JPH0325212A - Gas explosion preventing device - Google Patents

Gas explosion preventing device

Info

Publication number
JPH0325212A
JPH0325212A JP1161358A JP16135889A JPH0325212A JP H0325212 A JPH0325212 A JP H0325212A JP 1161358 A JP1161358 A JP 1161358A JP 16135889 A JP16135889 A JP 16135889A JP H0325212 A JPH0325212 A JP H0325212A
Authority
JP
Japan
Prior art keywords
gas
distance
fuzzy
signal
gas concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1161358A
Other languages
Japanese (ja)
Inventor
Koichi Endo
遠藤 侯一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP1161358A priority Critical patent/JPH0325212A/en
Publication of JPH0325212A publication Critical patent/JPH0325212A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/52Fuzzy logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/18Detecting fluid leaks

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

PURPOSE:To enable execution of a release work only by disconnecting a minimum power source by a method wherein a source disconnection distance in which a distance from a position where leakage of gas occurs is gradually increased according to gas concentration and a time is provided by fuzzy inference, and based on the distance, the power source is disconnected. CONSTITUTION:A gas concentration detector 2 to detect gas concentration is arranged in the vicinity of a gas device 1, and concentration signal is inputted to a fuzzy controller 3 directly and through a differential circuit 4. With the progress of input of the signal, the fuzzy controller 3 outputs a disconnection distance signal by means of which power sources are disconnected, in order, in response to a distance from the gas device to the gas device according to a diffusion state of leak gas when leakage of gas from the gas device 1, and the output is inputted to a discriminating circuit 6. Further, the discriminating circuit 6 outputs a signal, by means of which a power source is disconnected, to a necessary source control part through comparison of distances from the gas device 1 to source control parts 7a, 8a, 9a... with each other based on a disconnection distance signal. This constitution facilitates a release work.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明はガス漏れ時の爆発を防止するための防止装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a prevention device for preventing an explosion in the event of a gas leak.

〔従来の技術〕[Conventional technology]

従来ガス漏れ等を検知するためにガス器具の近傍にモニ
タ等を設け、ガス濃度が一定値に達したらブザーやラン
プ等を点灯させてガス漏れ状態を報知するようにした装
置が知られている。
Conventionally, devices are known in which a monitor or the like is installed near a gas appliance in order to detect gas leaks, etc., and when the gas concentration reaches a certain value, a buzzer or lamp is turned on to notify the gas leak status. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらガス濃度が所定値に達したときには、電灯
の点灯や電気器具の使用により有接点スイッチが開閉す
ることによってガス爆発を生じる恐れがある.又ガス漏
れ時にモニタ等の出力によって全てのt源を遮断した場
合には、ガス漏れ状態を解消するための作業が行い難く
なり却って危険になるという欠点がある. 本発明はこのようなガス漏れが生じたときに復旧作業を
容易に行うと共に、ガス爆発を未然に防止できるように
することを技術的課題とする。
However, when the gas concentration reaches a predetermined value, there is a risk of a gas explosion due to the opening and closing of contact switches caused by lighting lights or using electrical appliances. Furthermore, if all the t-sources are shut off by the output of a monitor or the like when a gas leak occurs, there is a drawback that it becomes difficult to perform work to eliminate the gas leak, which can even become dangerous. The technical object of the present invention is to facilitate restoration work when such a gas leak occurs and also to prevent a gas explosion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はガス濃度検知器と、ガス濃度検知器より得られ
る濃度が所定値を越えたときに動作を開始する時計手段
と、複数の1tBを個別に制御する複数の電源制御部と
、ガス濃度検知器からの出力が大きくなり時計手段から
のガス漏れ時間が長くなるに従いガス発生源から近い距
離の電源を順次遮断するようにファジー推論を行う複数
のファジー推論部と、各ファジー推論部の並列出力に基
づいて電源遮断距離の非ファジー確定値を得る確定部と
、確定部より得られる電源遮断距離に基づいて複数の電
源制御部を断続する弁別回路と、を有することを特徴と
するものである。
The present invention includes a gas concentration detector, a clock means that starts operating when the concentration obtained from the gas concentration detector exceeds a predetermined value, a plurality of power supply control units that individually control a plurality of 1 tB, and a gas concentration detector. A plurality of fuzzy inference units that perform fuzzy inference to sequentially cut off power supplies near the gas source as the output from the detector increases and the time for gas leakage from the clock means increases, and each fuzzy inference unit is parallel. The apparatus is characterized by having a determination section that obtains a non-fuzzy determined value of the power cutoff distance based on the output, and a discrimination circuit that connects or disconnects the plurality of power supply control sections based on the power supply cutoff distance obtained from the determination section. be.

〔作用〕[Effect]

このような特徴を有する本発明によれば、ガス濃度検知
器によりガス濃度を検出しその濃度が所定レベルに達し
たとき以降の時間を時計手段によって検出し、ガスの濃
度及び時間に対応させてガス漏れが生じている位置から
の距離が順次遠くなる電−S遮断距離をファジー推論に
より得ており、その距離に基づいて電源を遮断するよう
にしている. 〔発明の効果〕 そのため本発明によれば、ガスが達していない位置の電
気器具は使用することができ、ガスが拡散するにつれて
ガス器具から離れた位置の電源までを遮断するこ己がで
きる。従って最低限の電源を遮断するだけで復旧作業を
行うことができ、しかもガス爆発を未然に防止すること
ができるという効果が得られる。
According to the present invention having such characteristics, the gas concentration is detected by the gas concentration detector, the time after the concentration reaches a predetermined level is detected by the clock means, and the time is detected in correspondence with the gas concentration and the time. Fuzzy reasoning is used to obtain power-suppressing cutoff distances that gradually increase in distance from the location where the gas leak occurs, and the power is cut off based on that distance. [Effects of the Invention] Therefore, according to the present invention, it is possible to use electrical appliances at locations where gas has not reached, and as the gas diffuses, it is possible to cut off power supplies at locations distant from the gas appliances. Therefore, restoration work can be carried out by simply cutting off the minimum amount of power, and furthermore, it is possible to prevent gas explosions.

〔実施例の説明〕[Explanation of Examples]

第2図は本発明の一実施例によるガス爆発防止装直の全
体構戒を示すブロック図である。本図においてガス器具
lの近傍にはガス濃度を検知するガス濃度検知器2が配
置される。ガス濃度検知器2はガス器具1よりガス漏れ
が生じた場合の濃度を検知するものであって、その濃度
信号はファジーコントローラ3に直接及び微分回路4を
介して与えられる.又その濃度信号が時計5に与えられ
る.時計5は所定レベルを越えるガス濃度が検知された
時刻以後に動作を開始してガス漏れ時間を計数するもの
であり、その時間信号はファジーコントローラ3に与え
られる.ファジーコントローラ3はこれらの入力に伴い
ガス器具1よりガス漏れが生じたときにその拡散状態に
よりガス器具からガス器具までの距離に応じて順次電源
を遮断すべき遮断距離信号を出力するものであって、そ
の出力は弁別回路6に与えられる.弁別回路6は遮断距
M信号に基づきガス器具1から各電源制御部7 a, 
 8 a,  9 a−・・−までの距離を比較するこ
とにより必要な電源制御部に電源を遮断する信号を与え
るものである.電源制御部7a,3a・−・・・・には
夫々電灯や他の種々の電気機器7b,8b・・・・一・
が接続される. 次にファジーコントローラ3を含む主要部の構或を第1
図を参照しつつ説明する.本実施例ではガス濃度検知器
2の出力とその微分出力及び時計5からの時間信号に基
づいてファジー制御を行う。
FIG. 2 is a block diagram showing the overall structure of a gas explosion prevention installation according to an embodiment of the present invention. In this figure, a gas concentration detector 2 for detecting gas concentration is arranged near a gas appliance l. The gas concentration detector 2 detects the concentration when gas leaks from the gas appliance 1, and its concentration signal is given to the fuzzy controller 3 directly and via the differentiation circuit 4. The concentration signal is also given to the clock 5. The clock 5 starts operating after the time when a gas concentration exceeding a predetermined level is detected and counts the gas leakage time, and the time signal is given to the fuzzy controller 3. In response to these inputs, the fuzzy controller 3 outputs a cutoff distance signal to sequentially cut off the power supply according to the distance from gas appliance to gas appliance, depending on the diffusion state when gas leaks from the gas appliance 1. The output is given to the discrimination circuit 6. The discrimination circuit 6 connects the gas appliance 1 to each power supply control unit 7a, based on the cutoff distance M signal.
By comparing the distances to 8a, 9a, etc., a signal is given to the necessary power supply control unit to cut off the power. The power supply control units 7a, 3a, . . . are connected to electric lights and other various electric devices 7b, 8b, .
is connected. Next, the structure of the main part including the fuzzy controller 3 will be explained as follows.
This will be explained with reference to the figure. In this embodiment, fuzzy control is performed based on the output of the gas concentration detector 2, its differential output, and the time signal from the clock 5.

ファジーコントローラ3は複数のファジー推論部と確定
部から或り立っている.第2図に示した各入力は複数、
本実施例では8つのファジー准論部11−1〜IL8に
伝えられる.各ファジー推論部は図示のように入力とな
るガス濃度とその微分出力及び時間信号に対応したメン
バーシップ関数を発生するメンバーシップ関数発生回路
(MFC)、及び出力すべき距離信号のメンバーシップ
関数を発生するメンバーシップ関数発生器(MFG)が
設けられる.さて本実施例ではメンバーシップ関数とし
てガス濃度を第3図(a)に示すように4つの状態に分
けており、第3図(bl, (C)に示すようにその微
分値を7つの状態、ガス漏れ後の時間を4つの状態に分
けている。又電源遮断の距離信号も第3図(d)に示す
ように7つの状態に分けている。ここでNLは負の大き
な値、NMは負の中位の値、NSは負の小さな値、ZR
はほぼ零、PSは正の小さな値、PMは正の中位の値、
PLは正の大きな値を夫々表している。尚第3図(d)
では例えばガス器具1からの距離が4mを零として正負
を表すようにしている。
The fuzzy controller 3 consists of a plurality of fuzzy inference sections and a determination section. Each input shown in Figure 2 has multiple inputs,
In this embodiment, the information is transmitted to eight fuzzy subsections 11-1 to IL8. As shown in the figure, each fuzzy inference unit includes a membership function generation circuit (MFC) that generates a membership function corresponding to an input gas concentration, its differential output, and a time signal, and a membership function that generates a membership function of a distance signal to be output. A membership function generator (MFG) is provided to generate a membership function generator (MFG). Now, in this example, the gas concentration is divided into four states as a membership function as shown in Fig. 3 (a), and its differential value is divided into seven states as shown in Fig. 3 (bl, (C)). , the time after the gas leak is divided into four states.The distance signal for power cutoff is also divided into seven states as shown in Figure 3(d).Here, NL is a large negative value, and NM is a large negative value. is a medium negative value, NS is a small negative value, ZR
is almost zero, PS is a small positive value, PM is a medium positive value,
PL represents a large positive value. Furthermore, Figure 3(d)
For example, the distance from the gas appliance 1 is 4 m as zero, and the positive and negative values are expressed.

