JP2002316200A - Treatment method for dredged mud - Google Patents

Treatment method for dredged mud

Info

Publication number
JP2002316200A
JP2002316200A JP2001125407A JP2001125407A JP2002316200A JP 2002316200 A JP2002316200 A JP 2002316200A JP 2001125407 A JP2001125407 A JP 2001125407A JP 2001125407 A JP2001125407 A JP 2001125407A JP 2002316200 A JP2002316200 A JP 2002316200A
Authority
JP
Japan
Prior art keywords
mud
dredged mud
yard
pipe
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001125407A
Other languages
Japanese (ja)
Other versions
JP3716189B2 (en
Inventor
Masahide Tamura
正秀 田村
Nobuaki Wada
信昭 和田
Koji Yokoyama
浩司 横山
Toshifumi Miyake
敏文 三宅
Hideo Hirose
英雄 廣瀬
Takashi Ishikura
隆 石倉
Hideo Suzuki
秀男 鈴木
Ryuichi Kawanishi
龍一 川西
Eitaro Kawaura
栄太郎 川浦
Tadahiko Kawada
忠彦 川田
Keisuke Yamada
桂介 山田
Katsuhisa Abe
勝久 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RINKAI CONSTRUCTION CO Ltd
Telnite Co Ltd
Toa Corp
Toray Engineering Co Ltd
Penta Ocean Construction Co Ltd
Kabuki Construction Co Ltd
Public Works Research Center
Honma Corp
Ohmoto Gumi Co Ltd
Wakachiku Construction Co Ltd
Original Assignee
RINKAI CONSTRUCTION CO Ltd
Telnite Co Ltd
Toa Corp
Penta Ocean Construction Co Ltd
Kabuki Construction Co Ltd
Toyo Construction Co Ltd
Public Works Research Center
Honma Corp
Ohmoto Gumi Co Ltd
Wakachiku Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RINKAI CONSTRUCTION CO Ltd, Telnite Co Ltd, Toa Corp, Penta Ocean Construction Co Ltd, Kabuki Construction Co Ltd, Toyo Construction Co Ltd, Public Works Research Center, Honma Corp, Ohmoto Gumi Co Ltd, Wakachiku Construction Co Ltd filed Critical RINKAI CONSTRUCTION CO Ltd
Priority to JP2001125407A priority Critical patent/JP3716189B2/en
Publication of JP2002316200A publication Critical patent/JP2002316200A/en
Application granted granted Critical
Publication of JP3716189B2 publication Critical patent/JP3716189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method for dredged mud whereby dredged mud obtained from lakes and marshes, rivers, harbors, etc., is flocculated during its transport through a scour pipe, discharged into a treatment yard having a drainage mechanism installed at its bottom part, and spontaneously dehydrated in a high efficiency. SOLUTION: When dredged mud 2 having a water content of 650% or higher is being transported through a scour pipe 3 to a treatment yard 5 while the mud 2 is kept in a turbulent state as highly as possible, an anionic polymeric flocculant A of a reversed-phase emulsion type and an aqueous solution of a di- or trivalent nonmetal salt are added to the mud 2 to complete the flocculation reaction; then, the mud is discharged into a treatment yard 5 having a drainage mechanism 12' installed at its bottom part and is spontaneously dehydrated. Thus, by causing a turbulent flow and forming large flocks in a scour pipe before dredged mud obtained from lakes and marshes, rivers, harbors, etc., is discharged into a treatment yard and is spontaneously dehydrated, such results are obtained that the dehydration in the treatment yard is accelerated; the drying can be done in a short time; the repeated use of the treatment yard is made possible; and a great economical merit is achieved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】開示技術は、湖沼や河川、港湾等
から得られる浚渫泥土を、送泥用の排砂管内で凝集剤を
添加して凝集させ、しかる後に、底部に排水機構を設け
た処理ヤードに排泥して自然脱水、乾燥させる浚渫泥土
の処理方法の技術分野に属する。
BACKGROUND OF THE INVENTION The disclosed technology is to coagulate dredged mud obtained from lakes, marshes, rivers, harbors, etc. by adding a coagulant in a sand discharge pipe for mud feeding, and thereafter providing a drainage mechanism at the bottom. Belongs to the technical field of a method of treating dredged mud which is discharged into a treated yard and naturally dewatered and dried.

【0002】特に、該技術は、浚渫泥土を1秒間に0.
0167m3 以上という大きな速度で廃泥処理する場合
の処理方法の技術分野に属する。
[0002] In particular, the technique uses a dredging mud at a rate of 0.1 mm / sec.
It belongs to the technical field of a treatment method for treating waste sludge at a large speed of 0167 m 3 or more.

【0003】[0003]

【従来の技術】周知の如く、国土が狭隘で、山間林野部
が多く、しかも、長い海岸線に近接している特殊な地勢
条件の我が国にあっては、河川、湖沼が多く、長い海岸
線には大小の港が設けられており、したがって、河川、
湖沼、港岸には、経時的に大量のヘドロ等の高含水泥土
が堆積し、河川、湖沼、港岸等に設置されている所謂ウ
ォーターフロント等の施設の諸機能は経時的に次第に損
なわれていく弊害がある。
2. Description of the Related Art As is well known, in Japan where the land is narrow, there are many mountain forests and there is a special terrain close to a long coastline, there are many rivers and lakes, There are large and small ports, so rivers,
A large amount of mud such as sludge accumulates over time in lakes and harbors, and the various functions of so-called waterfront facilities installed in rivers, lakes, harbors, etc. gradually deteriorate over time. There is a negative effect.

【0004】従来、当該湖沼や河川、港湾等から得られ
るかかる浚渫泥土2を処理するにあたっては、図7に示
す様に、泥土2を浚渫船1で浚渫して堤防4で囲繞され
た処理ヤード5内に送泥し、そこで図8に示す様に、天
日8を介して泥土7を乾燥する方法や、或いは、図9の
Conventionally, when treating such dredged mud 2 obtained from the lakes, rivers, ports, etc., as shown in FIG. 7, the mud 2 is dredged by a dredger 1 and a processing yard 5 surrounded by an embankment 4. 8, where the mud 7 is dried through the sun 8, as shown in FIG.

【イ】に示す如くポリアクリルアミド系等の凝集剤10
を加えて凝集泥土7とさせたり同図
(A) Polyacrylamide-based flocculant 10
Add coagulation mud 7

【ロ】に示す如く、脱水機11にかけ減容した泥土7´
とする方法が専ら採られてきた。
As shown in [b], mud 7 'reduced in volume by dehydrator 11
The method has been adopted exclusively.

【0005】而して、かかる技術は特開平9−1688
00号公報発明や特開2000−426006号公報発
明等に開示されている。
[0005] Such a technique is disclosed in Japanese Patent Laid-Open No. 9-1688.
The invention is disclosed in Japanese Patent Application Publication No. 00 and Japanese Patent Application Laid-Open No. 2000-426006.

【0006】而して、これに対処するに堆積泥土2を処
理ヤード5に送泥された泥土の該癈泥7については1つ
の資源材として有効に再利用するべく田畑の嵩上げや築
堤等に建設用土として利用するようにしており、かかる
浚渫泥土7の処理システムの在来態様を図3以下の図面
によって略説すると、当該図3に示す様に、浚渫船1に
よりその海底に堆積している泥土2を所定に浚渫し、該
浚渫船1から延設されている排砂管3を介し堤体4によ
って囲繞され処理ヤード5に癈泥7として送泥するに、
該癈泥7が該排砂管3によって送泥されるプロセスは元
来数百%を超える様な、高含水の状態の泥土2であるた
めに、該処理ヤード5内で沈殿による重力選別を介し水
分をオーバーフロー水15等で放水などにより排水し、
該処理ヤード5に沈降して残留する癈泥7に対して図8
に示す様に、太陽8の日照による天日乾燥と自然な自重
圧密を介し2年乃至3年程度の長期の自然脱水を行い、
経時的な癈泥7の固結を行って田畑の嵩上げや築堤等の
建設用土として利用に供するようにされているものであ
るが、当該長期間の天日乾燥を介しての自然脱水だけで
は癈泥7の表層部のみが乾燥し、中層部、深層部では有
効に脱水が図れないために、図9の
[0006] In order to cope with this, the waste mud 7 sent to the treatment yard 5 by the sedimentary mud 2 is used for raising the fields and embankment in order to effectively reuse it as one resource material. The conventional mode of the treatment system for the dredged mud 7 which is designed to be used as construction soil is briefly described with reference to FIG. 3 and the following drawings. As shown in FIG. 3, the mud accumulated on the seabed by the dredger 1 is shown in FIG. 2 is dredged in a predetermined manner and is sent as a waste mud 7 to a processing yard 5 surrounded by a bank body 4 through a sand discharging pipe 3 extending from the dredger 1.
The process in which the waste mud 7 is sent through the sand discharge pipe 3 is a mud 2 having a high water content, which originally exceeds several hundred percent, so that gravity separation by sedimentation in the treatment yard 5 is performed. Drain the water through the overflow water 15 etc.
FIG. 8 shows waste mud 7 settling in the treatment yard 5 and remaining.
As shown in the above, the solar dehydration by sunshine of the sun 8 and natural self-weight consolidation perform long-term natural dehydration of about 2 to 3 years,
It is designed to condense waste mud 7 with time and use it as construction soil such as raising fields and embankments, but natural dehydration only through the long-term solar drying Because only the surface layer of the waste mud 7 dries and the middle and deep layers cannot be effectively dewatered,

【イ】に示す様に、ポリアクリルアミド系の凝集剤10
を添加し混合攪拌して固化の促進を図ったり、当該図9
As shown in (a), polyacrylamide-based flocculant 10
Is added and mixed and stirred to promote the solidification, and FIG.
of

【ロ】に示す様に、加圧脱水等の所定の固化処理装置1
1を介し癈泥7に加圧脱水作用を機械的に与えて、強度
をアップした癈土7´ とし実用に供し得る良質な改良
土として図10に示す様に、トラック12等により良質
な改良土13として図11に示す様に、所定の建設用地
まで搬送し、基礎土15上に改良土13´ として盛土
し、当該図11に示す様に、その上に耕土13´ に覆
土16してトラクターやコンバインや耕耘機の使用や植
生17の育成が可能である。
[B] As shown in [b], a predetermined solidification treatment device 1 such as pressure dehydration
As shown in FIG. 10, high quality improved soil that can be put into practical use as a waste soil 7 ′ having increased strength by mechanically applying pressure dehydration to the waste mud 7 through the truck 12 and the like as shown in FIG. As shown in FIG. 11, the soil 13 is conveyed to a predetermined construction site, buried as an improved soil 13 'on the base soil 15, and covered with a cultivated soil 13' thereon 16 as shown in FIG. Use of a tractor, a combine, or a cultivator, and cultivation of vegetation 17 are possible.

