JPH03251603A - Downcomer of deaerator - Google Patents

Downcomer of deaerator

Info

Publication number
JPH03251603A
JPH03251603A JP4821390A JP4821390A JPH03251603A JP H03251603 A JPH03251603 A JP H03251603A JP 4821390 A JP4821390 A JP 4821390A JP 4821390 A JP4821390 A JP 4821390A JP H03251603 A JPH03251603 A JP H03251603A
Authority
JP
Japan
Prior art keywords
deaerator
downcomer
hot water
boiler feed
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4821390A
Other languages
Japanese (ja)
Inventor
Takeshi Hashii
剛 橋井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4821390A priority Critical patent/JPH03251603A/en
Publication of JPH03251603A publication Critical patent/JPH03251603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent the flushing in a downcomer during the shut-out of load to a turbine with a simple piping in the subject downcomer in a thermal power plant by connecting the downcomers that are connected to respective pumps mutually by a communication pipe near the suction port of a boiler supply water pump. CONSTITUTION:Dueing the shut-off of load to a turbine the extraction steam from a steam turbine 3 is shut off, and the auxiliary steam is supplied to a deaerator 10 from an auxiliary steam pipe 29 and the temperature in the deaerator 10 drops and the temperature of the hot water becomes low. This low temperature hot water is supplied to, for instance, two boiler supply water pumps 17, 18 which are in operation from down comers 13 - 15 through a communication pipe 38. Accordingly in the downcomer 13 that is connected to a pump 16 that is not in operation the hot water of temperature same as that of the hot water in the downcomers 14 and 15 flows. It is, therefore, possible to prevent the flushing in the downcomers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火力発電プラントにおいて複数並列に配設さ
れたボイラ給水ポンプに接続する脱気器降水管の構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a deaerator downcomer pipe connected to a plurality of boiler feed pumps arranged in parallel in a thermal power plant.

〔従来の技術〕[Conventional technology]

蒸気タービンからの抽気蒸気により復水器等で生じた復
水を脱気器で加熱脱気し、この熱水をボイラ給水ポンプ
によりボイラに供給して蒸気とし。
Condensate generated in a condenser, etc. using extracted steam from a steam turbine is heated and degassed in a deaerator, and this hot water is supplied to the boiler using a boiler feed pump to produce steam.

この蒸気を蒸気タービンに供給する火力発電プラントの
系統として第2図に示すものが知られている。第2図に
おいてボイラ1からの蒸気は主蒸気管2を経て蒸気ター
ビン3に流入し、翼段落にて膨張して仕事をし、蒸気タ
ービン3に結合される発電機4にて電力を発生させる。
The system shown in FIG. 2 is known as a system of a thermal power plant that supplies this steam to a steam turbine. In FIG. 2, steam from a boiler 1 flows into a steam turbine 3 through a main steam pipe 2, expands in the blade stages, does work, and generates electric power in a generator 4 connected to the steam turbine 3. .

蒸気タービン3の翼段落にて仕事をして蒸気タービン3
から排出される蒸気は復水器5にて冷却凝縮して復水と
なり、この復水は復水ポンプ6により昇圧され、低圧給
水力ロ熱器7を備える復水管8を経て脱気器10に供給
される。脱気器10に供給された復水は蒸気タービン3
から抽気管11を経た抽気蒸気により加熱脱気されて脱
気器10に貯水される。脱気器10に貯水された熱水は
脱気器lOから下方に延びる降水管νとこの降水管りか
ら分岐し、ボイラ給水ポンプ16 、17 、18の各
吸込口に接続する降水管13 、14 、15を経て各
ボイラ給水ポンプ16 、17 、18に供給され、こ
れらのボイラ給水ポンプにより昇圧されて給水管19を
経てボイラ1に供給され、ボイラ1にて加熱されて蒸気
となる。
Work is done on the blade stage of the steam turbine 3.
The steam discharged from the is cooled and condensed in a condenser 5 to become condensate, and this condensate is pressurized by a condensate pump 6 and passes through a condensate pipe 8 equipped with a low-pressure water supply heater 7 to a deaerator 10. is supplied to The condensate supplied to the deaerator 10 is passed through the steam turbine 3
The water is heated and degassed by the bleed steam that passes through the bleed pipe 11 and is stored in the deaerator 10. The hot water stored in the deaerator 10 is transferred to a downcomer pipe ν extending downward from the deaerator 10, and a downcomer pipe 13 that branches from this downcomer pipe and connects to each suction port of the boiler feed pumps 16, 17, and 18. The water is supplied to the boiler feed water pumps 16, 17, and 18 via the boiler feed water pumps 14 and 15, and the pressure is increased by these boiler feed water pumps, and the water is supplied to the boiler 1 through the water feed pipe 19, where it is heated and turned into steam.