次にファジー推論部1l−1〜11−8について説明す
る.各ファジー推論部は夫々2つ又は3つのMFC21
−1〜21−8。22−1〜2 2−8.  2 3−
2〜23−8を有している。ファジー推論部11−1は
後述するようにルール1の推論を行う推論部であり、M
FC21−1はガス濃度検知器2からの出力S1がPS
のメンバーシップ関数を発生する発生回路(MFC) 
、MFC2 2−1は微分回動4からの出力S2がZR
のメンバーシップ関数を発生するMFCであり、夫々の
出力はMiN回路24−1に与えられる。又MFG25
−1は第3図(d)に示す電源の遮断距離の並列メンバ
ーシップ関数NMを発生するメンバーシップ関数発生器
(MFG)であり、その並列出力はMINrM路26−
1に与えられる.MIN回路26−1はMIN回路24
−1の出力と比較することよってより小さい並列のファ
ジー信号を発生するものであり、その出力はMAXアレ
ー回路27に与えられる。
Next, the fuzzy inference units 1l-1 to 11-8 will be explained. Each fuzzy inference unit has two or three MFC21
-1~21-8.22-1~2 2-8. 2 3-
2 to 23-8. The fuzzy inference unit 11-1 is an inference unit that performs the inference of rule 1 as described later, and
In FC21-1, output S1 from gas concentration detector 2 is PS
A generation circuit (MFC) that generates the membership function of
, MFC2 2-1 output S2 from differential rotation 4 is ZR
The MFC generates a membership function, and each output is given to the MiN circuit 24-1. Also MFG25
-1 is a membership function generator (MFG) that generates a parallel membership function NM of the power cutoff distance shown in FIG. 3(d), and its parallel output is a MINrM path 26-
1 is given. MIN circuit 26-1 is MIN circuit 24
-1 output, a smaller parallel fuzzy signal is generated, and the output thereof is given to the MAX array circuit 27.

次にこれらの入力に基づいて決定される推論ルールを以
下に示す。
Next, the inference rules determined based on these inputs are shown below.

(ルール1) もしガス濃度(S1〉がPSでその微分値(S2)がZ
Rならば電源遮断の距離(e)をNMとせよ. このルール1は次のように簡略化して表現される。
(Rule 1) If the gas concentration (S1) is PS and its differential value (S2) is Z
If R, let NM be the power cutoff distance (e). This rule 1 is simplified and expressed as follows.

I f S1= P S and 52− Z R t
hen NMこのようなルールはガス濃度が高くその微
分値が正方向に大きく更に発生後の時間が長くなるに従
って電源遮断の距離が長くなり、微分値が負方向に変化
するに従って小さくなるように定められる。
If S1= P S and 52- Z R t
hen NMSuch a rule stipulates that when the gas concentration is high and the differential value increases in the positive direction, the distance for power cutoff increases as the time after occurrence increases, and as the differential value changes in the negative direction, it decreases. It will be done.

このようなルールは以下の表に示される。Such rules are shown in the table below.

こうして8の推論ルールが定められる。ファジー推論部
11−1〜11−8は夫々のファジー推論を実行する推
論部であって、夫々のルールの推論結果である並列のフ
ァジー出力がファジー推論部11−1〜11−8よりM
AXアレー回路27に与えられる。MAXアレー回路2
7は各並列ラインの対応するライン毎に最大値を算出す
るものであり、その並列出力はデファジファイア回路2
8に与えられる。デファジファイア回路28はその出力
の重心演算によって非ファジー出力を得るものであり、
その出力は弁別回路6に与えられる.弁別回路6はこの
距離信号を夫々ガス器具1と各電源制御部までの距離に
対応して弁別して電源遮断の制御信号を各電源制御部?
a,8a・・−・・・・に与えるものである。
In this way, eight inference rules are defined. The fuzzy inference units 11-1 to 11-8 are inference units that execute respective fuzzy inferences, and the parallel fuzzy outputs that are the inference results of the respective rules are outputted from the fuzzy inference units 11-1 to 11-8.
The signal is applied to the AX array circuit 27. MAX array circuit 2
7 calculates the maximum value for each corresponding line of each parallel line, and the parallel output is sent to the defuzzifier circuit 2.
given to 8. The defuzzifier circuit 28 obtains a non-fuzzy output by calculating the center of gravity of its output.
The output is given to the discrimination circuit 6. The discrimination circuit 6 discriminates this distance signal according to the distance between the gas appliance 1 and each power supply control section, and sends a power cutoff control signal to each power supply control section.
It is given to a, 8a...