【0007】[0007]

【発明が解決しようとする課題】ところで、湖沼や河
川、港湾等の底には、多くの場合、ヘドロ状の物質や泥
土2が沈殿、堆積しているが、それらは,栄養塩に富む
ヘドロ状物質である場合が多く、そこから溶け出る窒
素、りんなどの富栄養素が植物プランクトンの異常発生
やメタンガス発生の原因となって、著しい環境悪化をも
たらしている。
By the way, sludge-like substances and mud 2 are often deposited and deposited on the bottom of lakes, marshes, rivers, harbors and the like. In many cases, eutrophic substances such as nitrogen and phosphorus that are dissolved from these substances cause abnormal occurrence of phytoplankton and methane gas, resulting in significant environmental deterioration.

【0008】かかる、汚染の進んだ湖沼や河川、港湾の
浄化の有力な方法の一つは、この栄養塩に富むヘドロ状
物質の泥土2を浚渫船1により浚渫して排砂管3を介し
て処理ヤード5に送泥して取り除くことであり、国や多
くの地方自治体が早くからこれに取り組んで一定の成果
をそれなりに収めてはいるが、その方法は、前述した如
く浚渫船1から排砂管3を介して送泥されるヘドロ2を
処理ヤード5に泥土7として貯めて天日8により乾燥す
るものが殆どで、該処理ヤード5に大規模な築堤工事が
必要な上、乾燥が終わって処理ヤード5を再利用するこ
とが可能になるまで長期間(1年以上)を要することか
ら、処分地の確保に頭を悩ませているところがほとんど
である。
One of the most effective methods for purifying the polluted lakes, marshes, rivers and ports is to dredge the mud 2 of this nutrient-rich sludge-like substance with a dredger 1 and to pass through a sand discharge pipe 3. This is to send the sludge to the treatment yard 5 and remove it from the dredger 1 as described above, although the national government and many local governments have been working on this from an early stage and have achieved a certain result. Most of the sludge 2 sent through the yard 3 is stored as mud 7 in the treatment yard 5 and dried by the sun 8, and the treatment yard 5 requires a large-scale embankment construction and after the drying is over. Since it takes a long time (one year or more) before the processing yard 5 can be reused, most places have a headache in securing a disposal site.

【0009】このような、天日8による乾燥は時間がか
かる上、乾燥後といえども、処理ヤード5の泥土7に地
耐圧が出ず、処分地の用途が制限される事から、凝集剤
10を加えて機械攪拌装置11で固化させ、それを該機
械11により脱水化し泥土7´ とする方法が一部で採
用されている。しかし、機械攪拌装置、機械脱水装置1
1のいずれについても処理能力が小さいという難点があ
り、例えば、1秒間に0.0167m3 以上というよう
な大量処理に向かず、仮に、大量処理を機械攪拌装置、
機械脱水装置11等を用いて行うものとすると、その設
備費用、運転費用、メンテナンス費用、所要敷地面積は
コスト的に莫大なものとなり、現実的ではない不利点が
あった。
Such drying by the sun 8 takes a long time, and even after drying, the mud 7 in the processing yard 5 does not have a pressure against the ground, and the use of the disposal site is restricted. 10 is added and solidified by a mechanical stirrer 11, which is dehydrated by the machine 11 to obtain mud 7 '. However, the mechanical stirring device and the mechanical dehydrating device 1
1 has a disadvantage that the processing capacity is small. For example, it is not suitable for mass processing such as 0.0167 m 3 or more per second.
If the operation is performed by using the mechanical dewatering device 11 or the like, the equipment cost, operation cost, maintenance cost, and required site area are enormous in terms of cost, and there is an unrealistic disadvantage.

【0010】尚、高含水の浚渫癈泥7に対する処理方法
において、凝集剤10を用いた技術としては、前記特開
平09−168800号公報等に開示されてはいるが、
当該先行技術においては、高含水浚渫癈泥7に対し、セ
メント等の固化剤等を添加することが高頻度にされてお
り、当該先行技術を用いて高含水浚渫癈泥7を処理し
て、該浚渫癈泥7を固化するに、固化するプロセスで、
当該添加されるセメントの固化剤等10による窒素系物
質の増加によりpH値やCODの増加が生じるデメリッ
トがあった。
In the treatment method for the highly water-containing dredged waste mud 7, a technique using the coagulant 10 is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 09-168800.
In the prior art, the addition of a solidifying agent such as cement to the high water content dredging waste mud 7 is frequently performed, and the high water content dredging waste mud 7 is treated using the prior art, In the process of solidifying the dredged waste mud 7,
There is a disadvantage that the pH value and COD increase due to an increase in the nitrogen-based substance due to the added cement solidifying agent 10 or the like.

【0011】而して、図8に示す様な、処理ヤード5内
に於ける天日8を介しての乾燥と自重圧密を介しての癈
泥土の沈降ではますます該癈泥の疎水性が悪化し、乾燥
促進が経時的に低下し、固結の悪化が良好な建設用土の
良質土17の形成が損なわれるという不具合があった。
Thus, as shown in FIG. 8, the hydrophobicity of the waste mud is increasing due to the drying in the treatment yard 5 through the sun 8 and the sedimentation of the waste mud through its own weight consolidation. However, there was a problem that the formation of the high quality soil 17 of the construction soil with good deterioration of the consolidation was deteriorated, and the deterioration of the consolidation deteriorated with time.

【0012】[0012]

【発明の目的】この出願の発明の目的は上述従来技術に
基づく、浚渫船1からの長距離の排砂管3を介しての沈
殿池機能を有する処理ヤード5への送泥を介し天日8に
よる乾燥と沈殿による自重圧密による上層部のみの乾燥
であって、中層部、深層部の乾燥が充分に行われず、
又、セメント等の固化剤の添加による力学的特性が改善
されても、pHやCOD値の増加による環境特性の悪化
が逆に促進されるという在来態様の高含水浚渫泥土の建
設用土への改良処理の問題点を解決すべき技術的課題と
し、浚渫船からの長い排砂管3を介しての処理ヤード5
への泥土への送泥の条件を前提としながらも、該排砂管
を介しての送泥中に於いて排水性を良好にして、脱水促
進を迅速に行い、経時的にも速やかに経済的にもローコ
スト的に行えるようにし、浚渫泥土を建設用土として有
効に利用させることが出来るようにして建設産業におけ
る土木技術利用分野に益する優れた浚渫泥土の処理方法
を提供せんとするものである。
It is an object of the invention of this application to provide a method of processing a dredger from a dredger according to the prior art described above through a long distance sand discharging pipe to a treatment yard having a sedimentation basin function. Drying and drying of the upper layer only due to self-weight consolidation by precipitation, the middle layer and the deep layer are not sufficiently dried,
In addition, even if the mechanical properties are improved by the addition of a solidifying agent such as cement, the deterioration of environmental properties due to an increase in pH or COD value is promoted on the contrary. The technical problem to be solved is to solve the problem of the improved treatment, and the treatment yard 5 through the long sand discharge pipe 3 from the dredger is used.
While premised on the conditions for sending mud to mud, the drainage is improved during mud sending through the sand drainage pipe, and dehydration is promptly accelerated. It is intended to provide an excellent method of treating dredged mud that can be used effectively at low cost and that can effectively use dredged mud as construction soil and that is beneficial to the field of civil engineering technology in the construction industry. is there.

【0013】[0013]

【課題を解決するための手段】上述目的に沿い先述特許
請求の範囲を要旨とするこの出願の発明の構成は、前述
課題を解決するために、含水比650%以上の浚渫泥土
2を排砂管3で処理ヤード5に送泥する途中に、初めに
液状のアニオン系高分子凝集剤Aを添加して浚渫泥土を
一次凝集させ、次に2価または3価の無機金属塩水溶液
Cを添加して凝集反応を完結させ、これを、底部に排水
機構12を設けた処理ヤード5に排出して自然脱水させ
る浚渫泥土の処理を行う技術的手段を講じたものであ
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the construction of the invention of the present application for solving the above-mentioned problems is to remove dredged mud 2 having a water content of 650% or more. In the course of sending the slurry to the treatment yard 5 by the pipe 3, first, the liquid anionic polymer flocculant A is added to firstly aggregate the dredged mud, and then the divalent or trivalent inorganic metal salt aqueous solution C is added. Then, a coagulation reaction is completed, and this is discharged to the treatment yard 5 provided with the drainage mechanism 12 at the bottom to take a technical measure for treating the dredged mud for natural dehydration.

【0014】[0014]

【作用】而して、上述構成において、河川、湖沼、港岸
に堆積しているヘドロ等の泥土2を浚渫し、浚渫船1か
らの長い排砂管3を介しウォーターフロント等に設置し
た処理ヤード5に送泥するに際し、当該送泥プロセスに
おいて、まず、アニオン系分子凝集剤Aを添加して、送
泥中に存在する微細な土粒子や汚濁物質等の各物質を架
橋(粗結合)状態でブロック化し、次いで2価又は3価
の無機金属塩水溶液Cを添加して凝集反応を完了させて
架橋(粗結合)状態の粗粒子群が締り、強固な密の状態
のフロックになるようにし、該フロック相互の間にある
自由水は分離し易く、フロックは疎水性に優れた性状に
し、送泥する処理ヤードの下層部に敷設した透水性の高
いサンドマット上に送泥した浚渫泥土は上記フロックの
間の自由水がセメント等の固化剤が添加されていないた
めに、スムーズに清澄水として排水ポンドの釜場等から
排水され、しかも、pH値やCODがコントロールさ
れ、無公害裡に自然放流等の放水がされ、又、しかも、
上記自由水の排水の進行に伴い、送泥された処理ヤード
5内の癈泥は自然圧密による排水の進行が進まなくなる
と、該自由水の脱水により泥土7の表層部に生じたクラ
ック16,16´を介し該表層部の太陽8に対する暴露
面積が増大し、天日乾燥を行うに、自然乾燥が促進され
て迅速に脱水が促進され、土粒子分が多い改良土62が
速やかに、固結されて該改良土16´ としての強度が
増加し、建設用土63として田畑の嵩上げや築堤に有効
に利用出来るようにするものである。
In the above-described configuration, the processing yard provided on the waterfront or the like through dredging of mud 2 such as sludge deposited on rivers, lakes, marshes, and harbors through a long sand discharge pipe 3 from the dredger 1. In the mud feeding process, an anionic molecular coagulant A is first added to cross-link (coarsely bond) each substance such as fine soil particles and pollutants present in the mud feeding. And then add an aqueous solution of divalent or trivalent inorganic metal salt C to complete the agglomeration reaction so that the crosslinked (coarsely bonded) coarse particles are tightened to form a strong dense floc. The free water between the flocs is easy to separate, the flocs have excellent hydrophobic properties, and the dredged mud sent on the highly permeable sand mat laid under the treatment yard to feed the mud is Free water between the above flock Since no solidifying agent such as g is added, the water is drained smoothly from the basin of the drainage pond as clear water, and the pH value and COD are controlled, and the water is discharged naturally without pollution, etc. Also, and
With the progress of the drainage of the free water, the waste mud in the treatment yard 5 to which the mud has been fed stops progressing the drainage due to natural consolidation. The exposed area of the surface layer to the sun 8 is increased through the layer 16 ', and when the solar cell is dried in the sun, natural drying is promoted, dehydration is promptly promoted, and the improved soil 62 having a large amount of soil particles is quickly solidified. As a result, the strength of the improved soil 16 'is increased, and the soil 63 can be effectively used as a construction soil 63 for raising fields or embankment.

