JPH03251888A - Holographic camera - Google Patents

Holographic camera

Info

Publication number
JPH03251888A
JPH03251888A JP5069590A JP5069590A JPH03251888A JP H03251888 A JPH03251888 A JP H03251888A JP 5069590 A JP5069590 A JP 5069590A JP 5069590 A JP5069590 A JP 5069590A JP H03251888 A JPH03251888 A JP H03251888A
Authority
JP
Japan
Prior art keywords
light
scattered
measuring object
image
real time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5069590A
Other languages
Japanese (ja)
Inventor
Kiyoto Sonoki
園木 清人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP5069590A priority Critical patent/JPH03251888A/en
Publication of JPH03251888A publication Critical patent/JPH03251888A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To monitor a hologram in real time by bisecting coherent light, scattering one thereof, irradiating a measuring object with this light and introducing the scattered light from the measuring object and the other as reference light to a two-dimensional photoelectric converter. CONSTITUTION:The coherent light from a laser beam source 1 is bisected by a beam splitter 3. The one thereof is scattered by a dispersing plate 4 to the scattered light with which the measuring object 6 is irradiated. The scattered light from the object 6 is made incident together with the reference light of the bisected coherent light to the signal converter 8 of the two-dimensional photoelectric converter, by which the interference image of the hologram image by the interference of both light is converted to an electric signal. The surface state of the measuring object is thus observed. The hologram image is monitored in real time by the constitution which does not use a photosensitive recording plate consisting of this electrophotographic recording material.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、物体の表面の微細な動きをリアルタイムで
非接触に測定することなどに好適な、ホログラフィカメ
ラに関する。
The present invention relates to a holography camera suitable for measuring minute movements on the surface of an object in real time and in a non-contact manner.

【従来の技術】[Conventional technology]

従来より、物体にコヒーレントな照明光を照射し、その
散乱光と参照光とを感光記録板上で干渉させ、その干渉
縞を記録するホログラフィ装置が知られている。この感
光記録板としては、乾板もしくはホログラフィックプレ
ートなとの写真記録材料が用いられるのが普通である。
BACKGROUND ART Conventionally, a holography apparatus has been known that irradiates an object with coherent illumination light, causes the scattered light of the illumination light to interfere with a reference light on a photosensitive recording plate, and records interference fringes. As this photosensitive recording plate, a photographic recording material such as a dry plate or a holographic plate is usually used.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、従来のように写真記録材料からなる感光
記録板を用いるのでは、刻々変化する物体に応じて刻々
変化するホログラムのリアルタイムでのモニタリングか
できないという問題かある。 また、ホログラムの画像解析を行う場合に、写真画像の
読み取り等が必要となり、読み取り誤差が生じ、正確な
解析が困難であるという問題もある。 この発明は、物体が刻々変化する場合でもそのリアルタ
イムでのモニタリンクを可能とするとともに、読み取り
誤差等の問題を回避できる、ホログラフィカメラを提供
することを目的とする。
However, if a photosensitive recording plate made of a photographic recording material is used as in the past, there is a problem in that it is only possible to monitor in real time a hologram that changes from moment to moment in response to an object that changes from moment to moment. Furthermore, when performing image analysis of a hologram, it is necessary to read a photographic image, which causes reading errors and makes accurate analysis difficult. An object of the present invention is to provide a holography camera that enables real-time monitoring of an object even when the object changes every moment, and can avoid problems such as reading errors.

【課題を解決するための手段】[Means to solve the problem]

上記の目的を達成するため、この発明によるホログラフ
ィカメラにおいては、コヒーレントな光を発生する手段
と、上記の光を2方向に分ける手段と、分けられた一方
の光を分散して測定対象物に照射する分散手段と、測定
対象物からの散乱光と上記の分けられた他方の光とが導
かれる2次元的な光電変換手段とが備えられる。
In order to achieve the above object, the holographic camera according to the present invention includes a means for generating coherent light, a means for dividing the light into two directions, and a means for dispersing one of the divided lights and directing it to the object to be measured. It is provided with a dispersing means for irradiating and a two-dimensional photoelectric conversion means through which the scattered light from the object to be measured and the other separated light are guided.

