JPH03252602A - Antireflection film - Google Patents

Antireflection film

Info

Publication number
JPH03252602A
JPH03252602A JP2049180A JP4918090A JPH03252602A JP H03252602 A JPH03252602 A JP H03252602A JP 2049180 A JP2049180 A JP 2049180A JP 4918090 A JP4918090 A JP 4918090A JP H03252602 A JPH03252602 A JP H03252602A
Authority
JP
Japan
Prior art keywords
layer
vapor deposition
film
antireflection film
tio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2049180A
Other languages
Japanese (ja)
Inventor
Shigeo Iizuka
飯塚 重夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2049180A priority Critical patent/JPH03252602A/en
Publication of JPH03252602A publication Critical patent/JPH03252602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To provide an excellent antireflection effect over a wide wavelength region and to obtain sufficient durability by laminating a 1st layer consisting of CeO2, a 2nd layer consisting of the composite of TiO2 and HfO2 or the TiO2 and a 3rd layer consisting of SiO2 on an optical member made of a synthetic resin successively from the front surface side thereof. CONSTITUTION:The planar optical part (a) molded of an acrylic resin having a special alicyclic group is subjected to precise washing and drying and the 1st layer (b) is formed thereon by using a target consisting of the CeO2 and executing vapor deposition by electron beam heating with a vacuum vapor deposition device. The 2nd layer (c) is formed on this 1st layer (b) by using a target consisting of the TiO2 and executing the vapor deposition in the same manner. Further, the 3rd layer (d) is formed on the 2nd layer (c) by using a target consisting of the SiO2 and executing the vapor deposition in the same manner, by which the antireflection films of the 3-layered constitution are obtd. The antireflection film which maintains a low reflectivity over the range of a wide wavelength region and has excellent durability is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、OA機器や光通信、光情報処理、カメラなど
の光学機器等の分野において用いられる合成樹脂製光学
部品に対して施される反射防止膜に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applied to optical components made of synthetic resin used in the fields of OA equipment, optical communication, optical information processing, optical equipment such as cameras, etc. Regarding anti-reflection film.

〔従来の技術〕[Conventional technology]

従来から、レーザプリンタ、光デイスク装置、レーザ加
工装置や測定装置等のレーザ応用機器、光情報処理機器
、ビデオカメラやビデオプロジェクタ等の電子映像機器
などに用いられるレンズ、プリズムなどの光学部品に対
して、有害な表面反射を低減させるために反射防止層を
設けることが行われている。
Conventionally, optical parts such as lenses and prisms used in laser application equipment such as laser printers, optical disk devices, laser processing equipment and measuring equipment, optical information processing equipment, and electronic imaging equipment such as video cameras and video projectors have been used. Therefore, an antireflection layer is provided to reduce harmful surface reflections.

また近年、生産性を高め、低コスト化および軽量コンパ
クト化を計るために、光学部品を新たに開発改良された
透明な合成樹脂材料、たとえばアクリル樹脂、ポリカー
ボネート樹脂、PS樹脂その他の材料を用いて製造する
ことが多くなっている。このような合成樹脂製光学部品
に対する反射防止処理としては、有機シラン系またはア
クリル系の塗料などをデイツプコートあるいはスピンコ
ードして硬化することにより形成したアンダーコート被
膜の上に、真空蒸着法やスパッタリング法などを用いて
反射防止膜を設ける方法があり、また誘電体物質の単層
または多層からなる反射防止膜をたとえば真空蒸着法な
どにより形成する方法も知られている。
In addition, in recent years, in order to increase productivity, reduce costs, and make optical components lighter and more compact, optical components have been developed using newly developed and improved transparent synthetic resin materials such as acrylic resin, polycarbonate resin, PS resin, and other materials. are being manufactured more and more. Anti-reflection treatment for such synthetic resin optical components is performed by vacuum evaporation or sputtering on an undercoat film formed by dip-coating or spin-coating and curing organic silane-based or acrylic-based paint. There is a method of forming an antireflection film using, for example, a vacuum evaporation method, and a method of forming an antireflection film consisting of a single layer or multiple layers of dielectric material is also known.

〔発明が解決しようとする課題] 上記のような合成樹脂製光学部品の表面にアンダーコー
ト処理する方法は、工数が増加してコスト高となり、ま
た光学部品の表面形状によっては均一塗布が困難である
ため高精度を要求される精密光学部品には適しないとい
う問題がある。
[Problems to be Solved by the Invention] The method of undercoating the surface of synthetic resin optical components as described above increases the number of steps and costs, and it is difficult to apply uniformly depending on the surface shape of the optical component. Therefore, there is a problem that it is not suitable for precision optical parts that require high precision.

一方、合成樹脂製光学部品の表面に対して直接に真空蒸
着法などによる反射防止処理を行なうときは、MP、F
、やSin、等の単層膜の場合には反射防1ト効果が充
分でないうえに膜の密着性や耐久性も良くなく、また多
層膜構成の場合には、2層構成のものは比較的に低コス
1−で形成することができ、中心波長域での反射率を低
くすることが可能であるものの、これから離れた波長域
において反射率を0.5%以下とすることは困難であり
、必ずしも光学部品の反射防止膜として満足できるもの
ではなかった。
On the other hand, when performing antireflection treatment directly on the surface of synthetic resin optical components by vacuum evaporation, etc., MP, F
In the case of a single layer film such as , or Sin, the anti-reflection effect is not sufficient, and the adhesion and durability of the film are also poor. Although it is possible to form a film with a low cost of 1- and to reduce the reflectance in the central wavelength range, it is difficult to reduce the reflectance to 0.5% or less in wavelength ranges far away from this. However, it was not always satisfactory as an antireflection film for optical components.

本発明はこのような事情に鑑みてなされたもので、広い
波長域にわたって反射防止効果が優れるとともに充分な
耐久性を有する、合成樹脂製光学部品用の反射防止膜を
提供することを目的としたものである。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide an antireflection film for synthetic resin optical components that has excellent antireflection effects over a wide wavelength range and has sufficient durability. It is something.

〔課題を解決するだめの手段] かかる本発明の目的は、CeO□からなる第1層と、T
iO□とHfO□との複合物またはTiO7からなる第
2層と、SiO2からなる第3層とを、合成樹脂製光学
部品の表面側から順次積層してなる光学部品の反射防止
膜によって達成することができる。
[Means for Solving the Problems] The object of the present invention is to provide a first layer made of CeO
This is achieved by an anti-reflection coating for an optical component made by sequentially laminating a second layer made of a composite of iO□ and HfO□ or TiO7 and a third layer made of SiO2 from the surface side of a synthetic resin optical component. be able to.

本発明の反射防止膜を合成樹脂製光学部品の表面上に形
成するには、たとえば真空蒸着法やイオンブレーティン
グ法などの薄膜形成技術を用いることができる。このよ
うにして形成された反射防止膜は第1図に示すように、
光学部品aの上に第1層b、第2層C1第3層dの順に
積層構造をとっている。前記のような第1層、第2層お
よび第3層は、それぞれ適用光の設計波長λに対して0
゜25λ程度の厚さとなるように形成することが好まし
い。
To form the antireflection film of the present invention on the surface of a synthetic resin optical component, a thin film forming technique such as a vacuum evaporation method or an ion blating method can be used. The anti-reflection film formed in this way is shown in Figure 1.
A first layer b, a second layer C, and a third layer d are laminated in this order on the optical component a. The first layer, second layer, and third layer as described above each have a wavelength of 0 with respect to the design wavelength λ of the applied light.
It is preferable to form it so that it has a thickness of about 25λ.