【0015】[0015]

【発明の背景】而して、従来、一般的に行われている浚
渫泥土2の凝集処理では、始めに、浚渫泥土に2価また
は3価の無機金属塩水溶液Cを添加して泥土中のコロイ
ド物質のもつ負電荷を中和し、つぎにノニオン、又は、
アニオン性の高分子物質Aを加えて凝集を起こさせるよ
うな手段を用いているが、該種手段は、ノニオンまたは
アニオン性の高分子物質Aの添加物が浚渫泥土2中の固
形分当たり0.01%以下で済み、非常に経済的ではあ
るが、得られるフロックが小さく、自然脱水には適さな
いものである。
In the conventional coagulation treatment of dredged mud 2, a divalent or trivalent inorganic metal salt aqueous solution C is first added to the dredged mud, and the dredged mud 2 Neutralizes the negative charge of the colloidal material, then nonionic or
Means for adding the anionic polymer substance A to cause agglomeration is used, but the seed means is that the nonionic or anionic polymer substance A additive is added to the dredged mud 2 at a solid content of 0%. It is very economical, but the obtained floc is small and not suitable for natural dehydration.

【0016】これを解決する方法として発明者らが見出
だしたのは分子量が800万〜1200万の高分子凝集
剤Aを用い、且つ、浚渫泥土2中の固形分当りの純分換
算添加量を0.1%以上、好ましくは0.2%以上と非
常に多くすることであり、この出願の発明のように、ま
ず始めに、非常に高い分子量の高分子凝集剤を大量に浚
渫泥土に添加する(第1工程)と、イオンの反発力を越
えて該高分子凝集剤が懸濁コロイドを包み込む。
As a method for solving this problem, the inventors have found that a polymer coagulant A having a molecular weight of 8 to 12 million is used, and an addition amount in terms of a pure content per solid content in the dredged mud 2. And 0.1% or more, preferably 0.2% or more. First, as in the invention of this application, a large amount of a polymer coagulant having a very high molecular weight is first added to the dredged mud in a large amount. When added (first step), the polymer flocculant wraps the suspended colloid beyond the repulsive force of the ions.

【0017】この場合、コロイド物質は、高分子の網に
絡み取られたような状態となり、大きなフロックを形成
する。次に2価または3価の無機塩を加える(第2工
程)と、高分子の網が、内にコロイド物質を含んだまま
一気に収縮し、丈夫なフロックになると考えられる。
In this case, the colloidal substance is in a state of being entangled in the polymer network and forms a large floc. Next, when a divalent or trivalent inorganic salt is added (second step), it is considered that the polymer network shrinks at a stretch while containing the colloidal substance therein, resulting in a strong floc.

【0018】ここで用いるアニオン系高分子凝集剤とし
ては、鎖状で、コロイド物質との吸着点を沢山持ってい
る物質、例えば、アクリルアミドとアクリル酸ソーダの
共重合物(アクリル酸ソーダの割合20〜5%)が、ま
た、この出願の発明で用いる2価または3価の無機金属
塩としては、ポリ塩化アルミニウム、硫酸バンド、塩化
第2鉄等の水溶液を用いるのが望ましいが、これに代え
て、4価以上の無機金属塩やカチオン系高分子凝集剤の
水溶液を用いることも可能である。
The anionic polymer flocculant used herein is a chain-like substance having many adsorption points with colloidal substances, for example, a copolymer of acrylamide and sodium acrylate (sodium acrylate having a ratio of 20%). However, as the divalent or trivalent inorganic metal salt used in the invention of this application, it is desirable to use an aqueous solution of polyaluminum chloride, a sulfate band, ferric chloride, etc. It is also possible to use an aqueous solution of an inorganic metal salt having a valency of 4 or more or a cationic polymer flocculant.

【0019】始めにアニオン性の高分子凝集剤を添加
し、次に無機金属多価塩を添加することは、例えば、特
開平3−161099などに記載されてはいるが、かか
るアニオン系高分子凝集剤の分子量が800万以下の場
合、そして/または、浚渫泥土中の固形分当たりの添加
量が0.1%以下の場合、始めに浚渫泥土類に高分子凝
集剤を添加(第1工程)しても、イオンの反発力が障害
になって高分子凝集剤が懸濁コロイドを包み込むことが
出来ないから凝集は起きず、フロックは生成しない。
The addition of an anionic polymer coagulant first and then the addition of an inorganic metal polyvalent salt is described in, for example, Japanese Patent Application Laid-Open No. 3-161099, but such an anionic polymer is added. When the molecular weight of the flocculant is 8,000,000 or less, and / or when the amount added per solid content in the dredged mud is 0.1% or less, a polymer flocculant is first added to the dredged mud (first step). 1), the repulsive force of the ions hinders the polymer flocculant from wrapping the suspended colloid, so that flocculation does not occur and floc is not generated.

【0020】無機金属多価塩を添加(第2工程)し、初
めて、凝集フロックが出来るが、発明者らの研究によれ
ば、このようにして形成されたフロックは強度が弱く、
ある厚みに堆積すると、該フロックがつぶれて自由水の
水抜けが非常に悪くなる。
Aggregated flocs can be formed only by adding the inorganic metal polyvalent salt (second step). According to the study of the present inventors, the flocs thus formed have low strength,
When the flock is deposited to a certain thickness, the flock is crushed and drainage of free water becomes very poor.

【0021】 これに対しこの出願の発明のように、分
子量が800万〜1200万の高分子物質を用い、浚渫
泥土2中の固形分当たりの添加量を0.1%以上、好ま
しくは0.2%以上と思い切って多くすると、添加後、
一旦急激な粘性上昇がおき、その後、粘性が下がるにつ
れて懸濁物質は凝集し、大きなフロックをつくるように
なる。
On the other hand, as in the invention of this application, a polymer substance having a molecular weight of 8 to 12 million is used, and the amount of addition per solid content in the dredged mud 2 is 0.1% or more, preferably 0.1% or more. If you drastically increase it to 2% or more,
Once the viscosity rises rapidly, the suspended solids clump together as the viscosity decreases, creating large flocs.

【0022】このように、第1工程でフロックが形成さ
れるか否かが、強いフロックを得られるか否かの決め手
であり、いままで技術ではだれもが見出し得なかったこ
とである。
As described above, whether or not a floc is formed in the first step is a deciding factor in whether or not a strong floc can be obtained, and no one has been able to find any technology with the technology until now.

【0023】而して、アニオン系高分子凝集剤Aは、そ
の逆相エマルジョン型のものを有姿の状態のまま添加す
るのが良い。そこで、一般の凝集プロセスで広く行われ
ているように、アニオン系高分子凝集剤Aの粉末、或い
は、逆相エマルジョン型のものを水に溶かすことを考え
てみると、一般に高分子凝集剤Aの溶解は、ままこ(粒
状の未溶解物)が出来易い等難しい作業であるが、この
出願の発明で用いるアニオン系高分子凝集剤Aの分子量
は800万〜1200万と高いことから、溶解が特に難
しく、水溶液の粘性が障害となって、溶解濃度は0.1
%が限界である。
It is preferable that the anionic polymer flocculant A is added in the form of a reversed emulsion emulsion as it is. Considering that a powder of an anionic polymer flocculant A or a reverse-phase emulsion type is dissolved in water, as is widely performed in a general flocculation process, generally, the polymer flocculant A Is a difficult operation, such as easy formation of mamako (granular undissolved matter). However, since the molecular weight of the anionic polymer flocculant A used in the invention of this application is as high as 8 to 12 million, Is particularly difficult, and the viscosity of the aqueous solution is an obstacle,
% Is the limit.

【0024】仮に、対象とする浚渫泥土2の含水比が1
200%、固形分当りの添加量を0.2%とすると、高
分子凝集剤水溶液の添加量は0.167m3 /送泥1m
3 に達し、特に大規模浚渫の場合には、その溶解作業に
多大の費用、労力、作業敷地を要することになる。
If the water content of the target dredging mud 2 is 1
200%, when the addition amount per solids and 0.2%, the addition amount of polymer coagulant solution is 0.167m 3 / Okudoro 1m
In particular, in the case of large-scale dredging, the melting operation requires a lot of cost, labor and work site.

【0025】よって、アニオン系高分子凝集剤Aの逆相
エマルジョン品を有姿のまま添加するメリットは非常に
大きい。
Therefore, the merit of adding a reversed-phase emulsion product of the anionic polymer flocculant A as it is, is very large.

【0026】この出願の発明の特徴は、機械攪拌装置、
機械脱水装置11等を一切使わず、浚渫泥土2の処理を
行うところにある。
The features of the invention of this application include a mechanical stirring device,
It is in the place where the dredged mud 2 is treated without using any mechanical dewatering device 11 or the like.

【0027】[0027]

