quantities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の特徴量抽出方法を実施する装置の一
例を示すブロック図、第2図はこの発明の複数解像度画
像生成部と階層画像記憶部の説明図、第3図(a)、(
b)は異なる解像度画像の生成原理の説明図、第4図、
第5図はこの発明の各層での処理例を示す図、第6図(
a)、(b)は正面と横向きの原画像を示す図、第7図
はこの発明の情報利用の例を示す図、第8図はこの発明
の有効特微量のバネモデル化の例を示す図、第9図、第
10図はこのこの発明のバネモデルと、これに基づ(頭
部移動量検出結果を示す図、第11図は従来方法による
特徴量抽出方法を示す図、第12図は従来方法による移
動量検出方法を示す図、第13図は従来方法での問題点
を説明するための図である。 図中、1はカメラ入力部、2は複数解像度画像生成部、
3は階層画像記憶部、4−1.4−2゜−・・・・・4
−nは第1層処理部、第2層処理部、・・・・・・第3
層処理部、5は統合処理部、6は頭部動き量検出部、1
0は原画像、11は頭部の存在領域検出、12は右方向
検出、13は眉毛、目の存在領域検出、14は眉毛、目
の重心領域検出、15は特徴量候補点選定、21.22
は重心、30はモデル、31,32,33.34はバネ
である。 第 図 (a) ら) 第 6 図 (a) (b) 第 図 第 図 第 0 図 第 11 第゛ 2 図 第 3 (I3)
FIG. 1 is a block diagram showing an example of an apparatus for implementing the feature extraction method of the present invention, FIG. 2 is an explanatory diagram of a multi-resolution image generation section and a hierarchical image storage section of the present invention, and FIG. 3(a), (
b) is an explanatory diagram of the generation principle of images with different resolutions, FIG.
FIG. 5 is a diagram showing an example of processing in each layer of the present invention, and FIG. 6 (
a) and (b) are diagrams showing original images in front and sideways, FIG. 7 is a diagram showing an example of information utilization of this invention, and FIG. 8 is a diagram showing an example of spring modeling of effective feature quantities of this invention. , Fig. 9 and Fig. 10 are diagrams showing the spring model of this invention and the results of detecting the amount of head movement based on this, Fig. 11 is a diagram showing a feature extraction method using the conventional method, and Fig. FIG. 13 is a diagram showing a conventional method for detecting the amount of movement, and is a diagram for explaining problems with the conventional method. In the figure, 1 is a camera input section, 2 is a multi-resolution image generation section,
3 is a hierarchical image storage unit, 4-1.4-2゜-...4
-n is the first layer processing section, the second layer processing section,...the third layer processing section, etc.
Layer processing unit, 5 is an integrated processing unit, 6 is a head movement amount detection unit, 1
0 is the original image, 11 is the detection of the region where the head exists, 12 is the detection of the right direction, 13 is the detection of the region where the eyebrows and eyes are present, 14 is the detection of the centroid region of the eyebrows and the eyes, 15 is the feature quantity candidate point selection, 21. 22
is the center of gravity, 30 is the model, and 31, 32, 33, and 34 are springs. Figure (a) etc.) Figure 6 (a) (b) Figure Figure 0 Figure 11 Figure 2 Figure 3 (I3)

Claims (2)

【特許請求の範囲】[Claims] (1)カメラ入力した画像について、この画像から解像
度の異なる複数の解像度画像を生成して階層構造を形成
し、これらの各階層から有効特徴量をそれぞれ抽出し、
低解像度画像から高解像度画像へ順次各階層相互に有効
特徴量の存在するアドレスを限定することにより、入力
した画像から特徴量を検出することを特徴とする特徴量
抽出方法。
(1) For the image input by the camera, generate multiple images with different resolutions from this image to form a hierarchical structure, extract effective features from each of these layers, and
A feature amount extraction method characterized by detecting feature amounts from an input image by sequentially limiting addresses where effective feature amounts exist in each layer from a low-resolution image to a high-resolution image.
(2)カメラ入力した画像について、この画像から解像
度の異なる複数の解像度画像を生成して階層構造を形成
し、これらの各階層について解像度に応じた有効特徴量
候補抽出を行うことにより、各階層相互に解像度の1つ
低い画像の有効特徴量の存在するアドレスを手がかりに
して選定を行い、入力した画像から特徴量を検出するこ
とを特徴とする特徴量抽出方法。
(2) For the image input by the camera, multiple resolution images with different resolutions are generated from this image to form a hierarchical structure, and effective feature amount candidates are extracted according to the resolution for each layer. A feature quantity extraction method characterized by detecting feature quantities from an input image by making a selection based on an address where an effective feature quantity of images having one resolution lower than each other is used as a clue.
JP4943790A 1990-03-02 1990-03-02 Feature extraction method Expired - Fee Related JP2961174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4943790A JP2961174B2 (en) 1990-03-02 1990-03-02 Feature extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4943790A JP2961174B2 (en) 1990-03-02 1990-03-02 Feature extraction method

Publications (2)

Publication Number Publication Date
JPH03252780A true JPH03252780A (en) 1991-11-12
JP2961174B2 JP2961174B2 (en) 1999-10-12

Family

ID=12831086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4943790A Expired - Fee Related JP2961174B2 (en) 1990-03-02 1990-03-02 Feature extraction method

Country Status (1)