【作  用】[For production]

測定対象物からの散乱光と、分けられた他方の光とが2
次元的な光電変換手段に導かれるので、その表面上で2
つの光の干渉が生じる。その干渉縞は測定対象物体の表
面状態に対応し、それが2次元的光電変換手段によって
、電気的な画像信号に変換されることになる。 そこで、測定対象物体の表面状態を表すホログラムであ
る干渉縞の画像信号がリアルタイムで得られることにな
る。
The scattered light from the object to be measured and the other separated light are
Since it is guided by a dimensional photoelectric conversion means, 2
Interference of two lights occurs. The interference fringes correspond to the surface condition of the object to be measured, and are converted into electrical image signals by the two-dimensional photoelectric conversion means. Therefore, an image signal of interference fringes, which is a hologram representing the surface state of the object to be measured, can be obtained in real time.

【実 施 例】【Example】

つきにこの発明の一実施例にががるホログラフィカメラ
について図面を参照しながら説明する。 第1図において、レーザ光源1がらのレーザ光は、ミラ
ー(プリズム)21.22で反射されてビームスプリッ
タ3に入射させられ、ここで2つのビームに分けられる
。一方の光ビームは、ミラー(プリズム)23.24で
反射されることによって分散板4に導かれ、指向性が除
去される。この分散板4を経た光が照明光として広く測
定対象e16に照射される。 この測定対象物6の表面で散乱した光は、ミラー25.
26、レンズ51.52及びミラー27を経てフォトセ
ンサ7に導かれる。 他方、上記のビームスプリッタ3で分けられた他方の光
ビームもまた、レンズ53.54及びミラー28を経て
フォトセンサ7に導かれる。この光は、上記の散乱光に
対する参照光となる。すなわち、測定対象物6がら散乱
してきた散乱光の光路差により参照光とフォトセンサ7
の表面上で干渉を起こし、その干渉縞がフォトセンサ7
の表面上に形成される。 このフォトセンサ7は、光強度を電気的な信号に変換す
る2次元的な光電変換器であって、たとえばCCDやフ
ォトダイオードアレイなどから構成される。あるいは干
渉縞が形成されたスクリーンに対し、置型の光電変換器
を水平、垂直方向に機械的に高速走査させる方式のもの
を使用することもできる。いずれにしても干渉縞の画像
の各画素の光強度を表す電気信号が得られ、これが信号
変換器8を経て適当な処理を施されるとともに所定の信
号形式に変換されて出力される。 なお、これらミラー21〜28、レンズ51〜54、フ
ォトセンサ7などは適当な筐体に納めておくことができ
る。 この場合、フォトセンサ7上に形成された画像(干渉縞
)を表す信号がリアルタイムで出力されるため、その出
力信号を画像モニター装置などに導くことにより、測定
対象物6の表面が刻々変化する様子を観察することがで
きる。また、写真記録された干渉縞を読み取るという迂
遠な方法を取らず、直接干渉縞の画像信号が得られるた
め、読み取り誤差などの入り込む余地がなく、この画像
信号を画像解析装置に送って正確な画像解析に供するこ
とができる。さらに、この出力された画像信号を磁気デ
ィスクや磁気テープあるいは光ディスクなどに記録する
ことにより、測定結果の保存を容易に行うことができる
Finally, a holographic camera according to an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, laser light from a laser light source 1 is reflected by mirrors (prisms) 21 and 22 and is incident on a beam splitter 3, where it is split into two beams. One of the light beams is reflected by mirrors (prisms) 23 and 24 and guided to the dispersion plate 4, and its directivity is removed. The light that has passed through the dispersion plate 4 is widely irradiated onto the measurement target e16 as illumination light. The light scattered on the surface of the measurement object 6 is transmitted to the mirror 25.
26, lenses 51 and 52, and a mirror 27, the light is guided to the photosensor 7. On the other hand, the other light beam split by the beam splitter 3 is also guided to the photosensor 7 via lenses 53, 54 and mirror 28. This light serves as a reference light for the above-mentioned scattered light. That is, due to the optical path difference between the scattered light scattered from the measurement object 6, the reference light and the photosensor 7
interference occurs on the surface of the photo sensor 7.
formed on the surface of The photosensor 7 is a two-dimensional photoelectric converter that converts light intensity into an electrical signal, and is composed of, for example, a CCD or a photodiode array. Alternatively, it is also possible to use a system in which a stationary photoelectric converter mechanically scans a screen on which interference fringes are formed at high speed in the horizontal and vertical directions. In any case, an electrical signal representing the light intensity of each pixel of the interference fringe image is obtained, which is subjected to appropriate processing via the signal converter 8, and is converted into a predetermined signal format and output. Note that these mirrors 21 to 28, lenses 51 to 54, photosensor 7, etc. can be housed in a suitable housing. In this case, since a signal representing the image (interference fringes) formed on the photosensor 7 is output in real time, the surface of the measurement object 6 changes moment by moment by guiding the output signal to an image monitoring device or the like. You can observe the situation. In addition, since the image signal of the interference fringe can be directly obtained without taking the roundabout method of reading the interference fringe recorded in the photograph, there is no room for reading errors, and this image signal can be sent to an image analysis device to obtain accurate information. It can be used for image analysis. Furthermore, by recording the output image signal on a magnetic disk, magnetic tape, optical disk, etc., the measurement results can be easily saved.