なお、加、21.22は入口止め弁、乙、24.25は
出口止め弁、26,27.28は逆上弁である。
In addition, 21.22 is an inlet stop valve, 24.25 is an outlet stop valve, and 26, 27.28 are reverse valves.

またタービンの負荷遮断FI#補助蒸気管四から補助蒸
気を脱気器10に供給するようにしている。
Further, auxiliary steam is supplied to the deaerator 10 from the load cutoff FI# auxiliary steam pipe 4 of the turbine.

また、降水管13 、14 、15には遠隔操作可能な
開閉弁31 、32 、33を備えて互いに連通して復
水管8に接続し、循環ポンプ讃を備える連絡・供給管あ
を設け、開閉弁31 、32 、33のうちの特定の開
閉弁の開によりこの開閉弁に接続する降水管内の熱水を
循環ポンプ調の駆動により脱気器Jotこ戻すようにし
ている。
In addition, the downcomer pipes 13, 14, and 15 are equipped with remotely controllable on-off valves 31, 32, and 33, which communicate with each other and are connected to the condensate pipe 8, and are provided with communication/supply pipes equipped with circulation pumps to open and close them. When a specific on-off valve among the valves 31, 32, and 33 is opened, the hot water in the downcomer pipe connected to this on-off valve is returned to the deaerator by driving a circulation pump.

このようにして火力発電プラントが通常運転中ば脱気器
lOには蒸気タービン3から抽気蒸気を流入させること
により、脱気器内圧が高く保たれているので、ボイラ給
水ポンプ16 、17 、18に必要な吸い込みNPS
Hが充分確保されている。
In this way, when the thermal power plant is in normal operation, the internal pressure of the deaerator is kept high by allowing extracted steam to flow into the deaerator lO from the steam turbine 3, so that the boiler feed water pumps 16, 17, 18 Inhalation NPS required for
Sufficient H is ensured.

しかしながら、タービン負荷遮断時においてはタービン
からの抽気蒸気が遮断されるため、脱気器内の圧力、温
度が下がる。これを防止する目的で補助蒸気管29を経
て補助蒸気が脱気器10内へ供給されるが、この補助蒸
気量はタービンからの抽気蒸気量に比べて少量のため、
脱気器内圧力は急激に低下し、また脱気器内の熱水の@
度も低下する。このためボイラ給水ポンプに必要な吸い
込みNPSHは低下するが、脱気器10の裾付位首のレ
ベルが光分確保されている場合、運転中のボイラ給水ポ
ンプには支障が生じない。
However, when the turbine load is cut off, the steam extracted from the turbine is cut off, so the pressure and temperature inside the deaerator decrease. In order to prevent this, auxiliary steam is supplied into the deaerator 10 through the auxiliary steam pipe 29, but since the amount of this auxiliary steam is small compared to the amount of extracted steam from the turbine,
The pressure inside the deaerator drops rapidly, and the hot water inside the deaerator
The degree also decreases. For this reason, the suction NPSH required for the boiler feed pump decreases, but if the level of the base neck of the deaerator 10 is maintained by a certain amount of light, there will be no problem with the boiler feed pump during operation.