Country Link
JP (1) JP2961174B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307605A (en) * 1991-09-12 1993-11-19 Fuji Photo Film Co Ltd Method for extracting subject
JPH06223172A (en) * 1993-01-22 1994-08-12 Canon Inc Method and processor for image processing
JPH07296299A (en) * 1994-04-20 1995-11-10 Nissan Motor Co Ltd Image processor and warning device against doze at the wheel using the same
JPH07302327A (en) * 1993-08-11 1995-11-14 Nippon Telegr & Teleph Corp <Ntt> Method and device for detecting image of object
JPH09294277A (en) * 1996-04-26 1997-11-11 Nippon Telegr & Teleph Corp <Ntt> Predictive coded image data management method and device
JPH11250221A (en) * 1998-03-04 1999-09-17 Toshiba Corp Method and device for photographing facial picture
JP2000149031A (en) * 1998-11-09 2000-05-30 Canon Inc Image processing device and method and storage medium
JP2003036439A (en) * 2001-07-23 2003-02-07 Minolta Co Ltd Device, method and program for extracting image
WO2004093006A1 (en) * 2003-04-16 2004-10-28 Fujitsu Limited Knowledge finding device, knowledge finding program, and knowledge finding method
JP2006127323A (en) * 2004-10-29 2006-05-18 Fujitsu Ltd Rule discovery program, rule discovery method and rule discovery apparatus
JP2010205269A (en) * 2010-03-12 2010-09-16 Olympus Corp Method of determining face direction of subject person
JP2013546040A (en) * 2010-09-30 2013-12-26 アナロジック コーポレイション Object classification using two-dimensional projection

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307605A (en) * 1991-09-12 1993-11-19 Fuji Photo Film Co Ltd Method for extracting subject
JPH06223172A (en) * 1993-01-22 1994-08-12 Canon Inc Method and processor for image processing
JPH07302327A (en) * 1993-08-11 1995-11-14 Nippon Telegr & Teleph Corp <Ntt> Method and device for detecting image of object
JPH07296299A (en) * 1994-04-20 1995-11-10 Nissan Motor Co Ltd Image processor and warning device against doze at the wheel using the same
JPH09294277A (en) * 1996-04-26 1997-11-11 Nippon Telegr & Teleph Corp <Ntt> Predictive coded image data management method and device
JPH11250221A (en) * 1998-03-04 1999-09-17 Toshiba Corp Method and device for photographing facial picture
JP2000149031A (en) * 1998-11-09 2000-05-30 Canon Inc Image processing device and method and storage medium
JP2003036439A (en) * 2001-07-23 2003-02-07 Minolta Co Ltd Device, method and program for extracting image
JP4665355B2 (en) * 2001-07-23 2011-04-06 コニカミノルタホールディングス株式会社 Image extraction apparatus, image extraction method, and image extraction program
WO2004093006A1 (en) * 2003-04-16 2004-10-28 Fujitsu Limited Knowledge finding device, knowledge finding program, and knowledge finding method
CN100412901C (en) * 2003-04-16 2008-08-20 富士通株式会社 Knowledge finding device, its finding program, and knowledge finding method
JP2006127323A (en) * 2004-10-29 2006-05-18 Fujitsu Ltd Rule discovery program, rule discovery method and rule discovery apparatus
US8275780B2 (en) 2004-10-29 2012-09-25 Fujitsu Limited Rule discovery program, rule discovery process, and rule discovery apparatus
JP2010205269A (en) * 2010-03-12 2010-09-16 Olympus Corp Method of determining face direction of subject person
JP2013546040A (en) * 2010-09-30 2013-12-26 アナロジック コーポレイション Object classification using two-dimensional projection

Also Published As

Publication number Publication date
JP2961174B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
Meyer et al. Region-based tracking using affine motion models in long image sequences
Freeman et al. Orientation histograms for hand gesture recognition
Haritaoglu et al. Ghost: A human body part labeling system using silhouettes
US8467596B2 (en) Method and apparatus for object pose estimation
US6016148A (en) Automated mapping of facial images to animation wireframes topologies
Ning et al. Kinematics-based tracking of human walking in monocular video sequences
Davis et al. Determining 3-d hand motion
Huang et al. Global temporal registration of multiple non-rigid surface sequences
WO2011149159A1 (en) Real-time markerless three-dimensional object tracking system for augmented reality and method thereof
JPH03252780A (en) Feature quantity extracting method
JP7499280B2 (en) Method and system for monocular depth estimation of a person - Patents.com
Abraham et al. Review on mosaicing techniques in image processing
CN110751097A (en) Semi-supervised three-dimensional point cloud gesture key point detection method
JP3144400B2 (en) Gesture recognition device and method
Dariush et al. Spatiotemporal analysis of face profiles: Detection, segmentation, and registration
Darujati et al. Facial motion capture with 3D active appearance models
CN107247466A (en) Robot head gesture control method and system
Davis et al. Toward 3-D gesture recognition
Chuang A potential-based approach for shape matching and recognition
Dornaika et al. Face and facial feature tracking using deformable models
Mase et al. Real-time head motion detection system
JP2009048305A (en) Shape analysis program and shape analysis apparatus
Zhuang et al. Video motion capture using feature tracking and skeleton reconstruction
Galanakis et al. Tracking persons using a network of RGBD cameras
Kolesnik et al. Detecting, tracking, and interpretation of a pointing gesture by an overhead view camera

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees