JPH0325234B2 - - Google Patents

Info

Publication number
JPH0325234B2
JPH0325234B2 JP57140336A JP14033682A JPH0325234B2 JP H0325234 B2 JPH0325234 B2 JP H0325234B2 JP 57140336 A JP57140336 A JP 57140336A JP 14033682 A JP14033682 A JP 14033682A JP H0325234 B2 JPH0325234 B2 JP H0325234B2
Authority
JP
Japan
Prior art keywords
flocculant
mud
injection
pipe
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57140336A
Other languages
Japanese (ja)
Other versions
JPS5929080A (en
Inventor
Kaoru Ishizuka
Yoshio Momotsuka
Kenichi Endo
Yutaka Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP14033682A priority Critical patent/JPS5929080A/en
Publication of JPS5929080A publication Critical patent/JPS5929080A/en
Publication of JPH0325234B2 publication Critical patent/JPH0325234B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は浚渫泥水の凝集処理方法に関するも
のである。 河川、湖沼、港湾に堆積する土砂等をポンプで
浚渫し、発生する泥水を送泥管で埋立地へ移送す
る際、送泥管の途中で凝集剤を添加し、泥水中の
シルト、粘土等の微細粒子を主体とする懸濁物質
の移送中に凝集させ、移送先の埋立地において沈
降分離を行う方法が行われている。この方法は移
送中の泥水の流動状態を利用して凝集剤の溶解と
凝集に必要な撹拌を行うものであり、一般的には
送泥管が浚渫船から護岸に到達した地点において
凝集剤を添加し、この地点から埋立地に至る送泥
管内で凝集を行うようにしている。 ところが、埋立の進捗に伴い送泥管は延長され
て、凝集剤添加後の滞留時間が長くなり、あるい
は分岐等により複雑な系路となつて管内の流動状
態が変化すると、凝集によつて成長したフロツク
が破壊され、凝集泥水の沈降分離が不完全とな
る。一般に沈降分離に適した凝集フロツクを形成
するためには、適度の撹拌の一定時間続ける必要
があり、こうして形成されたフロツクが撹拌下に
沈降分離に適した安定状態を維持する持続時間に
は限界があるが、管内における撹拌時間が長くな
り、あるいは撹拌条件が激しくなると、フロツク
が破壊され、沈降分離に適さなくなる。 フロツクの生成時間および安定状態持続時間は
他の凝集条件によつても影響を受け、例えば浚渫
位置の違いによる土質の変化や、混入率の変化に
よる懸濁物濃度の変化等によつても影響を受け、
同じ滞留時間内であつてもフロツクが破壊され、
沈降分離効果が悪くなることがある。 このようにフロツクの破壊が起こり、沈降分離
効果が悪化すると、懸濁物質が流出するため、埋
立の歩留りが低下するとともに、流出余水の水質
が悪化し、環境汚染の原因となるなどの問題点が
ある。 この発明は上記のような従来法における問題点
を改善するためになされたもので、送泥管の複数
位置で凝集剤を添加することにより、送泥管にお
ける滞留時間あるいは凝集条件が変化しても効率
よく凝集を行い、沈降分離性を向上させて、埋立
歩留りを向上させるとともに、余水の水質をよく
し、環境公害を防止することができる浚渫泥水の
凝集処理方法を提供することを目的としている。 この発明は浚渫泥水を送泥管で移送し、移送中
に凝集剤を添加して凝集を行い、移送先で凝集し
た泥水を沈降分離する方法において、送泥管の浚
渫泥水に有機高分子凝集剤を添加し、少なくとも
1分30秒後に再度有機高分子凝集剤を添加して、
破壊されたフロツクを補修し、安定フロツク状態
を維持することを特徴とする浚渫泥水の凝集処理
方法である。 本発明に使用可能な有機高分子凝集剤として
は、ポリアクリルアミド、ポリアクリルアミドの
部分加水分解物、ポリアクリル酸塩、その他公知
の有機高分子凝集剤があげられる。 これらの凝集剤は従来の処理法では、送泥管の
1点で注入されるが、凝集剤添加後10秒ないし20
秒でフロツクが生成して約30秒後には安定凝集状
態に達する。この状態は1分30秒ないし2分後ま
で持続するが、その後も撹拌状態を続けると、フ
ロツクが破壊していき、3分後には安定凝集状態
の約1/2、5分後には約1/5の沈降速度になる。 このため、凝集剤添加後の送泥管内の滞留時間
を30秒ないし2分程度にするのが望ましいが、埋
立の進捗によつて埋立位置すなわち送泥管からの
流出口の位置が移動するので、凝集剤を1点で注
入する場合には滞留時間を上記範囲にすることは
できない。また送泥管は複雑に分岐し、多くの地
点から排泥され埋立が同時に進行するので、凝集
剤の注入点を移動させることも実際上不可能であ
る。 これに対し、送泥管の途中に複数の凝集剤の注
入点を設けておき、最初の凝集剤の添加後、少な
くとも1分30秒後に再度凝集剤を添加するよう
に、2点以上の位置にて凝集剤を分注すると、安
定フロツク状態を長く維持することができる。こ
れは最初の凝集剤注入により生成したフロツクが
破壊されても、新しい凝集剤により補修されるた
めである。2回目以降の凝集剤を添加した後は必
ずしも長い滞留時間を必要としない。 凝集剤の注入点を設ける位置は通常の管内流速
3〜5m/secを基準として、滞留時間が安定フ
ロツクの持続時間の上限である1分30秒ないし2
分を越えるごとに1個の注入点を設けるのが望ま
しい。もちろん第1回の注入後上記範囲を越えて
滞留させたのち、流出口の前に再度注入するよう
にしてもよい。このように注入点は2個所でもよ
く、またそれ以上であつてもよい。送泥管に分岐
路がある場合は、各分岐路ごとに2個以上の注入
点を設けることができる。 凝集剤の添加量は通常の1点注入の場合の添加
量以下の3〜13mg/(汚泥に対して)を全量と
し、これを分注すればよい。各点の注入比率は第
1注入点で全体の60〜80%を注入し、第2注入点
以降は40〜20%とするのが望ましい。 凝集剤の注入点、添加量、分注比率等はそれぞ
れの浚渫汚泥の種類、浚渫埋立条件等によつて異
なるので、予めジヤーテスト、あるいは現場試験
等により凝集条件を定め、決定することができ
る。 次に本発明を実施例によりさらに詳細に説明す
る。 図面は実施例の系統図を示し、1は送泥管、2
は埋立地である。送泥管1はその末端の流出口3
が埋立地2の一端に開口している。埋立地2は池
状に構成され、中仕切堤4により遊水池5と接続
し、遊水池5には余水吐6が設けられている。7
は凝集剤槽であつて、ポンプ8を介して薬注管9
が送泥管1に接続し、薬注管9から分注管10が
流量形11を介して送泥管1の下流に接続してい
る。送泥管1に対する薬注管9の接続部が第1注
入点12、分注管10の接続部が第2注入点13
となつている。 実施例における浚渫泥水はシルト、粘土分が95
%以上で、泥水の自然沈降時の汚泥界面速度が
0.065m/hrの沈降性の悪い港湾汚泥をポンプ浚
渫した泥水であつて、これを送泥管1を通して埋
立地2に送り、凝集剤槽7からポンプ8により凝
集剤(ポリアクリルアミド部分加水分解物)を送
り、第1注入点12および第2注入点13から分
注した。送泥管1の送泥量は1200m3/hr、第1注
入点12の薬注量は10mg/、第2注入点13の
薬注量は3mg/、第1注入点12から第2注入
点13の滞留時間が120秒、第2注入点13から
流出口3の滞留時間は10秒であつた。上記2点注
入法と、第1または第2注入点のみから全量を薬
注した場合とについて、流出口3付近の凝集汚泥
の性状を表−1に、汚泥の沈降容積の経時変化を
表−2に示す。
The present invention relates to a method for coagulating dredged mud water. When dredging sediment deposited in rivers, lakes, and ports using pumps, and transporting the resulting muddy water to a landfill using a mud pipe, a flocculant is added midway through the mud pipe to remove silt, clay, etc. in the muddy water. A method is used in which suspended solids, mainly consisting of fine particles, are aggregated during transportation, and then sedimented and separated at the destination landfill. This method utilizes the fluidity of muddy water during transport to provide the necessary agitation for dissolving and coagulating the flocculant, and generally the flocculant is added at the point where the mud pipe reaches the seawall from the dredger. The sludge is then coagulated in the pipe that runs from this point to the landfill. However, as the reclamation process progresses, the sludge pipes are lengthened and the residence time after the addition of flocculant becomes longer, or when the flow conditions inside the pipes change due to branching, etc., the flow conditions inside the pipes change, causing growth due to agglomeration. The flocs are destroyed, and the sedimentation and separation of the flocculated mud becomes incomplete. Generally, in order to form a coagulated floc suitable for sedimentation separation, it is necessary to continue moderate stirring for a certain period of time, and there is a limit to the duration for which the flocs thus formed can maintain a stable state suitable for sedimentation separation under stirring. However, if the stirring time in the tube becomes long or the stirring conditions become violent, the flocs will be destroyed, making it unsuitable for sedimentation separation. The floc formation time and stable state duration are also affected by other flocculation conditions, such as changes in soil quality due to differences in dredging location and changes in suspended solids concentration due to changes in mixing rate. receive,
Even within the same residence time, the flocs are destroyed,