次に本実施例の動作について説明する。まずガス濃度検
知器2の出力81が所定値s1。でありPS−0.3 
,  PM=0.7とし、その微分回路からの出力S2
がS2oであってPS−0.4 ,PM−0.6とし、
ガス濃度が所定値になった以後の時間33が所定値S3
(lであってZ R =0.2 . P S−0.8と
する。この場合には前述したルール表のルール2.4及
び5が適用され電源遮断距離eが以下のようになる。
Next, the operation of this embodiment will be explained. First, the output 81 of the gas concentration detector 2 is a predetermined value s1. And PS-0.3
, PM=0.7, and the output S2 from the differentiator circuit is
is S2o, PS-0.4, PM-0.6,
The time 33 after the gas concentration reaches the predetermined value is the predetermined value S3
(l and Z R =0.2. P S-0.8. In this case, rules 2.4 and 5 of the rule table described above are applied, and the power cutoff distance e is as follows.

ZR舅0.3 .  PM=0.3 ,  PS=O。ZR father-in-law 0.3. PM=0.3, PS=O.

7従って8つのファジー推論部のうち3つの推論部より
ファジー並列出力が得られることとなり、これらの出力
が確定部l2のMAXアレ−回路27によってMAX演
算が行われる。その結果第3図(d)に示すように重心
演算を行うことによって遮断距離e,を算出している.
この信号は弁別回路6によって弁別され、その位置ある
電源までが遮断される.例えば第2図のガス器具1と電
源制御部8a,9aとの距離が夫々6m,8mとしe,
が7.5mであるとすれば、距離e,よりも近い電源、
即ち電源制御部7a,3aが遮断される。それより外側
の電源制御部9aは遮断されない。従って電源制御部7
a,8aに接続される電灯や電気器具7b,8bは動作
しないが、電源制御部9aに接続される器具は電源が遮
断されない。従って電灯やその他の電気機器をそのまま
使用し続けることができる. 尚本実施例はガス濃度検知器の濃度とその微分値及びガ
ス漏れが発生した以後の時間に基づいてガス器具までの
距離に対応して電源を遮断するようにしているが、微分
回路を用いることなく実現することも可能である。
7. Therefore, fuzzy parallel outputs are obtained from three of the eight fuzzy inference sections, and these outputs are subjected to MAX calculation by the MAX array circuit 27 of the determining section 12. As a result, as shown in Figure 3(d), the interception distance e is calculated by calculating the center of gravity.
This signal is discriminated by the discrimination circuit 6, and the power supply at that position is cut off. For example, if the distances between the gas appliance 1 and the power control units 8a and 9a in FIG. 2 are 6 m and 8 m, respectively,
is 7.5 m, the power source closer than the distance e,
That is, the power supply control units 7a and 3a are cut off. Power supply control units 9a outside of this are not shut off. Therefore, the power supply control section 7
Although the lights and electric appliances 7b and 8b connected to the power supply controllers a and 8a do not operate, the power to the appliances connected to the power supply control section 9a is not cut off. Therefore, you can continue to use lights and other electrical equipment. In this embodiment, the power supply is cut off in accordance with the distance to the gas appliance based on the concentration of the gas concentration detector, its differential value, and the time since the gas leak occurred, but a differential circuit is used. It is also possible to achieve this without.