ところで、火力発電プラントでは通常プラントの運転の
健全性を考慰して3台のボイラ給水ポンプのうち少なく
とも1台を停止、¥PIe =”せて他の台数のボイラ
給水ポンプを運転するようにしている。したがってボイ
ラ給水ポンプ16 、17.18のうちボイラ給水ポン
プ17 、18を運転し、ボイラ給水ポンプ16を停止
しているとすると、入口止め弁別を閉にして停止してい
るボイラ給水ポンプI6に接続する降水管13内の熱水
はボイラ給水ポンプにより送出されず降水管内にswし
ていることになる。
By the way, in thermal power plants, usually in consideration of the soundness of the plant's operation, at least one of the three boiler feed pumps is stopped, and at least the other boiler feed pumps are operated. Therefore, if boiler feed pumps 17 and 18 of boiler feed pumps 16 and 17 and 18 are operated and boiler feed pump 16 is stopped, boiler feed pumps that are stopped with the inlet stop valve closed The hot water in the downcomer pipe 13 connected to I6 is not sent out by the boiler feed water pump but is swung into the downcomer pipe.

−万、運転中のボイラ給水ポンプ17 、18に接続す
る降水管14 、 Is内の熱水がポンプにより全量吐
出されると、負荷遮断により生じた脱気器内の温度の低
い熱水が吸込まれるため、運転側のボイラ給水ポンプ1
7 、18に接続する降水管14 、15と停止側のボ
イラ給水ポンプ16に接続する温度の高い熱水を保有す
る降水管13の接合点近傍から停止側ボイラ給水ポンプ
に至る配管内においてフラッシュ現象が生じる。このフ
ラッシュ現象により運転中のボイラ給水ポンプの必要N
FSHの低下、気泡の吸い込みによりボイラ給水ポンプ
にキャビテーシ璽ンが発生し、最悪の場合はポンプが破
損に至るという問題があった。
- When all of the hot water in the downcomer pipes 14 and Is connected to the operating boiler feed pumps 17 and 18 is discharged by the pump, the low-temperature hot water in the deaerator caused by load shedding is sucked in. Boiler feed pump 1 on the operation side
A flash phenomenon occurred in the piping from the vicinity of the junction of the downcomer pipes 14 and 15 connected to the boiler water pumps 14 and 15 connected to the boiler water pumps 7 and 18 and the downcomer pipes 13 holding high temperature hot water connected to the boiler feed pump 16 on the stop side to the boiler water pump on the stop side. occurs. Due to this flash phenomenon, the required N of the boiler feed water pump during operation is reduced.
Cavitation occurs in the boiler feed pump due to a decrease in FSH and the suction of air bubbles, and in the worst case, the pump may be damaged.

上記の問題は従来下記の方法によって解決している。タ
ービン負荷遮断時にタービンが負荷遮断状態になったこ
とを検知して#2環ポンプ調を駆動し、停止状懇のボイ
ラ給水ポンプ、例えばボイラ3 給水ポンプ16に接続する降水管価の開閉9P31のみ
を負荷遮断の検知信号により開することにより、降水管
13内の熱水を強制圏に排出して連絡供給管あを経て脱
気器101こ戻すようlこして降水管1:3内でフラッ
シュが発生することを防止している。
The above problem has conventionally been solved by the following method. When the turbine load is cut off, it is detected that the turbine is in the load cutoff state, and the #2 ring pump control is driven, and the boiler feedwater pump when the stoppage occurs, for example, only the opening/closing of the downcomer pipe connected to the boiler 3 feedwater pump 16 (9P31) is opened in response to a load shedding detection signal, the hot water in the downcomer pipe 13 is discharged into the forced zone, passed through the connecting supply pipe, and returned to the deaerator 101, and then flushed in the downcomer pipe 1:3. is prevented from occurring.