【発明が解決しようとする手段】前述目的に沿い先述特
許請求の範囲を要旨とするこの出願の発明の構成は、前
述課題を解決するために、高含水比の浚渫泥土2に凝集
剤を添加して処理ヤード5に貯留脱水する浚渫泥土2の
処理方法において、含水比650%以上の上記浚渫泥土
2を排砂管3で上記処理ヤード5へ送泥する中途にて、
初めにアニオン系高分子凝集剤Aを該浚渫泥土2に添加
し、次に2価または3価の無機金属塩水溶液Cを該浚渫
泥土2に添加して凝集反応を完結させ、この凝集反応を
完結させた泥土を底部に排水機構を設けた処理ヤードに
上記排砂管を介して排出して自然脱水させることを基幹
とし、而して、上記アニオン系高分子凝集剤Aが、分子
量800万〜1200万のポリアクリルアミド系高分子
凝集剤であるようにし、上記アニオン系高分子凝集剤A
の逆相エマルジョン型のものを有姿状態のまま上記泥土
中に添加するようにし、又、上記逆相エマルジョン型の
アニオン系高分子凝集剤Aが、0.5Pa・S以下の粘
性を有してあるようにもし、上記逆相エマルジョン型ア
ニオン系高分子凝集剤の純分換算の添加量が、上記浚渫
泥土中の固型分当り、0.1%以上、好ましくは0.2
%以上であるようにもし、液状の上記アニオン系高分子
凝集剤Aを添加した後に、2価または3価の無機金属塩
水溶液Cを添加するまでの排砂管の長さ(m)が流速
(m/秒)×60〜600秒、2価または3価の無機金
属塩水溶液Cを添加してから上記処理ヤード5に排出す
るまでの排砂管3の長さ(m)が、流速(m/秒)×1
8〜300秒であるようにし、上記排砂管3内にて、粘
性ピーク時のレイノルズ数が500以上であり、且つ、
平均のレイノルズ数が2100以上であるように該排砂
管3の管径を決定するようにし、上記排砂管3を流れる
浚渫泥土2の流量と比重を連続的に測定し、予め室内実
験で決定しておいた比重と凝集剤の添加率の関係から該
凝集剤の添加率を計算し、流量×凝集剤添加率の結果で
該凝集剤の添加量を自動的に制御するようにもした技術
的手段を講じたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the constitution of the invention of the present application, in which the above-mentioned claims are summarized, is to add a flocculant to the dredged mud 2 having a high water content. In the method for treating the dredged mud 2 stored and dewatered in the treatment yard 5, the dredged mud 2 having a water content of 650% or more is sent to the treatment yard 5 through the sand discharge pipe 3.
First, an anionic polymer coagulant A is added to the dredged mud 2, and then a divalent or trivalent inorganic metal salt aqueous solution C is added to the dredged mud 2 to complete the coagulation reaction. It is based on discharging the completed mud to a treatment yard provided with a drainage mechanism at the bottom through the above-mentioned sand drainage pipe and allowing it to naturally dehydrate. Thus, the anionic polymer flocculant A has a molecular weight of 8,000,000. To 12 million polyacrylamide-based polymer coagulant, and the anionic polymer coagulant A
The reverse phase emulsion type is added to the mud as it is, and the reverse phase emulsion type anionic polymer flocculant A has a viscosity of 0.5 Pa · S or less. The amount of the reverse phase emulsion type anionic polymer flocculant in terms of pure content is 0.1% or more, preferably 0.2%, based on the solid content in the dredged mud.
%, The length (m) of the sand drainage pipe from the time when the liquid anionic polymer flocculant A is added to the time when the divalent or trivalent inorganic metal salt aqueous solution C is added is equal to the flow rate. (M / sec) × 60-600 seconds The length (m) of the sand discharge pipe 3 from the time when the divalent or trivalent inorganic metal salt aqueous solution C is added to the time when the divalent or trivalent inorganic metal salt aqueous solution C is discharged to the processing yard 5 is determined by the flow velocity ( m / sec) x 1
8 to 300 seconds, and the Reynolds number at the time of the viscosity peak is 500 or more in the sand discharging pipe 3, and
The pipe diameter of the sand discharging pipe 3 is determined so that the average Reynolds number is 2100 or more, and the flow rate and the specific gravity of the dredging mud 2 flowing through the sand discharging pipe 3 are continuously measured, and are previously determined in a laboratory experiment. The addition rate of the flocculant was calculated from the relationship between the determined specific gravity and the addition rate of the flocculant, and the addition amount of the flocculant was automatically controlled based on the result of the flow rate × the flocculant addition rate. It takes technical measures.

【0028】[0028]

【作用】上述構成において、浚渫船1から、ヘドロ等の
浚渫泥土2を浚渫し、排砂管3により築堤4内に設けた
処理ヤード5に排出して天日8により乾燥等と共に自然
脱水させるようにし、該排砂管3に於いて送泥する中途
にて前段の高分子凝集剤Aを分子量800万乃至120
0万のポリアクリルアミド系高分子凝集剤であるように
し、又、アニオン系高分子凝集剤Aの逆相エマルジョン
型のものを有姿状態のまま該排砂管3の泥土2中に添加
するようにし、更に、上記逆相エマルジョン型のアニオ
ン系高分子凝集剤Aが0.5Pa・S以下の粘性を有し
ているようにもし、更に、当該逆相エマルジョン型のア
ニオン系高分子凝集剤Aの純分換算の添加量が上記泥土
中の固形部あたり0.1%以上好ましくは0.2%以上
であるようにし、而して、液状の上記アニオン系高分子
凝集剤Aを添加した後に2価又は3価の無機金属塩水溶
液Cを添加するまでの排砂管3についてはその長さが流
速(m/秒)×60〜600秒であり、該2価又は3価
の無機金属塩水溶液Cを添加してから上記処理ヤード5
に排出するまでの排砂管3についてはその長さ(m)が
流速(m/秒)×18〜300秒であるようにし、その
上、上記排砂管3の管路内においてそのレイノルズか数
が500以上であり、且つ、平均のレイノルズ数が平均
の2100以上であるように管径を決定するようにし、
更に、該排砂管3を流れる浚渫泥土2の質量と比重を連
続的に測定し、予め、室内実験で決定しておいた比重と
凝集剤添加率の関係から凝集剤の添加率を計算し、流量
×凝集剤A,Cの添加率の結果でその添加量を自動的に
制御するようにしたものである。
In the construction described above, dredging mud 2 such as sludge is dredged from a dredger 1 and discharged to a processing yard 5 provided in the embankment 4 by a sand discharge pipe 3 so that it is naturally dehydrated and dried by the sun 8. The polymer flocculant A in the former stage is supplied with a molecular weight of 8,000,000 to 120
100,000 polyacrylamide polymer flocculant, and a reverse phase emulsion type of anionic polymer flocculant A is added to mud 2 of sand discharging pipe 3 as it is. Further, the reverse-phase emulsion-type anionic polymer flocculant A may have a viscosity of 0.5 Pa · S or less. Is adjusted to be 0.1% or more, preferably 0.2% or more, based on the solid portion in the mud, and after adding the liquid anionic polymer flocculant A The length of the sand drainage pipe 3 before the addition of the aqueous solution C of divalent or trivalent inorganic metal salt is at a flow rate (m / sec) × 60 to 600 seconds. After adding the aqueous solution C, the treatment yard 5
The length (m) of the sand discharge pipe 3 before discharging into the pipe is set to be a flow velocity (m / sec) × 18 to 300 seconds. Number is 500 or more, and the tube diameter is determined so that the average Reynolds number is 2100 or more of the average,
Further, the mass and specific gravity of the dredged mud 2 flowing through the sand drainage pipe 3 are continuously measured, and the addition rate of the flocculant is calculated from the relationship between the specific gravity and the coagulant addition rate determined in advance in a laboratory experiment. The flow rate × the addition rate of the flocculants A and C is automatically controlled based on the result.

【0029】[0029]

【発明が実施しようとする形態】次ぎに、この出願の発
明の実施しようとする形態を実施例の態様として図1乃
至図6の図面を参照して説明すれば以下の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. 1 to 6 as embodiments of the present invention.

【0030】そして、図7以下の図面と同一態様部分に
ついては同一符号を用いて説明するものとする。
The same parts as those in the drawings after FIG. 7 are described using the same reference numerals.

【0031】浚渫泥土2を排砂管3で凝集剤A,Cと均
一に反応させるにあたっては、反応を促進するため、該
凝集剤A,Cを添加する時点から処理ヤード5に排出す
るまでのどの部分でも乱流状態に維持することが最も望
ましいものである。
When the dredged mud 2 is uniformly reacted with the coagulants A and C in the sand discharging pipe 3, in order to promote the reaction, the time between the time when the coagulants A and C are added and the time when the dredged mud 2 is discharged to the treatment yard 5 is increased. It is most desirable to maintain turbulence at any point.

【0032】しかしながら、浚渫泥土2と凝集剤A,C
の反応では、粘性のハンプ現象、即ち、一時的に粘性が
急上昇し、やがて下降する現象がみられるから、このピ
ーク時においても、必ず乱流状態が維持されるように排
砂管3管径と送泥量の関係を決めようとすると全体的に
圧力損失が高くなったり、排砂管3が長くなりすぎた
り、不都合さが生じることが多い。
However, the dredged mud 2 and the coagulants A and C
In this reaction, a viscous hump phenomenon, that is, a phenomenon in which the viscosity temporarily rises suddenly and then falls, is seen. Therefore, even during this peak time, the diameter of the sand discharge pipe 3 is set so that the turbulent flow state is always maintained. When trying to determine the relationship between the pressure and the amount of mud, the pressure loss generally increases, the length of the sand discharge pipe 3 becomes too long, and inconveniences often occur.

【0033】高分子凝集剤Aの添加前までと、該高分子
凝集剤Aの添加後から無機凝集剤Cの添加前まで、該無
機凝集剤Cの添加後から処理ヤード5への排出までの3
区間の排砂管3の径を変えて、常に乱流状態を維持しよ
うとしても、やはり、圧力損失が高くなりすぎる問題は
解決し難い。
From before the addition of the polymer flocculant A to after the addition of the polymer flocculant A to before the addition of the inorganic flocculant C, and after the addition of the inorganic flocculant C to the discharge to the treatment yard 5. 3
Even if the turbulent state is always maintained by changing the diameter of the sand discharge pipe 3 in the section, it is still difficult to solve the problem that the pressure loss becomes too high.

【0034】この点について、発明者らは多くの実験を
重ね、仮にピーク時は層流になっても、ピーク時のレイ
ノルズが500以上であり、且つ、平均のレイノルズ2
100以上であれば、該排砂管3での凝集反応は完結す
ることを見出した。
In this regard, the present inventors have conducted many experiments, and even if laminar flow occurs at the peak, the Reynolds at the peak is 500 or more, and the average Reynolds 2
When it is 100 or more, it has been found that the coagulation reaction in the sand discharging pipe 3 is completed.

【0035】そして、この出願の発明では、凝集剤添加
A,Cの前の浚渫泥土2自体の粘性があまり高いと、そ
して/または、逆相エマルジョン型の高分子凝集剤自体
の粘性があまり高いと、該凝集剤Aが均一に広がるのを
妨げるから、浚渫泥土2の含水比は650%以上(含水
比が低いと、浚渫泥土2自体の粘性が高い上、凝集剤
A,Cと接触したときの粘性度の上昇が大きくなる)と
し、逆相エマルジョン型高分子凝集剤Aの粘性は0.5
Pa・S以下のものを用いるのが望ましい。
In the invention of this application, the viscosity of the dredged mud 2 itself before the addition of the flocculants A and C is too high, and / or the viscosity of the inverse emulsion type polymer flocculant itself is too high. Since the coagulant A prevents the coagulant A from spreading evenly, the water content of the dredged mud 2 is 650% or more (if the water content is low, the dredged mud 2 itself has a high viscosity and is in contact with the coagulants A and C. The viscosity of the reversed-phase emulsion-type polymer flocculant A is 0.5
It is desirable to use one having Pa · S or less.

【0036】次に排砂管3の管径とRe数(レイノルズ
数)の関係について説明する。
Next, the relationship between the diameter of the sand discharge pipe 3 and the Re number (Reynolds number) will be described.

【0037】排砂管3の管径D[m]、浚渫泥土2の密
度ρ[kg/m3 ]、該浚渫泥土2の粘性μ[Pa・
S]、送泥量Q[m3 /S]とすると、 Re数=Q×ρ/(0.785×Dμ) で示される。
The diameter D [m] of the sand discharge pipe 3, the density ρ [kg / m 3 ] of the dredged mud 2, the viscosity μ [Pa ·
S] and the amount of mud feeding Q [m 3 / S], the number of Re = Q × ρ / (0.785 × Dμ).

【0038】ここで、浚渫泥土2の密度ρは、予想され
る該浚渫泥土2の密度の最低値を用いる。
Here, the density ρ of the dredged mud 2 uses the lowest value of the density of the dredged mud 2 expected.