又本実施例はMI N−MAX演算規則に従うファジー
推論を行うようにしたガス爆発防止装置について説明し
ているが、本発明は他の演算規則に従うファジー推論に
よっても実現することができる。又ファジー処理はファ
ジー推論のための専用ディバイス(例えば日経エレクト
ロニクス1987年7月28日,第148頁〜第152
頁,日経マグロウヒル社)だけでなく、ファジー推論を
実行するようにプログラムされたバイナリータイプのコ
ンピュータ,プロセッサ等によっても実現することがで
きる。又メンバーシップ関数は第3図に示したような三
角形状のものに限らず、任意の形のものを採用してもよ
い.更にメンバーシップ関数や推論ルールは周囲.環境
や器具の性質等によって適宜変更乃至修正することがで
きる。
Further, although this embodiment describes a gas explosion prevention device that performs fuzzy reasoning according to the MIN-MAX calculation rule, the present invention can also be realized by fuzzy reasoning according to other calculation rules. Further, fuzzy processing is carried out using a dedicated device for fuzzy inference (for example, Nikkei Electronics, July 28, 1987, pp. 148-152).
Page, Nikkei McGraw-Hill), but also a binary type computer, processor, etc. programmed to perform fuzzy inference. Furthermore, the membership function is not limited to the triangular shape shown in Figure 3, but may be of any shape. Furthermore, membership functions and inference rules are peripheral. It can be changed or modified as appropriate depending on the environment, the properties of the equipment, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるガス爆発防止装置の主
要部を示すブロック図、第2図はその全体構或を示すブ
ロック図、第3図(a)はガス濃度.第3図(b)はそ
の微分値,第3図(C)は時間,第3図(d)は電源遮
断距離のメンバーシップ関数を示す図である。 1・・・−・・・ガス器具  2・・・・・・・ガス濃
度検知器  3・〜・−・−ファジーコントローラ  
4−・・一徹分回路5・・・・・・・・時計  6・・
・−・・・弁別回路  7a,3a,9a・・・一・・
電源制御部  7b.8b.9b・−・一・・電気器具
  11−1〜11〜8・・−・−・ファジー推論部1
2・−・・・・・確定部  21.22.23・・−・
・・−MFC24.26−・・−・MiN回路  25
・・・一・MFC27−・・・・・・MAXアレー回路
  28・−・−・・デファジファイア回路
Fig. 1 is a block diagram showing the main parts of a gas explosion prevention device according to an embodiment of the present invention, Fig. 2 is a block diagram showing its overall structure, and Fig. 3 (a) shows the gas concentration. FIG. 3(b) is a diagram showing the differential value, FIG. 3(C) is a diagram showing the membership function of time, and FIG. 3(d) is a diagram showing the membership function of the power cutoff distance. 1... Gas appliance 2... Gas concentration detector 3... Fuzzy controller
4-...Ittetsu circuit 5...Clock 6...
...Discrimination circuit 7a, 3a, 9a...1...
Power supply control section 7b. 8b. 9b...1...Electrical appliances 11-1~11~8...Fuzzy reasoning section 1
2・-・・・Decision part 21.22.23・・・・
...-MFC24.26--MiN circuit 25
...1.MFC27-...MAX array circuit 28.--Defuzzifier circuit

Claims (1)

【特許請求の範囲】[Claims] (1)ガス濃度検知器と、 前記ガス濃度検知器より得られる濃度が所定値を越えた
ときに動作を開始する時計手段と、複数の電源を個別に
制御する複数の電源制御部と、 前記ガス濃度検知器からの出力が大きくなり前記時計手
段からのガス漏れ時間が長くなるに従いガス発生源から
近い距離の電源を順次遮断するようにファジー推論を行
う複数のファジー推論部と、前記各ファジー推論部の並
列出力に基づいて電源遮断距離の非ファジー確定値を得
る確定部と、前記確定部より得られる電源遮断距離に基
づいて前記複数の電源制御部を断続する弁別回路と、を
有することを特徴とするガス爆発防止装置。
(1) a gas concentration detector; a clock unit that starts operating when the concentration obtained from the gas concentration detector exceeds a predetermined value; and a plurality of power supply control units that individually control the plurality of power supplies; a plurality of fuzzy inference units that perform fuzzy inference so as to sequentially cut off power supplies near the gas generation source as the output from the gas concentration detector increases and the time for gas leakage from the clock means increases; The determining unit includes a determination unit that obtains a non-fuzzy determined value of the power cutoff distance based on the parallel output of the inference unit, and a discrimination circuit that connects or disconnects the plurality of power supply control units based on the power cutoff distance obtained from the determination unit. A gas explosion prevention device featuring:
JP1161358A 1989-06-22 1989-06-22 Gas explosion preventing device Pending JPH0325212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161358A JPH0325212A (en) 1989-06-22 1989-06-22 Gas explosion preventing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161358A JPH0325212A (en) 1989-06-22 1989-06-22 Gas explosion preventing device