The sedimentation separation effect may deteriorate. When the flocs are destroyed and the sedimentation separation effect deteriorates, suspended solids flow out, which reduces the landfill yield and deteriorates the water quality of the runoff, causing environmental pollution. There is a point. This invention was made to improve the problems in the conventional method as described above, and by adding flocculant at multiple positions in the slurry pipe, the residence time or flocculation conditions in the pipe can be changed. The purpose of the present invention is to provide a dredging mud water coagulation treatment method that can efficiently coagulate dredged mud, improve sedimentation separation properties, improve landfill yield, improve the quality of leftover water, and prevent environmental pollution. It is said that This invention is a method in which dredged mud is transported through a mud pipe, a flocculant is added during the transport to cause flocculation, and the flocculated mud is separated by sedimentation at the destination. After at least 1 minute and 30 seconds, add the organic polymer flocculant again,
This is a dredging mud coagulation treatment method characterized by repairing broken flocs and maintaining a stable floc state. Examples of organic polymer flocculants that can be used in the present invention include polyacrylamide, partial hydrolysates of polyacrylamide, polyacrylates, and other known organic polymer flocculants. In the conventional treatment method, these flocculants are injected at one point in the slurry pipe, but after adding the flocculant, it is injected for 10 to 20 seconds.
Flocs are formed in seconds, and a stable agglomerated state is reached in about 30 seconds. This state lasts from 1 minute and 30 seconds to 2 minutes, but if the stirring state continues after that, the flocs will break down, and after 3 minutes, the flocs will be about 1/2 of the stable flocculation state, and after 5 minutes, it will be about 1/2 of the stable flocculation state. /5 sedimentation rate. For this reason, it is desirable to keep the residence time in the mud pipe after adding the flocculant to around 30 seconds to 2 minutes, but as the landfill position, that is, the position of the outlet from the mud pipe, moves as the landfill progresses. When the flocculant is injected at one point, the residence time cannot be within the above range. In addition, the sludge pipes are complicatedly branched, and sludge is discharged from many points and landfilling proceeds at the same time, so it is practically impossible to move the injection point of the flocculant. To deal with this, multiple flocculant injection points are provided in the middle of the slurry pipe, and the flocculant is added at two or more points at least 1 minute and 30 seconds after the first flocculant is added. By dispensing the flocculant at , a stable floc state can be maintained for a long time. This is because even if the flocs generated by the initial coagulant injection are destroyed, they are repaired by new coagulant. A long residence time is not necessarily required after the second and subsequent additions of the flocculant. The location of the flocculant injection point is based on the normal flow rate in the pipe of 3 to 5 m/sec, and the residence time is between 1 minute and 30 seconds, which is the upper limit of the duration of stable flocs.