【0039】又、該浚渫泥土2の粘性μは、予め実験を
行って、その値を用いる。
For the viscosity μ of the dredged mud 2, an experiment is conducted in advance and the value is used.

【0040】密度ρと粘性μ、送泥量Qが決まれば、管
径とRe数の関係が求められる。
Once the density ρ, the viscosity μ, and the amount of sludge Q are determined, the relationship between the pipe diameter and the Re number can be determined.

【0041】次ぎに高分子凝集剤Aを排砂管3の添加ポ
イント19から添加してから無機金属多価塩水液Cの添
加ポイント20までの該排砂管3の長さ(m)の決定法
について説明する。
Next, the length (m) of the sand discharging pipe 3 from the point where the polymer flocculant A is added from the addition point 19 of the sand discharging pipe 3 to the point 20 where the inorganic metal polyvalent salt solution C is added is determined. The method will be described.

【0042】排砂管3の長さ(m)は、流速(m/秒)
×必要反応時間t分で求める。
The length (m) of the sand discharging pipe 3 is determined by the flow rate (m / sec)
X Determined by the required reaction time t minutes.

【0043】高分子凝集剤Aを添加してから無機金属多
価塩水液Cを添加するまで60〜600秒で、また無機
金属多価塩水液Cを添加してから処理ヤード5に排出す
るまでt(時間)は、18〜300秒が適当である。
It takes 60 to 600 seconds from the addition of the polymer flocculant A to the addition of the inorganic metal polyvalent salt solution C, and from the addition of the inorganic metal polyvalent salt solution C to the discharge to the treatment yard 5. As for t (time), 18 to 300 seconds is appropriate.

【0044】これより短いと、凝集反応が不完全で処理
ヤード5での自由水の自然脱水に支障が起きるし、これ
以上長いと、不経済である外、一度出来た凝集フロック
が壊れてしまい、同じく、処理ヤード5での自由水の自
然脱水に支障が起きる恐れがある。
If the length is shorter than this, the coagulation reaction is incomplete and the natural dehydration of free water in the treatment yard 5 is hindered. If the length is longer than this, the coagulated floc formed once is destroyed. Similarly, there is a possibility that the natural dehydration of free water in the treatment yard 5 may be hindered.

【0045】而して、使用する凝集剤Aの添加量は、排
砂管3を流れる浚渫泥土2の流量と濃度に概ね比例す
る。
Thus, the amount of the coagulant A to be used is substantially proportional to the flow rate and concentration of the dredged mud 2 flowing through the sand discharging pipe 3.

【0046】このうち、その濃度は連続計測が困難であ
るから、濃度と相関関係になる泥土2の比重で代用す
る。
Among them, the concentration is difficult to measure continuously, so that the specific gravity of the mud 2 having a correlation with the concentration is substituted.

【0047】排砂管3に於いて、流量は流量計で計測
し、又、比重は比重計で測定する。
In the sand discharge pipe 3, the flow rate is measured by a flow meter, and the specific gravity is measured by a specific gravity meter.

【0048】予め室内実験で求めておいた比重と凝集剤
必要量の関係から添加する凝集剤の添加率を求め、流量
×添加率=添加量に基づき図15に示す様に凝集剤供給
ポンプ16´ の繰出し量を自動制御する。
The addition rate of the coagulant to be added is determined from the relationship between the specific gravity and the required amount of the coagulant, which has been determined in advance in a laboratory experiment, and the coagulant supply pump 16 is used as shown in FIG.自動 is automatically controlled.

【0049】管路流量計としては、電磁流量計、ドップ
ラー流量計などが適当であり、管路比重計としては、ガ
ンマー線透過型密度計又は固有振動式連続密度比重計が
適当である。
An electromagnetic flowmeter, a Doppler flowmeter, or the like is suitable as a pipeline flow meter, and a gamma ray transmission density meter or a natural vibration type continuous density hydrometer is suitable as a pipeline hydrometer.

【0050】高分子凝集剤Aの最適添加量は、用いる凝
集剤Aの種類によってさまざまであるが、逆相エマルジ
ョン型ポリアクリルアミド系凝集剤Aを用いる場合に限
れば、浚渫泥土2中の固形分あたり、純分換算0.1%
以上、好ましくは0.2%以上が適当である。
The optimum amount of the polymer flocculant A varies depending on the type of the flocculant A to be used. However, if the reverse emulsion type polyacrylamide flocculant A is used, the solid content in the dredged mud 2 is limited. Per net equivalent 0.1%
Above, preferably 0.2% or more is appropriate.

【0051】この範囲以下では、凝集剤反応が不完全で
処理ヤード5での自由水の自然脱水に支障が起きる。
Below this range, the coagulant reaction is incomplete and hinders the natural dehydration of free water in the treatment yard 5.

【0052】次にこの出願の発明の実施しようとする形
態を実施例の態様として図1〜図9の図面(図11以下
を援用する)に従って説明すれば、以下の通りである。
Next, a mode in which the invention of this application is to be implemented will be described as an embodiment with reference to the drawings of FIGS. 1 to 9 (refer to FIG. 11 and subsequent figures).

【0053】凝集反応物を放出し、自由水を自然脱水す
るための処理ヤード5は、例えば図1,2に示す様に、
堤体4で仕切った囲繞された処理ヤード5の底に図3に
示す様に多孔管12´ を敷設し、その上に約0.3m
厚でサンド12を敷き詰める。
The treatment yard 5 for releasing the coagulation reactant and naturally dehydrating free water is, for example, as shown in FIGS.
As shown in FIG. 3, a perforated pipe 12 'is laid on the bottom of the surrounded processing yard 5 partitioned by the embankment 4, and about 0.3 m above it.
Spread the sand 12 thick.

【0054】そして該多孔管12´ には、不織布を巻
き付け、サンド12が管内に入らないようにする。
Then, a non-woven fabric is wound around the porous tube 12 'so that the sand 12 does not enter the tube.

【0055】該多孔管12´ 同士を連結し、該サンド
12の層を通って該多孔管12´ に入ったろ水がポン
ド13´ に集まって、自然に処理ヤード5外に排水ポ
ンプ14によりオーバーフロー水15として流れ出るよ
うにする。
The perforated pipes 12 'are connected to each other, and the filtered water that has entered the perforated pipes 12' through the layer of the sand 12 is collected in the pounds 13 'and naturally overflows outside the treatment yard 5 by the drain pump 14. Run off as water 15.

【0056】この他、図2に示す様に、同じく堤体1に
仕切った処理ヤード5の底に図8に示す様に川砂12´
´を敷き、処理ヤード5の一部分を仕切り壁4´ で区
切って排水釜場13(排水ポンド13´ )とし、該仕
切り壁4´ の下部及び仕切壁を透水して該釜場13
(排水ポンド13´ )に溜まった分離水が排水ポンプ
14で排出15されるような構造にしても良いし、或い
は、図1,図13の構造を組み合わせた構造にしてもよ
い。
In addition, as shown in FIG. 2, a river sand 12 'is formed on the bottom of the processing yard 5 similarly partitioned into the bank 1 as shown in FIG.
And a part of the treatment yard 5 is divided by a partition wall 4 ′ to form a drainage tank 13 (drainage pound 13 ′), and the lower part of the partition wall 4 ′ and the partition wall are permeated to form a drainage tank 13.
The structure may be such that the separated water accumulated in (the drainage pond 13 ′) is discharged 15 by the drainage pump 14, or a combination of the structures of FIGS. 1 and 13.

【0057】凝集反応物をこのような構造の処理ヤード
5に送泥ポンプ14により投入すると、1〜4日で水が
抜け、図3に示す様に、表面に多数のひび割れ16、1
6´を持った凝集堆積物62が残る。
When the coagulation reaction product is injected into the treatment yard 5 having such a structure by the mud pump 14, water is drained in 1 to 4 days, and as shown in FIG.
The coagulated sediment 62 having 6 ′ remains.

【0058】この時、該凝集堆積物62の表面の垂直位
置(レベル)は、浚渫泥土2の濃度で異なるものの、処
理ヤード5の堰堤4´ 上端より0.5〜1m程度下が
っているのが普通であり、従来はもう一度乃至二度、処
理ヤード5に凝集反応物10を投入してさせ、該処理ヤ
ード5の堰堤4´ の上端に近いところまで該凝集堆積
物表面62のレベルを上げるのが、処理ヤード5の有効
利用上、好ましい。
At this time, although the vertical position (level) of the surface of the coagulated sediment 62 differs depending on the concentration of the dredged mud 2, it is about 0.5 to 1 m lower than the upper end of the dam 4 'of the treatment yard 5. Usually, once or twice, the coagulation reactant 10 is once again or twice introduced into the treatment yard 5 to raise the level of the coagulated sediment surface 62 to a position near the upper end of the dam 4 ′ of the treatment yard 5. However, this is preferable in terms of effective use of the processing yard 5.

【0059】処理泥土2の処理ヤード5への排砂管3を
介しての投入を終えたら、そのまま放置し、下部からの
自由水の排出と表面からの天日8による乾燥を促す。
When the treatment mud 2 has been charged into the treatment yard 5 through the sand discharge pipe 3, the treatment mud 2 is left as it is, and the discharge of free water from the lower part and the drying by the sun 8 from the surface are promoted.

【0060】日数が経つにつれ凝集堆積物62の強度は
高くなり、3カ月後には図4に示す様に、表面18にド
ーザ等の建設重機16を載せて凝集堆積物62の建設用
材17としてダンプトラック18ヘベルトコンベア16
´ を介して移動作業が出来るに充分な強度の改良土1
7にする。
As the number of days passes, the strength of the coagulated sediment 62 increases, and after three months, as shown in FIG. 4, a heavy construction machine 16 such as a dozer is placed on the surface 18 and dumped as construction material 17 for the coagulated sediment 62. Truck 18 belt conveyor 16
Improved soil 1 with sufficient strength to be able to move through ´
Set to 7.

【0061】而して、全長500mの上記浚渫泥土2を
排砂管3の終点(吐出点)に、縦50m,横10m、深
さ2m(容積1000m3 )の処理ヤード5を形成し
て、該処理ヤード5の底には、不織布を巻いた多孔管1
2´ を10mの間隔をあけて縦1列に4本設置し、そ
の上に0.3mの厚さで川砂12を敷き詰めた。該多孔
管12´ の片端は塞ぎ、反対側は、連結した上で処理
ヤード5の堰堤4´ 近くに導き、該多孔管12´ 内に
侵入したが自由水が処理ヤード5の外の堰堤4´に重力
で自然排水されるような構造とした。
Thus, a processing yard 5 having a length of 50 m, a width of 10 m, and a depth of 2 m (volume of 1000 m 3 ) is formed at the end point (discharge point) of the sand discharging pipe 3 using the dredged mud 2 having a total length of 500 m. At the bottom of the processing yard 5, a perforated tube 1 wound with a nonwoven fabric
Four 2's were installed in one row at a distance of 10m, and river sand 12 was spread over them with a thickness of 0.3m. One end of the perforated pipe 12 'is closed, and the other side is connected and led to the vicinity of the dam 4' of the treatment yard 5 so as to enter the perforated pipe 12 ', but free water flows into the dam 4 outside the treatment yard 5. The structure was designed to allow natural drainage by gravity.