また、他の方法としてタービン負荷遮断時にタービンが
負荷遮断状態となったことを検知し、停止中の、例えば
ボイラ給水ポンプ16に接続する降水管13に接続して
図示しない開閉弁を備えた注水配管を設け、この開閉9
Fを9、?iFJ遮断の検知信号により開にすることで
外部から復水や補給水等の冷却水を降水管13円1こ供
給して降水管13内の熱水を系外または脱気器等に送出
して冷却水と置換することにより、降水管13内でフラ
ッシュが発生するのを防止しているう 〔発明が解決しようとする課題〕 タービンの負荷遮断時、停止しているボイラ給水ポンプ
に接続する降水管中の熱水がフラッシュするのを防止す
るために、この降水管中の熱水を従来のように脱気器に
循環ポンプにより戻す方法や注水配管による冷却水と置
換する方法は、循環ポンプや負荷遮断の検知信号により
作動する開閉弁等を備えた配管や制御装置が必要となる
ので、制御が複雑となり、また設備費が高くなるという
欠点があった。
Another method is to detect that the turbine is in a load shedding state at the time of turbine load shedding, and inject water while it is stopped, for example, by connecting it to the downcomer pipe 13 connected to the boiler feed water pump 16 and having an on-off valve (not shown). Install piping and open/close this 9
9 for F? When opened by the iFJ cutoff detection signal, cooling water such as condensate or make-up water is supplied from the outside to each downcomer pipe 13, and the hot water in the downdown pipe 13 is sent out to the outside of the system or to a deaerator, etc. [Problem to be solved by the invention] Connecting to the stopped boiler feed pump when the load of the turbine is interrupted In order to prevent the hot water in the downcomer pipes from flashing, there is a conventional method of returning the hot water in the downcomer pipes to the deaerator using a circulation pump or replacing it with cooling water using water injection piping. Since piping and a control device including a pump and an on-off valve operated by a load cutoff detection signal are required, the control becomes complicated and the equipment cost increases.

本発明の目的は、タービンの負荷遮断時でも賃素な配管
構成により停止中のボイラ給水ポンプに!i!!5!サ
レる降水管でのフラッシュを防止できる脱気器降水管を
提供することであろう 〔課題を解決するための手段〕 上記課題を解決するために、本考案によれば脱気器内の
蒸気タービンからの抽気蒸気により加熱脱気された熱水
をボイラに供給する複数並列に脱気器の下位に配設され
るボイラ給水ポンプの各吸込口と脱気器の底部とに接続
される前記ボイラ給水ポンプと同数の降水管からなる脱
気器降水管において、この降水管が互いに連通ずる連絡
管を前記ボイラ給水ポンプの吸込口近くの降水管に接続
して設けるものとする。
The purpose of the present invention is to provide a boiler feed pump that is stopped even when the load of the turbine is cut off with a simple piping configuration! i! ! 5! [Means for solving the problem] In order to solve the above problem, according to the present invention, the steam inside the deaerator is provided. A plurality of boiler feed water pumps connected in parallel to the bottom of the deaerator and each suction port of a plurality of boiler feed water pumps arranged below the deaerator supply hot water that has been heated and degassed by extracted steam from the turbine to the boiler. In a deaerator downcomer pipe consisting of the same number of downcomer pipes as the boiler feed pump, a communication pipe through which these downcomer pipes communicate with each other shall be connected to a downcomer pipe near the suction port of the boiler feed pump.

〔作用〕[Effect]

脱気器からの脱気された熱水は、複数のボイラ給水ポン
プのうちいずれかが停止していても運転されるボイラ給
水ポンプには停止中のボイラ給水−ポンプに!1fIl
cされる降水管からも連通する連絡管を介して供給され
るので、停止中のボイラ給水ポンプに接続される降水管
にも常時脱気器からの熱水が流れている。
The degassed hot water from the deaerator is sent to the boiler feed pump, which operates even if one of the multiple boiler feed pumps is stopped. 1fl
The hot water from the deaerator is also supplied through a connecting pipe that communicates with the downcomer pipe that is in use, so that hot water from the deaerator is constantly flowing even into the downcomer pipe that is connected to the boiler feed water pump that is stopped.