〔作 用〕[For production]

上記のようにして形成された本発明の反射防止膜は、合
成樹脂製の光学部品基材との密着性が良く、広い波長域
にわたって安定した光学特性と優れた耐久性とを有する
ものである。
The antireflection film of the present invention formed as described above has good adhesion to the synthetic resin optical component substrate, and has stable optical properties and excellent durability over a wide wavelength range. .

(実施例1〕 特殊な脂環基を有するアクリル樹脂(日立化成0Z−1
0,oo、屈折率:1.49)で成形した板状の光学部
品を精密洗浄したのちに充分乾燥し、真空蒸着装置内に
取りイ」けたうえ約70’Cに加熱し、CeO□(屈折
率:1.95)のターゲットを用いて、真空度1×10
−5トールの条件下で電子ビーム加熱によって、厚さが
195nmとなるよう蒸着して第1層を形成した。
(Example 1) Acrylic resin having a special alicyclic group (Hitachi Chemical 0Z-1
After precision cleaning, a plate-shaped optical component molded with a refractive index of 1.49) was thoroughly dried, placed in a vacuum evaporator, and heated to about 70'C to form CeO□( Using a target with a refractive index of 1.95), the degree of vacuum is 1×10
The first layer was deposited to a thickness of 195 nm by electron beam heating under -5 Torr conditions.

次に、TiO□(屈折率: 2.2 )のターゲットを
用いて、この第1層の上に同様にして厚さが195nm
となるよう蒸着して第2層を形成した。
Next, using a target of TiO□ (refractive index: 2.2), a film with a thickness of 195 nm was formed on this first layer in the same manner.
A second layer was formed by vapor deposition.

更に、SiO□(屈折率:1.45)のターゲットを用
いて、この第2層の上に同様にして厚さが195nmと
なるよう蒸着して第3層を形成して、3層構成の反射防
止膜を得た。
Furthermore, using a target of SiO□ (refractive index: 1.45), a third layer was similarly deposited on top of this second layer to a thickness of 195 nm, resulting in a three-layer structure. An antireflection film was obtained.

これらの各層の膜厚は、波長λが780nmの光に対し
ていずれも0.25λに相当するものとなっている。
The film thickness of each of these layers corresponds to 0.25λ for light having a wavelength λ of 780 nm.

こうして得た反射防止膜について分光反射率を測定した
結果を第1図に示すが、700から900nmの波長域
にわたって反射率が0.3%以下であった。
The results of measuring the spectral reflectance of the antireflection film thus obtained are shown in FIG. 1, and the reflectance was 0.3% or less over the wavelength range of 700 to 900 nm.

〔実施例2〕 ポリカーボネート樹脂(量大化成AD−5503、屈折
率:1.57)で成形した板状の光学部品の表面上に、
第2層としてTi0zとHfO□との複合物(新日本金
属TiO□ ・S6、屈折率: 2.25 >を厚さが
195nmとなるよう蒸着した他はすべて実施例1と同
様にして、3層構成の反射防止膜を得た。
[Example 2] On the surface of a plate-shaped optical component molded from polycarbonate resin (Yodai Kasei AD-5503, refractive index: 1.57),
Example 3 was prepared in the same manner as in Example 1, except that a composite of TiOz and HfO□ (Nippon Metal TiO□ ・S6, refractive index: 2.25) was vapor-deposited to a thickness of 195 nm as the second layer. An antireflection film having a layered structure was obtained.

こうして得た反射防止膜について分光反射率を測定した
結果を第2図に示すが、′700から90Onmの波長
域にわたって反射率が0.4%以下であった。
The results of measuring the spectral reflectance of the antireflection film thus obtained are shown in FIG. 2, and the reflectance was 0.4% or less over the wavelength range from '700 to 90 Onm.

[比較例1] 実施例1と同様な板状の光学部品の表面に、実施例1と
同様な方法により、層の厚さが195nmのMgI2.
 (屈折率: 、1.37 )の単一層の反射防止膜を
形成した。
[Comparative Example 1] MgI2.
A single-layer antireflection film with a refractive index of , 1.37 was formed.