【0062】而して、該排砂管3の終点から300m上
流側に高分子凝集剤Aの添加ポイント19を、同じく終
点(処理ヤード5への吐出点)から50m上流側に無金
属多価塩Cの添加ポイント20を設けた。
The addition point 19 of the polymer flocculant A is located 300 m upstream from the end point of the sand discharge pipe 3, and the metal-free polyvalent agent is located 50 m upstream from the end point (discharge point to the processing yard 5). An addition point 20 for salt C was provided.

【0063】該排砂管3の径は、始点から終点まで0.
15m一定の管径とした。該排砂管3に1秒間当り0.
0283m3 の某湖の浚渫泥土2(含水比1200%一
定)を送り、高分子凝集剤Aとして、アクリルアミドと
アクリル酸ソーダの共重合物の逆相エマルジョン品(テ
ルナイト社製試作品、粘度0.15Pa・S)を1秒間
当り0.0000142m3 (純分換算0.0075k
g)、無機金属多価塩Cとして、ポリ塩化アルミニウム
水溶液(濃度・Al2 3 10%)を1秒間当り0.0
000425m3 添加した。
The diameter of the sand drainage pipe 3 is set at 0. 1 from the start point to the end point.
The diameter of the pipe was fixed at 15 m. 0. 0 / second is applied to the sand discharge pipe 3.
0283 m 3 of a certain lake dredging mud 2 (water content is constant 1200%) is sent, and as a polymer flocculant A, a reversed-phase emulsion product of a copolymer of acrylamide and sodium acrylate (a trial product manufactured by Ternite, having a viscosity of 0.1%). 15 Pa · S) per second for 0.0000142 m 3 (equivalent to 0.0075 k in pure content)
g), as an inorganic metal polyvalent salt C, an aqueous solution of polyaluminum chloride (concentration: Al 2 O 3 10%) was added at a rate of 0.0
000425 m 3 was added.

【0064】浚渫船1により浚渫泥土2が排砂管を介し
て送泥され、高分子凝集剤Aの添加ポイント19まで
と、高分子凝集剤Aの添加後〜無機金属多価塩Cの添加
ポイント20からの添加まで、該無機金属多価塩Cの添
加後〜処理ヤード5は排出までの3区間の排砂管3の径
を一定にした場合の浚渫から処理ヤード5に排出される
までの該管の圧力損失を計算した。
The dredged mud 2 is sent by the dredger 1 through the sand discharging pipe, and up to the addition point 19 of the polymer coagulant A, and after the addition of the polymer coagulant A to the addition point of the inorganic metal polyvalent salt C. After the addition of the inorganic metal polyvalent salt C to the treatment yard 5, from the dredging when the diameter of the sand discharge pipe 3 in the three sections until the discharge is made constant to the discharge from the treatment yard 5 to the treatment yard 5. The pressure loss of the tube was calculated.

【0065】また、比較事例として3区間の排砂管3の
管径を変え、当該実施例と同条件での圧力損失を計算し
た。
As a comparative example, the pressure loss under the same conditions as in the present embodiment was calculated by changing the diameter of the sand discharge pipe 3 in three sections.

【0066】そして、9時間送泥(送泥量918m3
したところで処理ヤード5が一杯になったので、送泥を
中止した。
Then, mud feeding for 9 hours (mud sending amount 918 m 3 )
Then, the treatment yard 5 became full, and the mud pumping was stopped.

【0067】該送泥介した直後から上記多孔管12´
に配設した排水管3により釜場13に清澄な分離水とし
ての自由水の排出が始まった。
Immediately after the passage of the mud, the porous tube 12 '
The discharge of free water as clear separated water into the kamaba 13 by the drain pipe 3 arranged in the basin started.

【0068】4日後、処理ヤード5内には、表面に多数
のひび割れ16,16´ を持った凝集堆積物62が露
出し、6日後の該凝集堆積物62のレベルは処理ヤード
5の堰堤4´ の上端から−0.85mに下がった。
Four days later, the aggregated sediment 62 having a large number of cracks 16, 16 ′ on the surface thereof is exposed in the treatment yard 5. 'To -0.85 m from the upper end.

【0069】そのまま放置して50日後の凝集堆積物6
2のレベルは処理ヤード5の堰堤4´ の上端から−
1.06mに下がった。
Agglomerated sediment 6 after standing for 50 days
Level 2 is from the top of the dam 4 'in the treatment yard 5-
It has dropped to 1.06 m.

【0070】現在地でコーン指数を測定した結果qc=
63.7kN/m2 を示した。
As a result of measuring the cone index at the current location, qc =
It showed 63.7 kN / m 2 .

【0071】そして、90日後のコーン指数はqc=2
54kN/m2 を示した。
The corn index after 90 days is qc = 2.
It showed 54 kN / m 2 .

【0072】当該実施例における反応時間tを各区間の
Re数、平均粘性で計算した各区間の圧力損失は、次ぎ
の表1の通りであった。
The pressure loss in each section, in which the reaction time t in this example was calculated from the Re number and the average viscosity in each section, was as shown in Table 1 below.

【表1】 送泥量は0.0283m3 /秒 圧力損失の単位 k
g/m2 、粘性はビーカー内での凝集模擬実験の結果で
ある。粘性は、B型粘度計、ローターNo.3、60回
転の測定値である。圧力損失ΔP(乱流)は、ΔP=2
fρV2L/104・g・Dで計算した。ここで、fは管
内フリクションファクター、ρは泥土比重(kg/m
3 )、Vは流速(m/秒)、Lは管長(m)、gは重力
加速度(m/秒2 )、Dは管径(m)である。ここで
は、f=0.0059を用いた。
[Table 1] The amount of sludge is 0.0283 m 3 / sec Unit of pressure loss k
g / m 2 and viscosity are the results of a simulation simulation of aggregation in a beaker. The viscosity was measured using a B-type viscometer, rotor No. It is a measured value of 3, 60 rotations. The pressure loss ΔP (turbulent flow) is ΔP = 2
It was calculated as fρV 2 L / 10 4 · g · D. Here, f is the friction factor in the pipe, and ρ is the specific gravity of mud (kg / m
3), V is the flow velocity (m / sec), L is the pipe length (m), g is gravitational acceleration (m / sec 2), D is the tube diameter (m). Here, f = 0.0059 was used.

【0073】送泥量は0.0283m3 /秒、圧力損失
の単位 kg/m2 、粘性はビーカー内での凝集模擬実
験の結果である。
The amount of mud feeding is 0.0283 m 3 / sec, the unit of pressure loss is kg / m 2 , and the viscosity is the result of a simulation test of aggregation in a beaker.

【0074】また、2日後に排出管3から採取した分離
水の性状は次の表2の通りであった。
The properties of the separated water collected from the discharge pipe 3 two days later are shown in Table 2 below.

【表2】 [Table 2]

【0075】[0075]

【比較例1】高分子凝集剤Aの添加前までと、該高分子
凝集剤Aの添加後から無機金属多価塩Cの添加前まで、
該無機金属多価塩Cの添加後から処理ヤード5への排出
までの3区間の排砂管3の管径を変えること以外、実施
例と同条件で浚渫泥土2を排砂管3に送ることにし、各
区間の圧力損失を計算した。それぞれの排砂管3の管径
は最大粘性でも乱流が維持されるようにした。
Comparative Example 1 Before the addition of the polymer flocculant A and after the addition of the polymer flocculant A until before the addition of the inorganic metal polyvalent salt C,
The dredged mud 2 is sent to the sand discharging pipe 3 under the same conditions as in the embodiment except that the diameter of the sand discharging pipe 3 in three sections from the addition of the inorganic metal polyvalent salt C to the discharge to the treatment yard 5 is changed. The pressure loss in each section was calculated. The diameter of each sand discharge pipe 3 was set so that turbulent flow was maintained even at the maximum viscosity.

【0076】結果を表3に示す。Table 3 shows the results.

【表3】 [Table 3]

【0077】当該実施例の表1に示す如く、排砂管3の
管径0.15m,0.0283m3/秒の浚渫泥土2
(含水比1200%)2を送ると、高分子凝集剤Aの注
入点ポイント19から無機金属多価塩Cの注入点ポイン
ト20までの区間に於ける粘性ピーク時のレイノルズ数
は667で、平均のレイノルズ数は、2106、無機多
価塩Cの注入点ポイント20から終点までの吐出口の区
間に於ける粘性ピーク時のレイノルズ数は1014、平
均のレイノルズ数は、3167となり、いずれも設定条
件を満足した。
As shown in Table 1 of this embodiment, the dredged mud 2 having a diameter of 0.15 m and a diameter of 0.0283 m 3 / sec.
(Water content: 1200%) 2, the Reynolds number at the time of the viscosity peak in the section from the injection point 19 of the polymer flocculant A to the injection point 20 of the inorganic metal polyvalent salt C is 667, and the average Is 2106, the Reynolds number at the time of the viscosity peak in the section of the discharge port from the injection point 20 to the end point of the inorganic polyvalent salt C is 1014, and the average Reynolds number is 3167. Was satisfied.

【0078】通過時間(反応時間)は高分子凝集剤Aと
の反応時間が、156秒、無機多価塩Cとの反応時間が
30秒で、これも設定条件を満足した。
The passage time (reaction time) was such that the reaction time with the polymer flocculant A was 156 seconds, and the reaction time with the inorganic polyvalent salt C was 30 seconds, which also satisfied the set conditions.

【0079】全体の圧力損失は、10000kg/m2
と実用の範囲内にあった。
The total pressure loss is 10,000 kg / m 2
And was within practical range.

【0080】排砂管3の出口で凝集フロックを肉眼によ
り視察したところ、実験室における図6に示すビーカー
実験の装置63の態様と同じフロック21が出来てお
り、4日後には沈殿堆積物62の表面(泥面)が露出す
るなど、自然脱水がきわめて順調に進行していることが
確認出来た。
When the flocculated floc was visually inspected at the outlet of the sand discharging pipe 3, the floc 21 was formed in the same manner as the beaker experiment apparatus 63 shown in FIG. 6 in the laboratory. It was confirmed that spontaneous dehydration was proceeding very smoothly, for example, the surface (mud surface) was exposed.