したがってタービンの負荷遮断時、タービンからの抽気
蒸気が遮断されて脱気器内の温度が低下しても、低温の
熱水は運転中および停止中のボイラ給水ポンプに接fF
される各降水管を流れ、従来のように停止中のボイラ給
水ポンプに接続される降水管には@度の高い熱水が存在
しないので、フラッシュが発生しない。
Therefore, even if the steam extracted from the turbine is cut off and the temperature inside the deaerator drops when the turbine load is cut off, low-temperature hot water will still be in contact with the operating and stopped boiler feed pumps.
Since hot water with a high degree of temperature does not exist in the downcomer pipes connected to the stopped boiler feed water pump as in the conventional case, flash does not occur.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は不発明の実施例による脱気器降水管を偏えた火
力発電プラントの系統図である。
FIG. 1 is a system diagram of a thermal power plant with offset deaerator downcomers according to an embodiment of the invention.

な2、第1図において第2図の従来例と同一部品には同
じ符号を付し、その説明を省略する。第1図において従
来例と異なるのは第2図に示す循環ポンプあにより降水
管13 、14 、15中の熱水を脱気器lOに戻す管
路を除外し、降水管13 、14 、15を互いに連通
ずる連絡管あを設け、この連絡管あには降水管13 、
14 、15の各降水管から他の降水管への熱水の流れ
を止める止め弁39 、40 、41を設けたことであ
る。
2. In FIG. 1, parts that are the same as those in the conventional example shown in FIG. 2 are given the same reference numerals, and their explanations will be omitted. What is different from the conventional example in FIG. 1 is that the circulation pump shown in FIG. A connecting pipe 13 is provided to communicate with each other, and this connecting pipe 13 is connected to
Stop valves 39, 40, and 41 are provided to stop the flow of hot water from each downcomer pipe No. 14 and 15 to the other downcomer pipes.

このような構成により、通常運転時には止め弁39 、
40 、41を開にして降水管13 、14 、15を
連通状態にしておく。この状態で例えばボイラ給水ポン
プ17゜18を運転し、ボイラ給水ポンプltlを停止
(大口弁加は閉)している運転パターンでは、脱気器1
0からの脱気された熱水は連絡管あを介して降水管13
゜14 、15を経て2台のボイラ給水ポンプ17 、
18の駆動によりボイラ1に供給される。
With such a configuration, during normal operation, the stop valve 39,
40 and 41 are opened to keep the downcomers 13, 14, and 15 in communication. In this state, for example, in an operation pattern in which the boiler feed pumps 17 and 18 are operated and the boiler feed pump LTL is stopped (the large mouth valve is closed), the deaerator 1
The degassed hot water from the
゜After passing through 14 and 15, two boiler water pumps 17,
The water is supplied to the boiler 1 by driving 18.

ところでタービンの負荷遮断時、蒸気タービン3からの
抽気蒸気が遮断され、補助蒸気管四からの補助蒸気が脱
気器10に供給されても前述のように脱気器内のtAK
が下がり、熱水が低温になる。
By the way, when the load of the turbine is cut off, even if the extracted steam from the steam turbine 3 is cut off and the auxiliary steam from the auxiliary steam pipe 4 is supplied to the deaerator 10, the tAK in the deaerator is
decreases, and the hot water becomes colder.

この低温の熱水は降水管13 、14 、15から連絡
管あを介して運転中の2台のボイラ給水ポンプ17 、
18に供給される。したがって停止中のボイラ給水ポン
プlbに接続される降水管13には負荷遮断時でも他の
降水管17 、18と同温度の熱水が流れているので、
従来のようにフラッシュが生じない。
This low-temperature hot water is passed from the downcomer pipes 13, 14, and 15 to the two boiler feed pumps 17 in operation via the connecting pipes.
18. Therefore, hot water of the same temperature as the other downcomers 17 and 18 flows through the downcomer pipe 13 connected to the stopped boiler feed pump lb even during load cutoff.
There is no flash like before.