Preferably, there is one injection point for every minute. Of course, after the first injection, it may be allowed to stay beyond the above range and then injected again before the outlet. In this way, there may be two or more injection points. If the slurry pipe has branches, two or more injection points can be provided for each branch. The total amount of flocculant to be added is 3 to 13 mg/(based on sludge), which is less than the amount added in the case of normal one-point injection, and this may be dispensed. As for the injection ratio at each point, it is desirable that 60 to 80% of the total amount be injected at the first injection point, and 40 to 20% after the second injection point. Since the injection point, addition amount, dispensing ratio, etc. of the flocculant differ depending on the type of dredged sludge, dredging and landfill conditions, etc., the flocculation conditions can be determined in advance by a jar test or field test. Next, the present invention will be explained in more detail with reference to Examples. The drawing shows a system diagram of the embodiment, where 1 indicates a mud pipe, 2
is a landfill. The mud feeding pipe 1 has an outlet 3 at its end.
is open at one end of the landfill 2. The reclaimed land 2 is configured in the shape of a pond, and is connected to a retarding pond 5 through a partition bank 4, and the retarding pond 5 is provided with a spillway 6. 7
is a coagulant tank, and a chemical injection pipe 9 is connected via a pump 8.
is connected to the mud feeding pipe 1, and a chemical feed pipe 9 to a dispensing pipe 10 are connected downstream of the mud feeding pipe 1 via a flow rate type 11. The connection part of the chemical injection pipe 9 to the mud feeding pipe 1 is the first injection point 12, and the connection part of the dispensing pipe 10 is the second injection point 13.
It is becoming. The dredged mud water in the example has a silt and clay content of 95%.
% or more, the sludge interface velocity during natural sedimentation of mud water is
This muddy water is obtained by pump dredging port sludge with poor settling properties at a rate of 0.065 m/hr. It is sent to a landfill site 2 through a sludge pipe 1, and is treated with a coagulant (polyacrylamide partial hydrolyzate) from a coagulant tank 7 by a pump 8. ) and dispensed from the first injection point 12 and the second injection point 13. The mud feeding rate of the mud feeding pipe 1 is 1200 m 3 /hr, the chemical injection rate of the first injection point 12 is 10 mg/, the chemical injection rate of the second injection point 13 is 3 mg/, and the flow rate is from the first injection point 12 to the second injection point. The residence time of No. 13 was 120 seconds, and the residence time from the second injection point 13 to the outlet 3 was 10 seconds. Table 1 shows the properties of the flocculated sludge near the outlet 3 for the above two-point injection method and the case where the entire amount is injected only from the first or second injection point. Shown in 2.