【0081】一方表3に示した事例としてどの地点でも
乱流(レイノルズ数2100以上)が維持されるよう、
高分子凝集剤Aのポイント19からの添加前までと該高
分子凝集剤Aの添加ポイント19後から無機金属多価塩
Cの添加ポイント20まで、該無機金属多価塩Cのポイ
ント20からの添加後から処理ヤード5への排出までの
3区間の排砂管3の管径を変えた比較例の場合、全体の
圧力損失は1850000kg/m2 と高く、溜留時間
も高分子凝集剤Aのポイント19からの添加後から無機
金属多価塩の凝集剤Cのポイント20からの添加前まで
が18秒、該無機金属多価塩Cのポイント20からの添
加後から処理ヤード5までへの排出までが6秒しかな
く、実用にならないことが明らかになった。
On the other hand, as shown in Table 3, turbulence (Reynolds number 2100 or more) is maintained at any point.
From the point before the addition of the polymer coagulant A to the point 19 and after the point 19 of the addition of the polymer coagulant A to the addition point 20 of the inorganic metal polyvalent salt C, from the point 20 of the inorganic metal polyvalent salt C In the case of the comparative example in which the diameter of the sand discharge pipe 3 in three sections from the addition to the discharge to the treatment yard 5 was changed, the overall pressure loss was as high as 1850000 kg / m 2 , and the retention time was also high. 18 seconds after the addition of the inorganic metal polyvalent salt from the point 20 to before the addition of the inorganic metal polyvalent salt from the point 20 to the treatment yard 5 after the addition from the point 20 of the inorganic metal polyvalent salt C. It took only 6 seconds to discharge, which proved to be impractical.

【0082】以上この出願の発明によれば、一定の長さ
の排砂管3と、処理ヤード5さえ準備すれば,特別な攪
拌装置や機械脱水装置11を用意しなくても浚渫泥土2
を処理出来る。
As described above, according to the invention of this application, the dredged mud 2 can be prepared without preparing a special stirring device or a mechanical dewatering device 11 if only a certain length of the sand discharge pipe 3 and the processing yard 5 are prepared.
Can be processed.

【0083】而して、該処理ヤード5で脱水後、ダンプ
8で建設用地まで搬出するまでの日数は従来の無薬注天
日8による乾燥工法が約1年かかるのに対し、わずか9
0日で終了するから、それだけ該処理ヤード5の繰返し
運用が可能になり獲られる経済的メリットは非常に大き
い。
Thus, the number of days after dewatering in the processing yard 5 and transporting to the construction site by the dump 8 is only about 9 years, while the conventional drying method using the chemical-free injection sun 8 takes about one year.
Since the operation is completed in 0 days, the operation of the processing yard 5 can be repeated and the economic merit obtained is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この出願の発明の一実施例の第一ステップの部
分側面図である。
FIG. 1 is a partial side view of a first step of an embodiment of the present invention.

【図2】同第2ステップの概略断面図である。FIG. 2 is a schematic sectional view of the second step.

【図3】同第3ステップの概略断面図である。FIG. 3 is a schematic sectional view of the third step.

【図4】同第4ステップの概略断面図である。FIG. 4 is a schematic sectional view of a fourth step.

【図5】同最終ステップの模式断面図である。FIG. 5 is a schematic sectional view of the final step.

【図6】フロックと自由水の取り合い実験図である。FIG. 6 is an experimental diagram of interaction between floc and free water.

【図7】従来技術に基づく浚渫と処理ヤードに於ける廃
泥の取り合い断面図である。
FIG. 7 is a cross-sectional view of a waste mud in a dredging and processing yard according to the related art.

【図8】処理ヤードに於ける乾燥脱水の断面図である。FIG. 8 is a sectional view of drying and dewatering in a processing yard.

【図9】処理ヤードに於ける廃泥の密度アップの断面図
であり、(イ)は凝集剤による密度アップの断面図であ
り、(ロ)は機械装置による密度アップの断面図であ
る。
9 is a cross-sectional view of the density increase of the waste mud in the processing yard, (a) is a cross-sectional view of the density increase by the coagulant, and (b) is a cross-sectional view of the density increase by the mechanical device.

【図10】密度アップされた構造土の搬出側面図であ
る。
FIG. 10 is a side view of the unloading of the soil with increased density.

【図11】構造土の敷設の構造断面図である。FIG. 11 is a structural sectional view of laying of structural soil.

【図12】同一般技術に基づく処理ヤードの構造断面図
である。
FIG. 12 is a structural sectional view of a processing yard based on the general technology.

【図13】処理ヤードの機能断面図である。FIG. 13 is a functional sectional view of a processing yard.

【図14】処理ヤードの平断面図である。FIG. 14 is a plan sectional view of a processing yard.

【図15】排砂管の断面図である。FIG. 15 is a sectional view of a sand discharging pipe.

【符号の説明】[Explanation of symbols]

2 浚渫泥土 5 処理ヤード 15 脱水 3 排砂管 A アニオン系高分子凝集剤 C 2価又は3価の無機金属塩水溶液 12,12´ 排水機構 2 Dredging mud 5 Treatment yard 15 Dehydration 3 Sand pipe A Anionic polymer coagulant C Divalent or trivalent inorganic metal salt aqueous solution 12,12 'Drainage mechanism

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 21/01 111 B01D 21/01 111 C02F 11/12 C02F 11/12 A E02F 7/00 E02F 7/00 D (71)出願人 000166627 五洋建設株式会社 東京都文京区後楽2丁目2番8号 (71)出願人 000219406 東亜建設工業株式会社 東京都千代田区四番町5 (71)出願人 000222668 東洋建設株式会社 大阪府大阪市中央区高麗橋4丁目1番1号 (71)出願人 000155034 株式会社本間組 新潟県新潟市西湊町通三ノ町3300番地3 (71)出願人 592251673 りんかい建設株式会社 東京都港区芝2−3−8 (71)出願人 000182030 若築建設株式会社 福岡県北九州市若松区浜町1丁目4番7号 (71)出願人 390026446 株式会社テルナイト 東京都渋谷区幡ケ谷1丁目7番5号 (72)発明者 田村 正秀 東京都台東区台東1丁目6番地4号 財団 法人土木研究センター内 (72)発明者 和田 信昭 東京都台東区台東1丁目6番地4号 財団 法人土木研究センター内 (72)発明者 横山 浩司 東京都台東区台東1丁目6番地4号 財団 法人土木研究センター内 (72)発明者 三宅 敏文 岡山県岡山市内山下1丁目1番13号 株式 会社大本組内 (72)発明者 廣瀬 英雄 東京都豊島区高田3−31−5 株木建設株 式会社内 (72)発明者 石倉 隆 東京都文京区後楽2−2−8 五洋建設株 式会社内 (72)発明者 鈴木 秀男 東京都千代田区四番町5 東亜建設工業株 式会社内 (72)発明者 川西 龍一 大阪府大阪市中央区高麗橋4丁目1番1号 東洋建設株式会社内 (72)発明者 川浦 栄太郎 新潟県新潟市西湊町通三丿町3300番地 株 式会社本間組内 (72)発明者 川田 忠彦 東京都港区芝2丁目3番8号 りんかい建 設株式会社内 (72)発明者 山田 桂介 東京都目黒区下目黒2丁目23番18号 若築 建設株式会社内 (72)発明者 阿部 勝久 東京都渋谷区幡ヶ谷1丁目7番5号 株式 会社テルナイト本社内 Fターム(参考) 4D015 BA09 BA19 BB11 BB12 CA10 DA04 DA06 DA13 DB07 DB13 DC03 EA06 EA32 FA03 FA30 4D059 AA09 BD18 BE31 BE55 BE59 BE61 BJ16 CA03 DA16 DA17 DA24 DB24 DB28 EA01 EA02 EB11 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B01D 21/01 111 B01D 21/01 111 C02F 11/12 C02F 11/12 A E02F 7/00 E02F 7/00 D (71) Applicant 000166627 Goyo Construction Co., Ltd. 2-2-2-8 Koraku, Bunkyo-ku, Tokyo (71) Applicant 000219406 Toa Construction Industry Co., Ltd. 5 Yonbancho, Chiyoda-ku, Tokyo (71) Applicant 000222668 Toyo Construction Co., Ltd. 4-1-1, Komyo-bashi, Chuo-ku, Osaka-shi, Osaka (71) Applicant 000155034 Honma Gumi Co., Ltd. 3300-3, Ninominato-machi, Minomachi, Niigata-shi, Niigata (71) Applicant 592251673 Rinkai Construction Co., Ltd. Tokyo 2-3-8, Shiba, Minato-ku (71) Applicant 000182030 Wakatsuki Construction Co., Ltd. 1-4-7 Hamacho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka (71) Applicant 3900 26446 Tell Night Co., Ltd. 1-7-5 Hatagaya, Shibuya-ku, Tokyo (72) Inventor Masahide Tamura 1-4-6 Taito, Taito-ku, Tokyo Inside the Civil Engineering Research Center (72) Nobuaki Wada Taito-ku, Tokyo 1-6-4 Taito, Civil Engineering Research Center (72) Koji Yokoyama, Inventor Koji 1-6-4 Taito, Taito-ku, Tokyo Inside Civil Engineering Research Center (72) Inventor Toshifumi Miyake, Yamashita, Okayama City, Okayama Prefecture No. 1-113, Omotogumi Co., Ltd. (72) Inventor Hideo Hirose 3-31-5 Takada, Toshima-ku, Tokyo In-house Construction Co., Ltd. (72) Inventor Takashi Ishikura 2- Koraku, Bunkyo-ku, Tokyo 2-8 Goyo Construction Co., Ltd. (72) Inventor Hideo Suzuki 5 Yonbancho, Chiyoda-ku, Tokyo 5 Toa Construction Industry Co., Ltd. (72) Inventor Ryuichi Kawanishi 4-1-1 Komyobashi, Chuo-ku, Osaka-shi, Osaka No. 1 Toyo Construction Co., Ltd. (72) Inventor Eitaro Kawaura Nishiminatomachi, Niigata City, Niigata Prefecture 3300 Sankacho Honma Gumi Co., Ltd. (72) Inventor Tadahiko Kawada 2-8-3 Shiba, Minato-ku, Tokyo Rinkai Construction Co., Ltd. (72) Keisuke Yamada 2-chome Shimomeguro, Meguro-ku, Tokyo No. 23-18 Wakatsuki Construction Co., Ltd. (72) Inventor Katsuhisa Abe 1-7-5 Hatagaya, Shibuya-ku, Tokyo F-term (reference) 4T015 BA09 BA19 BB11 BB12 CA10 DA04 DA06 DA13 DB07 DB13 DC03 EA06 EA32 FA03 FA30 4D059 AA09 BD18 BE31 BE55 BE59 BE61 BJ16 CA03 DA16 DA17 DA24 DB24 DB28 EA01 EA02 EB11