【発明の効果】【Effect of the invention】

この発明のホログラフィカメラによれば、測定対象物の
時間的変化をリアルタイムでモニタリングすることが可
能となるとともに、干渉縞の画像信号を画像解析装置な
どに直接送って正確な画像解析を行うことがてきるよう
にし、さらに測定結果の保存も容易である。
According to the holographic camera of the present invention, it is possible to monitor temporal changes in the object to be measured in real time, and it is also possible to directly send image signals of interference fringes to an image analysis device for accurate image analysis. Furthermore, it is easy to save the measurement results.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の模式図である。 1・・・レーザ光源、21〜28・・・ミラー、3・・
ビームスプリッタ、4・・・分散板、51〜54・・レ
ンズ6・・・測定対象物、7・フォトセンサ、8・・・
信号変換器。
FIG. 1 is a schematic diagram of an embodiment of the present invention. 1... Laser light source, 21-28... Mirror, 3...
Beam splitter, 4...Dispersion plate, 51-54...Lens 6...Measurement object, 7. Photo sensor, 8...
signal converter.

Claims (1)

【特許請求の範囲】[Claims] (1)コヒーレントな光を発生する手段と、上記の光を
2方向に分ける手段と、分けられた一方の光を分散して
測定対象物に照射する分散手段と、測定対象物からの散
乱光と上記の分けられた他方の光とが導かれる2次元的
な光電変換手段とを備えることを特徴とするホログラフ
ィカメラ。
(1) A means for generating coherent light, a means for dividing the light into two directions, a dispersion means for dispersing one of the divided lights and irradiating it onto the object to be measured, and scattering light from the object to be measured. and two-dimensional photoelectric conversion means to which the other divided light is guided.
JP5069590A 1990-02-28 1990-02-28 Holographic camera Pending JPH03251888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5069590A JPH03251888A (en) 1990-02-28 1990-02-28 Holographic camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5069590A JPH03251888A (en) 1990-02-28 1990-02-28 Holographic camera

Publications (1)

Publication Number Publication Date
JPH03251888A true JPH03251888A (en) 1991-11-11

Family

ID=12866056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5069590A Pending JPH03251888A (en) 1990-02-28 1990-02-28 Holographic camera

Country Status (1)