【表】【table】

【表】【table】

【表】 流出口3付近の汚泥の堆積状態は、2点注入の
場合は汚泥粒子の凝集、造粒性が良好であり、肉
眼観察により明らかに粗大フロツクの生成が認め
られ、流出口3付近の汚泥は州状に重なり堆積し
ていた。これに対して第1注入点のみの注入の場
合は、流出口3における汚泥の州状の拡がりが速
くなり、かつフロツクも比較的小さくなつてい
た。また第2注入点のみの注入の場合は、流出口
3までの距離が短いため十分凝集効果が発揮され
ておらず、一部凝集した汚泥は沈下していくが、
未凝集のものは濁りとして拡散していつた。 次に上記試験における中仕切堤4の入口部にお
ける濁度は2点注入の場合、10日間にわたつて7
〜9度、SSは14〜18mg/であり、余水吐放流
基準以下であつたが、第1注入点のみ注入の場合
は濁度16度、SS32mg/、第2注入点のみ注入
の場合は濁度32度、SS65mg/であつた。 以上の結果より、2点注入の場合は1点注入の
場合よりも汚泥粒子の凝集造粒性が高く、沈殿圧
密性が大きく分離水の清澄効果も高いことがわか
る。 なお、上記実施例は港湾汚泥をポンプ浚渫した
泥水に対して適用した例であるが、河川、湖沼等
の他の浚渫泥水にも同様に適用できる。これらの
淡水系の浚渫を行う場合には、従来法と同様に、
PAC、硫酸バン土、塩化第二鉄等の無機凝集剤
を併用することもでき、これらは有機高分子凝集
剤の添加に先立つて添加することができる。 また有機高分子凝集剤としては、前に例示した
ポリアクリルアミド系のもの以外にも使用でき、
浚渫泥水の性状によつては数種類を併用してもよ
く、例えばカチオン性のものとアニオン性のもの
とを組合せて使用することもできる。これらの場
合、第1注入点で一方の凝集剤を注入し、第2注
入点以降で他方の凝集剤を注入して組合せ効果を
発揮させることもできる。 さらに注入点の選択、その他の凝集条件は任意
に変更することが可能である。 以上のとおり、本発明によれば、送泥管の浚渫
泥水に有機高分子凝集剤を添加し、少なくとも1
分30秒後に再度有機高分子凝集剤を添加して、破
壊されたフロツクを補修し、安定フロツク状態を
維持するように構成したので、安定な凝集状態を
長時間にわたつて維持し、埋立歩留りを向上させ
るととも、に、余水の水質を良好にすることがで
きるなどの効果が得られる。
[Table] Regarding the state of sludge accumulation near the outlet 3, in the case of two-point injection, the agglomeration and granulation of sludge particles were good, and the formation of coarse flocs was clearly observed by visual observation. The sludge was piled up in layers. On the other hand, when the sludge was injected only through the first injection point, the sludge spread rapidly at the outlet 3 and the flocs became relatively small. In addition, in the case of injection only at the second injection point, the distance to the outlet 3 is short, so the flocculating effect is not sufficiently exerted, and the partially flocculated sludge sinks, but
Unagglomerated substances were dispersed as turbidity. Next, in the above test, the turbidity at the entrance of the partition bank 4 was 7 for 10 days in the case of two-point injection.
~9 degrees, SS was 14 to 18 mg/, which was below the spillway discharge standard, but when only the first injection point was injected, the turbidity was 16 degrees, and SS was 32 mg/, when only the second injection point was injected. The turbidity was 32 degrees and the SS was 65 mg/. From the above results, it can be seen that in the case of two-point injection, the flocculation and granulation properties of sludge particles are higher than in the case of one-point injection, the sedimentation compaction property is large, and the clarification effect of separated water is also high. The above embodiment is an example in which the present invention is applied to muddy water obtained by dredging port sludge with a pump, but it can be similarly applied to other dredged muddy water such as rivers, lakes, and marshes. When dredging these freshwater systems, as with conventional methods,
Inorganic flocculants such as PAC, Alba sulfate, and ferric chloride can also be used together, and these can be added prior to the addition of the organic polymer flocculant. In addition, organic polymer flocculants other than the polyacrylamide type mentioned above can be used.
Depending on the properties of the dredging mud, several types may be used in combination; for example, cationic and anionic types may be used in combination. In these cases, one flocculant can be injected at the first injection point and the other flocculant can be injected at the second or subsequent injection points to produce a combined effect. Furthermore, the selection of the injection point and other aggregation conditions can be changed as desired. As described above, according to the present invention, an organic polymer flocculant is added to the dredged mud of the mud pipe, and at least one
After 30 minutes, the organic polymer flocculant is added again to repair the broken flocs and maintain a stable floc state, so a stable flocculation state can be maintained for a long time and the landfill yield can be reduced. In addition to improving water quality, the quality of leftover water can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示す系統図であ
り、1は送泥管、2は埋立地、5は遊水池、7は
凝集剤槽、9は薬注管、10は分注管である。
The drawing is a system diagram showing one embodiment of the present invention, in which 1 is a mud feeding pipe, 2 is a landfill, 5 is a reservoir, 7 is a flocculant tank, 9 is a chemical injection pipe, and 10 is a dispensing pipe. .

Claims (1)