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】高含水比の浚渫泥土に凝集剤を添加した泥
土を処理ヤードに貯留し脱水する浚渫泥土の処理方法に
おいて、含水比650%以上の上記浚渫泥土を排砂管を
介して上記処理ヤードへ送泥する中途にて、初めにアニ
オン系高分子凝集剤を該浚渫泥土に添加し、次に2価ま
たは3価の無機金属塩水溶液を該浚渫泥土に添加して凝
集反応を完結させ、この凝集反応を完結させた泥土を底
部に排水機構を設けた処理ヤードに上記排砂管を介して
送泥排出して自然乾燥させ脱水させるようにすることを
特徴とする浚渫泥土の処理方法。
1. A method for treating a dredged mud in which a coagulant is added to a dredged mud having a high water content, wherein the mud is stored in a treatment yard and dewatered, wherein the dredged mud having a water content of 650% or more is passed through a sand discharging pipe. On the way to the treatment yard, first add an anionic polymer flocculant to the dredged mud, and then add an aqueous solution of divalent or trivalent inorganic metal salt to the dredged mud to complete the flocculation reaction. The mud which has completed the coagulation reaction is sent to a treatment yard provided with a drainage mechanism at the bottom through the sand pipe, discharged and spontaneously dried and dewatered, thereby treating dredged mud. Method.
【請求項2】上記アニオン系高分子凝集剤が、分子量8
00万〜1200万のポリアクリルアミド系高分子凝集
剤であることを特徴とする請求項1の浚渫泥土の処理方
法。
2. The method according to claim 1, wherein the anionic polymer flocculant has a molecular weight of 8
The method for treating dredged mud according to claim 1, wherein the amount of the polyacrylamide-based polymer flocculant ranges from 0,000,000 to 12,000,000.
【請求項3】上記アニオン系高分子凝集剤の逆相エマル
ジョン型のものを有姿状態のまま上記泥土中に添加する
ことを特徴とする請求項1,2いずれか記載の浚渫泥土
の処理方法。
3. The method for treating dredged mud according to claim 1, wherein a reverse emulsion type of the anionic polymer flocculant is added to the mud as it is. .
【請求項4】上記逆相エマルジョン型アニオン系高分子
凝集剤が、0.5Pa・S以下の粘性を有していること
を特徴とする請求項3記載の浚渫泥土の処理方法。
4. The method for treating dredged mud according to claim 3, wherein the inverse emulsion type anionic polymer flocculant has a viscosity of 0.5 Pa · S or less.
【請求項5】上記逆相エマルジョン型アニオン系高分子
凝集剤の純分換算の添加量が、上記浚渫泥土中の固形分
当り、0.1%以上、好ましくは0.2%以上であるこ
とを特徴とする請求項1〜4いずれか記載の浚渫泥土の
処理方法。
5. The amount of the inverse emulsion type anionic polymer flocculant in terms of pure content is 0.1% or more, preferably 0.2% or more, based on the solid content in the dredged mud. The method for treating dredged mud according to claim 1, wherein:
【請求項6】液状の上記アニオン系高分子凝集剤を添加
した後に、2価または3価の無機金属塩水溶液を添加す
るまでの排砂管の長さが流速×60〜600秒であっ
て、2価または3価の無機金属塩水溶液を添加してから
上記処理ヤードに排出するまでの排砂管の長さが、流速
×18〜300秒であることを特徴とする請求項1の浚
渫泥土の処理方法。
6. The length of the sand drainage pipe from the time when the liquid anionic polymer flocculant is added to the time when the divalent or trivalent inorganic metal salt aqueous solution is added is a flow rate × 60 to 600 seconds. 2. The dredging pipe according to claim 1, wherein the length of the sand discharge pipe from the time when the divalent or trivalent inorganic metal salt aqueous solution is added to the time when the pipe is discharged to the processing yard is a flow rate × 18 to 300 seconds. Mud treatment method.
【請求項7】上記排砂管内にて、粘性がピーク時のレイ
ノルズ数が500以上であり、且つ、平均のレイノルズ
数が2100以上であるように排砂管の管径を決定する
ようにすることを特徴とする請求項1の浚渫泥土の処理
方法。
7. The pipe diameter of the sand discharging pipe is determined so that the Reynolds number at the time of peak viscosity is 500 or more and the average Reynolds number is 2100 or more in the sand discharging pipe. The method for treating dredged mud according to claim 1, wherein:
【請求項8】上記排砂管内を流れる浚渫泥土の流量と比
重を連続的に測定し、予め室内実験で決定しておいた比
重と凝集剤の添加率の関係から該凝集剤の添加率を計算
し、流量×凝集剤添加率の結果で該凝集剤の添加量を自
動的に制御するようにすることを特徴とする請求項1の
浚渫泥土の処理方法。
8. The flow rate and specific gravity of the dredged mud flowing through the sand discharge pipe are continuously measured, and the addition rate of the flocculant is determined from the relationship between the specific gravity and the addition rate of the flocculant determined in advance in a laboratory experiment. 2. The method for treating dredged mud according to claim 1, wherein the amount of the flocculant added is automatically controlled based on the result of calculation and the result of (flow rate x flocculant addition rate).
JP2001125407A 2001-04-24 2001-04-24 How to treat dredged mud Expired - Lifetime JP3716189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001125407A JP3716189B2 (en) 2001-04-24 2001-04-24 How to treat dredged mud

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001125407A JP3716189B2 (en) 2001-04-24 2001-04-24 How to treat dredged mud

Publications (2)

Publication Number Publication Date
JP2002316200A true JP2002316200A (en) 2002-10-29
JP3716189B2 JP3716189B2 (en) 2005-11-16

Family

ID=18974633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001125407A Expired - Lifetime JP3716189B2 (en) 2001-04-24 2001-04-24 How to treat dredged mud

Country Status (1)

Country Link
JP (1) JP3716189B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080278A (en) * 2006-09-28 2008-04-10 Kurita Water Ind Ltd Flocculation method of highly hydratable sludge
CN101376071B (en) * 2008-10-09 2011-04-20 江苏江达生态科技有限公司 Technique for separating mud and water in river and lake deposit
CN102505751A (en) * 2011-11-18 2012-06-20 中交天津港航勘察设计研究院有限公司 Environment-friendly multi-stage bidirectional disposal site remained water overflow device
JP2014050823A (en) * 2012-09-10 2014-03-20 Terunaito:Kk Production method of modified dredge soil
JP2014113583A (en) * 2012-11-15 2014-06-26 Og Corp METHOD FOR REMOVING Si FROM Si-CONTAINING HYDROFLUORIC ACID-BASED WASTER LIQUID, METHOD FOR REMOVING HYDROFLUORIC ACID FROM Si-CONTAINING HYDROFLUORIC ACID-BASED MIXED WASTE LIQUID, AND RECOVERY DEVICE THEREFOR
JP2014161835A (en) * 2013-02-27 2014-09-08 Taisei Corp Structure of sump
JP2015107484A (en) * 2013-12-03 2015-06-11 フナン ユニバーシティ オブ サイエンス アンド テクノロジーHunan University of Science and Technology Sludge dewatering conditioning agent and deep dewatering method thereof
CN105858953A (en) * 2016-04-22 2016-08-17 密西西比国际水务有限公司 Method and device for treating black odour river
JP2017014802A (en) * 2015-07-01 2017-01-19 東亜建設工業株式会社 Ground volume reduction method
CN108589819A (en) * 2018-05-28 2018-09-28 绍兴市松陵造船有限责任公司 A kind of dirt processing unit for environment-friendly type freighter traveling
CN109881725A (en) * 2019-04-15 2019-06-14 翟文 Coal mine desilting equipment and coal mine desilting system
CN114920370A (en) * 2022-06-23 2022-08-19 南通安中水务科技有限公司 River channel silt prevention aeration device and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080278A (en) * 2006-09-28 2008-04-10 Kurita Water Ind Ltd Flocculation method of highly hydratable sludge
CN101376071B (en) * 2008-10-09 2011-04-20 江苏江达生态科技有限公司 Technique for separating mud and water in river and lake deposit
CN102505751A (en) * 2011-11-18 2012-06-20 中交天津港航勘察设计研究院有限公司 Environment-friendly multi-stage bidirectional disposal site remained water overflow device
JP2014050823A (en) * 2012-09-10 2014-03-20 Terunaito:Kk Production method of modified dredge soil
JP2014113583A (en) * 2012-11-15 2014-06-26 Og Corp METHOD FOR REMOVING Si FROM Si-CONTAINING HYDROFLUORIC ACID-BASED WASTER LIQUID, METHOD FOR REMOVING HYDROFLUORIC ACID FROM Si-CONTAINING HYDROFLUORIC ACID-BASED MIXED WASTE LIQUID, AND RECOVERY DEVICE THEREFOR
JP2014161835A (en) * 2013-02-27 2014-09-08 Taisei Corp Structure of sump
JP2015107484A (en) * 2013-12-03 2015-06-11 フナン ユニバーシティ オブ サイエンス アンド テクノロジーHunan University of Science and Technology Sludge dewatering conditioning agent and deep dewatering method thereof
JP2017014802A (en) * 2015-07-01 2017-01-19 東亜建設工業株式会社 Ground volume reduction method
CN105858953A (en) * 2016-04-22 2016-08-17 密西西比国际水务有限公司 Method and device for treating black odour river
CN105858953B (en) * 2016-04-22 2018-06-05 密西西比国际水务有限公司 The method and apparatus that a kind of black smelly river is administered
CN108589819A (en) * 2018-05-28 2018-09-28 绍兴市松陵造船有限责任公司 A kind of dirt processing unit for environment-friendly type freighter traveling
CN109881725A (en) * 2019-04-15 2019-06-14 翟文 Coal mine desilting equipment and coal mine desilting system
CN114920370A (en) * 2022-06-23 2022-08-19 南通安中水务科技有限公司 River channel silt prevention aeration device and method

Also Published As

Publication number Publication date
JP3716189B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
EA017785B1 (en) Method of suppressing dust formation in particulate mineral material
JP3723625B2 (en) Treatment method for high water content sludge
UA78436C2 (en) Method for rigidification of water suspensions
JP2002316200A (en) Treatment method for dredged mud
CA2906576C (en) A containment process for oil sands tailings
US3707523A (en) Pollution control in phosphate slime disposal
CN102939141A (en) Concentration of suspensions
CA2665350C (en) Method for treating mineral sludge and installation for carrying out same
AU2016254609A1 (en) Separation of suspensions of solids employing water soluble polymer and a chemical agent
KR101030581B1 (en) Dredging soil treating system
Karadoğan et al. Dewatering of mine waste using geotextile tubes
FI127373B (en) Process for treating dredging pulp or sludge and using the method
JP5080734B2 (en) Muddy water treatment method, muddy water treatment device, and seaweed paste for muddy water treatment
JP2870689B2 (en) Apparatus and method for treating sediment, apparatus and method for purifying water
JPH07163998A (en) Treatment of muddy water and device therefor
CN104674785A (en) Method for treating dredger fill foundation through flocculation combined with vacuum preloading
US20210371316A1 (en) Process for dewatering an aqueous process stream
CA2897663C (en) Process for dewatering mineral tailings by the treatment of these tailings with at least one anionic polymer and at least one cationic polymer
JP3031912B1 (en) Turbid water treatment system and turbid water treatment method
JP2000326000A (en) Dehydrating treatment of muddy water
JP2001295306A (en) Method of burying civil engineering structure
RU2130104C1 (en) Method for putting-up of counterfiltration screen and flow-line for its realization
CA2886565C (en) Method for treating mineral sludge by flocculation in-line then above ground
Jansen et al. Dewatering of Fine Sediments in Reservoir Using Geotextile Tubes and Potential Use in Detention Ponds
JP2002316195A (en) Method and apparatus for adjusting agitation in scour pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3716189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term