Country Link
JP (1) JPH03251888A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059008A1 (en) * 2007-10-30 2009-05-07 New York University Tracking and characterizing particles with holographic video microscopy
US9316578B2 (en) 2008-10-30 2016-04-19 New York University Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy
US10641696B2 (en) 2015-09-18 2020-05-05 New York University Holographic detection and characterization of large impurity particles in precision slurries
US10670677B2 (en) 2016-04-22 2020-06-02 New York University Multi-slice acceleration for magnetic resonance fingerprinting
US10983041B2 (en) 2014-02-12 2021-04-20 New York University Fast feature identification for holographic tracking and characterization of colloidal particles
US11085864B2 (en) 2014-11-12 2021-08-10 New York University Colloidal fingerprints for soft materials using total holographic characterization
US11385157B2 (en) 2016-02-08 2022-07-12 New York University Holographic characterization of protein aggregates
US11543338B2 (en) 2019-10-25 2023-01-03 New York University Holographic characterization of irregular particles
US11948302B2 (en) 2020-03-09 2024-04-02 New York University Automated holographic video microscopy assay

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059008A1 (en) * 2007-10-30 2009-05-07 New York University Tracking and characterizing particles with holographic video microscopy
US8791985B2 (en) 2007-10-30 2014-07-29 New York University Tracking and characterizing particles with holographic video microscopy
US9316578B2 (en) 2008-10-30 2016-04-19 New York University Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy
US10634604B2 (en) 2009-01-16 2020-04-28 New York University Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy
US11892390B2 (en) 2009-01-16 2024-02-06 New York University Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy
US10983041B2 (en) 2014-02-12 2021-04-20 New York University Fast feature identification for holographic tracking and characterization of colloidal particles
US11085864B2 (en) 2014-11-12 2021-08-10 New York University Colloidal fingerprints for soft materials using total holographic characterization
US10641696B2 (en) 2015-09-18 2020-05-05 New York University Holographic detection and characterization of large impurity particles in precision slurries
US11385157B2 (en) 2016-02-08 2022-07-12 New York University Holographic characterization of protein aggregates
US11747258B2 (en) 2016-02-08 2023-09-05 New York University Holographic characterization of protein aggregates
US10670677B2 (en) 2016-04-22 2020-06-02 New York University Multi-slice acceleration for magnetic resonance fingerprinting
US11543338B2 (en) 2019-10-25 2023-01-03 New York University Holographic characterization of irregular particles
US11921023B2 (en) 2019-10-25 2024-03-05 New York University Holographic characterization of irregular particles
US11948302B2 (en) 2020-03-09 2024-04-02 New York University Automated holographic video microscopy assay

Similar Documents

Publication Publication Date Title
CA1174494A (en) Optical system for observation in real time with scanning
US5796498A (en) Holographic imaging
JPH03251888A (en) Holographic camera
US4492468A (en) Interferometer for the real time display of deformations of vibrating structures
US5054913A (en) Method and apparatus for measuring the velocity of a fluid using analysis of young's fringes in speckle photography
US4277127A (en) Dopler extended depth of field imaging system with coherent object illumination
JPH11194018A (en) Object information measuring device
GB1263371A (en) Improved ultrasonic imaging techniques and apparatus
US3706965A (en) Real-time acoustic imaging system
EP0152186A2 (en) Optical correlator
JPS5610201A (en) Object dimension measuring device
JP2673196B2 (en) 3D shape sensor
SU1504498A1 (en) Method and apparatus for determining the components of displacement vector of diffusely reflecting microobjects
SU1404810A1 (en) Unequal-arm laser interferometer
JP2004279137A (en) Apparatus for measuring dynamic shape and dynamic position at once
JPS6140607U (en) Microgap measuring device
JP2801916B2 (en) Defect inspection equipment
SU1531143A1 (en) Device for optical reproduction of relief-phase information
Ruterbusch et al. Multiplexed speckle and holographic interferometry with color encoding by white-light processing
JP3046504B2 (en) Particle measuring method and particle measuring device
Garcia et al. Visualization of deformation by secondary speckle sensing
JPH0452704Y2 (en)
CN115291489A (en) Incoherent light digital holographic imaging device based on dynamic grating
SU422056A1 (en) DEVICE FOR SYNTHESIS OF TWO-DIMENSIONAL AGREED FILTERS
RU2159406C2 (en) Multiple-beam interferometer to measure parameters of parameters of spherical shell