【特許請求の範囲】 1 浚渫泥水を送泥管で移送し、移送中に凝集剤
を添加して凝集を行い、移送先で凝集した泥水を
沈降分離する方法において、送泥管の浚渫泥水に
有機高分子凝集剤を添加し、少なくとも1分30秒
後に再度有機高分子凝集剤を添加して、破壊され
たフロツクを補修し、安定フロツク状態を維持す
ることを特徴とする浚渫泥水の凝集処理方法。 2 凝集剤の添加比率は第1注入点で60〜80%、
第2注入点で40〜20%である特許請求の範囲第1
項記載の浚渫泥水の凝集処理方法。 3 凝集剤はポリアクリルアミド、ポリアクリル
アミド部分加水分解物またはポリアクリル酸塩で
ある特許請求の範囲第1項または第2項記載の浚
渫泥水の凝集処理方法。
[Claims] 1. In a method of transporting dredged mud through a mud pipe, adding a coagulant during transport to cause flocculation, and separating the flocculated mud at a destination by sedimentation, A flocculation treatment for dredged mud water characterized by adding an organic polymer flocculant and adding the organic polymer flocculant again after at least 1 minute and 30 seconds to repair broken flocs and maintain a stable floc state. Method. 2 The addition ratio of flocculant is 60 to 80% at the first injection point,
Claim 1 which is 40-20% at the second injection point
Aggregation treatment method for dredged mud water as described in Section 2. 3. The method for coagulating dredged mud water according to claim 1 or 2, wherein the flocculant is polyacrylamide, polyacrylamide partial hydrolyzate, or polyacrylate.
JP14033682A 1982-08-12 1982-08-12 Flocculation treatment of dredged sludge water Granted JPS5929080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14033682A JPS5929080A (en) 1982-08-12 1982-08-12 Flocculation treatment of dredged sludge water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14033682A JPS5929080A (en) 1982-08-12 1982-08-12 Flocculation treatment of dredged sludge water

Publications (2)

Publication Number Publication Date
JPS5929080A JPS5929080A (en) 1984-02-16
JPH0325234B2 true JPH0325234B2 (en) 1991-04-05

Family

ID=15266452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14033682A Granted JPS5929080A (en) 1982-08-12 1982-08-12 Flocculation treatment of dredged sludge water

Country Status (1)

Country Link
JP (1) JPS5929080A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307492A (en) * 1988-06-07 1989-12-12 Iseki Tory Tech Inc Treatment of mud water
JPH10128010A (en) * 1996-11-05 1998-05-19 Hymo Corp Treatment of dredge mud
CN106731041B (en) * 2017-03-24 2019-04-16 绵阳耀邦环保科技有限公司 Solid-liquid separating equipment equipped with flocculant adding apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433360A (en) * 1977-08-19 1979-03-12 Kajima Corp Method and device for disposing of muddy water
JPS5656288A (en) * 1979-10-11 1981-05-18 Ebara Infilco Co Ltd Coagulating sedimentation treatment process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433360A (en) * 1977-08-19 1979-03-12 Kajima Corp Method and device for disposing of muddy water
JPS5656288A (en) * 1979-10-11 1981-05-18 Ebara Infilco Co Ltd Coagulating sedimentation treatment process

Also Published As

Publication number Publication date
JPS5929080A (en) 1984-02-16

Similar Documents

Publication Publication Date Title
KR900006904B1 (en) Method and apparatus for treatment of sewage and other waste
JP2008534258A (en) Method and system for using activated sludge in a stabilized flocculation process to remove BOD and suspended solids
US4017388A (en) Split treatment phosphorus removal from waste
AU2013280201A1 (en) Enhanced techniques for dewatering thick fine tailings
CN102295371A (en) Integrated-processing process for river bottom-mud dredging residual water and equipment thereof
US2110721A (en) Sewage treatment
KR101234432B1 (en) Method for processing dredged
KR101234470B1 (en) System for processing dredged
US5688404A (en) Phosphate recovery processes
JP2002316200A (en) Treatment method for dredged mud
KR20010034104A (en) Coagulating/condensing device and method
JP2002172394A (en) Method for ss removing treatment of yard wastewater
JPH0325234B2 (en)
CN111453961A (en) Integrated process for continuously dredging sediment in situ
CN112374634B (en) Pretreatment method of fracturing flowback fluid
JP2008155188A (en) Mud and muddy water treatment method
JP2007222835A (en) Turbid water treatment apparatus
JP2003181465A (en) Engineering method for decontaminating water bottom
JP2930594B2 (en) Coagulation settling equipment
JP2002079004A (en) Aggregation method
JP2007136296A (en) Method, apparatus and seaweed paste for treating mud water
JP2005007250A (en) Sludge treatment apparatus and sludge treatment method
JPH0729119B2 (en) Solid-liquid separation method and apparatus for solid-liquid separation of dredging sludge
EP1157727B1 (en) Mineral recovery process
CN109351000A (en) A kind of clarifying basin for sewage treatment