この反射防止膜について分光反射率を測定した結果を第
3図に示すが、反射率が1.5%以上であった。
The results of measuring the spectral reflectance of this antireflection film are shown in FIG. 3, and the reflectance was 1.5% or more.

〔比較例2) 実施例1と同様な板状の光学部品の表面に、実施例1と
同様な方法により、膜厚が195nmであるLaz(L
+  (屈折率:1.8)の第1層と膜厚が195nm
であるSiO□の第2層とからなる積層反射防止膜を形
成した。
[Comparative Example 2] Laz (L) having a film thickness of 195 nm was coated on the surface of the same plate-shaped optical component as in Example 1 by the same method as in Example 1.
+ (refractive index: 1.8) first layer and film thickness 195 nm
A laminated antireflection film was formed with a second layer of SiO□.

この反則防止膜について分光反射率を測定した結果を第
4図に示す。この場合、中心波長780nmでの反射率
は0.1%以下となるが、波長が中心から離れるに従っ
て、反射率は1%あるいはそれ以上に達している。
FIG. 4 shows the results of measuring the spectral reflectance of this antifouling film. In this case, the reflectance at the center wavelength of 780 nm is 0.1% or less, but as the wavelength moves away from the center, the reflectance reaches 1% or more.

[試験例〕 光学部品の表面に設けた反射防止膜の耐久性を以下の方
法で評価した。
[Test Example] The durability of an antireflection film provided on the surface of an optical component was evaluated by the following method.

付着性試験: セロファン粘着テープを膜の表面に密着させたのち垂直
方向に剥して、膜の付着性を調べたところ、実施例1.
2および比較例1.2の膜はいずれも剥離が認められな
がった。
Adhesion test: The adhesion of the film was examined by adhering a cellophane adhesive tape to the surface of the membrane and then peeling it off in the vertical direction.
No peeling was observed in any of the films of Comparative Example 2 and Comparative Example 1.2.

耐湿試験: 温度45°C1相対湿度95%の恒温恒湿槽内に24時
間放置後乾燥して、膜の状態の変化を観察した。実施例
1.2および比較例2の膜には何らの異常も認められな
かったが、比較例1の膜には曇りが発生していた。
Humidity test: The film was left in a constant temperature and humidity chamber at a temperature of 45° C. and a relative humidity of 95% for 24 hours, dried, and changes in the state of the film were observed. No abnormalities were observed in the films of Example 1.2 and Comparative Example 2, but clouding occurred in the film of Comparative Example 1.

また、耐湿試験後の付着性試験では、比較例1の膜で剥
離が生じた。
Further, in the adhesion test after the moisture resistance test, peeling occurred in the film of Comparative Example 1.

熱衝撃試験: 30°Cおよび70°Cの環境に交互に各30分間放置
することを10回繰り返したのち常温に戻し、表面状態
を観察した。実施例1.2および比較例2の膜には何ら
の変化も認められなかったが、比較例1の膜にはクラッ
クや曇りが生じていた。
Thermal shock test: After repeating 10 times of leaving the product in an environment of 30°C and 70°C for 30 minutes each, the product was returned to room temperature and the surface condition was observed. No changes were observed in the films of Example 1.2 and Comparative Example 2, but the film of Comparative Example 1 had cracks and haze.

また、熱衝撃試験後の付着性試験では、比較例1の膜で
剥離が生じた。
Further, in the adhesion test after the thermal shock test, peeling occurred in the film of Comparative Example 1.