Publications (1)

Publication Number Publication Date
JPH0325212A true JPH0325212A (en) 1991-02-04

Family

ID=15733567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161358A Pending JPH0325212A (en) 1989-06-22 1989-06-22 Gas explosion preventing device

Country Status (1)

Country Link
JP (1) JPH0325212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441678B1 (en) * 2001-07-19 2004-07-27 주식회사 진산물산 Device and method for preventing wear of gas sensors
EP1026267A4 (en) * 1998-05-29 2004-12-15 Neomax Co Ltd Method for producing high silicon steel, and silicon steel
CN102260776A (en) * 2011-07-14 2011-11-30 北京科技大学 Preparation process of large-size high-silicon electric steel cold-rolled plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026267A4 (en) * 1998-05-29 2004-12-15 Neomax Co Ltd Method for producing high silicon steel, and silicon steel
KR100441678B1 (en) * 2001-07-19 2004-07-27 주식회사 진산물산 Device and method for preventing wear of gas sensors
CN102260776A (en) * 2011-07-14 2011-11-30 北京科技大学 Preparation process of large-size high-silicon electric steel cold-rolled plate

Similar Documents

Publication Publication Date Title
US5483462A (en) On-line method for determining power system transient stability
JPH0325212A (en) Gas explosion preventing device
Ghosh et al. Extraction of statistical features for type-2 fuzzy NILM with IoT enabled control in a smart home
Dattathreya et al. Detection and elimination of a potential fire in engine and battery compartments of hybrid electric vehicles
Hosseinzadeh Khonakdari et al. Real-time detection of microgrid islanding considering sources of uncertainty using type-2 fuzzy logic and PSO algorithm
CN112416996A (en) Vibration region determination method and device
CN109994998A (en) motor back electromotive force protection method, system, device and storage medium
da Silva Vicente et al. Rolling bearing fault diagnostic system using fuzzy logic
Kim et al. Improvement of genetic algorithm using PSO and Euclidean data distance
CN110360727B (en) Unit controller, method and device, multi-unit online equipment and storage medium
CN104296320A (en) Air conditioning system and method for monitoring indoor noxious gas based on air conditioner
JPH01302132A (en) Apparatus for detecting valve seat leak
JPH0865898A (en) Single operation detecting method for system interconnection inverter
JPH04109085A (en) Protecting device for air conditioner
KR102691714B1 (en) A water spray fire extinguishing system for fire suppression in electrical related areas in nuclear power plants
Jalilvand et al. Integrating of event detection and mode recognition in hybrid systems by fuzzy petri net
JP7030575B2 (en) Uninterruptible power supply system, uninterruptible power supply, uninterruptible power supply control program and uninterruptible power supply control method
JPH01283081A (en) Double signal selecting device
Xinmin et al. One-class bearing fault detection using negative clone selection algorithm
JP3433456B2 (en) RAS mechanism of cooling monitoring system for computer
JP3224659B2 (en) Gas flow control device
JP3360742B2 (en) Distributed control device
Su et al. Research on Fault Diagnosis Method of High Voltage Circuit Breaker Based on gray Relational Analysis and DS Evidence Theory
Mendez Stator winding fault detection for a PMSM using fuzzy logic classifier and neural network model identification
JPS62187918A (en) Electronic computer