第2図および第3図はそれぞれ本発明の実施例1および
実施例2の反射防止膜の分光反射特性図であり、 第4図および第5図はそれぞれ比較例1および比較例2
の反射防止膜の分光反射特性図である。
Figures 2 and 3 are spectral reflection characteristic diagrams of antireflection films of Example 1 and Example 2 of the present invention, respectively, and Figures 4 and 5 are Comparative Example 1 and Comparative Example 2, respectively.
FIG. 2 is a spectral reflection characteristic diagram of an antireflection film.

a・・・光学部品、b・・・第1層、C・・・第2層、
d・・・第3層。
a... Optical component, b... First layer, C... Second layer,
d...Third layer.

〔発明の効果〕〔Effect of the invention〕

本発明の反射防止膜は、化学的および熱的安定性が高い
膜物質から構成されていて合成樹脂基材との密着性が良
く、広い波長域の範囲にわたって低い反射率を維持して
おり、耐久性が優れている特長がある。
The antireflection film of the present invention is composed of a film material with high chemical and thermal stability, has good adhesion to the synthetic resin base material, and maintains low reflectance over a wide wavelength range. It has the feature of excellent durability.

Claims (1)

【特許請求の範囲】[Claims] CeO_2からなる第1層と、TiO_2とHfO_2
との複合物またはTiO_2からなる第2層と、SiO
_2からなる第3層とを、合成樹脂製光学部品の表面側
から順次積層してなる光学部品の反射防止膜。
A first layer consisting of CeO_2, TiO_2 and HfO_2
or a second layer consisting of TiO_2 and a composite of SiO
An antireflection film for an optical component, which is formed by sequentially laminating a third layer consisting of _2 from the surface side of a synthetic resin optical component.
JP2049180A 1990-03-02 1990-03-02 Antireflection film Pending JPH03252602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2049180A JPH03252602A (en) 1990-03-02 1990-03-02 Antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049180A JPH03252602A (en) 1990-03-02 1990-03-02 Antireflection film

Publications (1)

Publication Number Publication Date
JPH03252602A true JPH03252602A (en) 1991-11-11

Family

ID=12823853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049180A Pending JPH03252602A (en) 1990-03-02 1990-03-02 Antireflection film

Country Status (1)

Country Link
JP (1) JPH03252602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8712269B2 (en) 2010-05-19 2014-04-29 Ricoh Company, Ltd. Image forming apparatus capable of timely starting different image formation mode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8712269B2 (en) 2010-05-19 2014-04-29 Ricoh Company, Ltd. Image forming apparatus capable of timely starting different image formation mode

Similar Documents

Publication Publication Date Title
JPS6064301A (en) Antireflecting film of optical parts and formation thereof
KR19990014689A (en) Flexible plastic substrate and anti-reflective coating having a low reflection color and a method of manufacturing the same
JPH0282201A (en) Rear reflecting mirror of multilayered film for optical parts made of synthetic resin
CN114609702A (en) Short-wave near-infrared broadband antireflection film and preparation method thereof
JPS5860701A (en) Reflection preventing film
JPH03109503A (en) Antireflection film of optical parts made of plastic and formation thereof
JPS6135521B2 (en)
JP3221764B2 (en) Anti-reflection coating for optical parts made of synthetic resin
JPH03252602A (en) Antireflection film
US11204446B2 (en) Anti-reflection film and an optical component containing the anti-reflection film
JPH03191301A (en) Reflection mirror
JPH0384501A (en) Antireflection film
JPH10123303A (en) Antireflection optical parts
JPS6296901A (en) Synthetic resin lens
JPH02251901A (en) Antireflection film
JP3111243B2 (en) Optical component having laminated antireflection film
JPH077126B2 (en) Synthetic resin reflector
JP3067134B2 (en) Multilayer film for optical parts
JP3052400B2 (en) Yttria optical components coated with anti-reflective coating
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
JPS60130702A (en) Antireflection film for plastic substrate
JPH04143702A (en) Reflection preventive film
JPH08146202A (en) Optical parts having antireflection film
JP3412302B2 (en) Method for manufacturing plastic optical component having antireflection film
JPH03132601A (en) Antireflection film of optical parts made of plastic and production thereof