なお、ボイラ給水ポンプ16 、17 、18を分離し
て駆動する場合には止め升39 、40 、41を閉に
すればよい。
In addition, when the boiler feed pumps 16, 17, and 18 are driven separately, the stop boxes 39, 40, and 41 may be closed.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば脱気器
から複叡並タリに配設さnたボイラ給水ポンプに接続さ
れる同数の降水管を互に連通ずる連絡管をボイラ給水ポ
ンプの吸込口近くに配設したことにより、いずれかのボ
イラ給水ポンプが停止していても、運転中のボイラ給水
ポンプには停止中および運転中のボイラ給水ポンプ−こ
接続した降水管から運転中のボイラ給水ポンプに脱気器
から熱水が供給されるので、タービンの負荷遮断により
脱気器の熱水が低温になっても停止中のボイラ給水ポン
プに接続される降水管にも運転中のボイラ給水ポンプに
接f&すれる降水管と同じ低温の熱水が流れるので、停
止中のボイラ紺水管に接続される降水管にフラッシュが
発生しない。Cの粘果従来のように循環ポンプ、負荷遮
断の検知信号により開になる開閉弁、制御ilI装置等
の設備か不要となり、設備費が安くなるという効果があ
る。
As is clear from the above description, according to the present invention, the connecting pipes connecting the same number of downcomer pipes connected to the boiler feed pumps arranged in parallel from the deaerator to the boiler water feed pumps are connected to the boiler water feed pumps. Even if one of the boiler feed pumps is stopped, the operating boiler feed pump will be connected to the downcomer pipe connected to the stopped and running boiler feed pump. Hot water is supplied from the deaerator to the boiler feed pump, so even if the hot water in the deaerator becomes cold due to turbine load interruption, the downcomer pipe connected to the stopped boiler feed pump will still be in operation. Because the same low-temperature hot water flows through the downcomer pipes that come into contact with the boiler feed pump, flash does not occur in the downcomer pipes that are connected to the boiler water pipes that are stopped. The advantage of C is that it eliminates the need for conventional equipment such as a circulation pump, an on-off valve that opens in response to a load cutoff detection signal, and a control IIL device, resulting in lower equipment costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による脱気器降水管を備えた蒸
気タービン設備の系統図、第2図は従来の脱気器降水管
を備えた蒸気タービン設備の系統図である。
FIG. 1 is a system diagram of a steam turbine installation equipped with a deaerator downcomer pipe according to an embodiment of the present invention, and FIG. 2 is a system diagram of a steam turbine installation equipped with a conventional deaerator downcomer pipe.

Claims (1)

【特許請求の範囲】[Claims] 1)脱気器内の蒸気タービンからの抽気蒸気により加熱
脱気された熱水をボイラに供給する複数並列に脱気器の
下位に配設されるボイラ給水ポンプの各吸込口と脱気器
の底部とに接続される前記ボイラ給水ポンプと同数の降
水管からなる脱気器降水管において、この降水管が互い
に連通する連絡管を前記ボイラ給水ポンプの吸込口近く
の降水管に接続して設けたことを特徴とする脱気器降水
管。
1) The deaerator and each suction port of the boiler feed water pump, which is installed in parallel below the deaerator, supplies hot water that has been heated and deaerated by steam extracted from the steam turbine in the deaerator to the boiler. In the deaerator downcomer pipe, which is composed of the same number of downcomer pipes as the boiler feed pump and is connected to the bottom of the boiler feed pump, a communication pipe through which these downcomer pipes communicate with each other is connected to a downcomer pipe near the suction port of the boiler feed pump. A deaerator downcomer pipe is provided.
JP4821390A 1990-02-28 1990-02-28 Downcomer of deaerator Pending JPH03251603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4821390A JPH03251603A (en) 1990-02-28 1990-02-28 Downcomer of deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4821390A JPH03251603A (en) 1990-02-28 1990-02-28 Downcomer of deaerator

Publications (1)

Publication Number Publication Date
JPH03251603A true JPH03251603A (en) 1991-11-11

Family

ID=12797132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4821390A Pending JPH03251603A (en) 1990-02-28 1990-02-28 Downcomer of deaerator

Country Status (1)

Country Link
JP (1) JPH03251603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102817644A (en) * 2012-08-08 2012-12-12 上海电力建设启动调整试验所 Flushing system and flushing method of steam side of high-pressure heater of steam turbine generator unit
JP2014005955A (en) * 2012-06-21 2014-01-16 Toshiba Corp Condensate feed water control apparatus and condensate feed cycle system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005955A (en) * 2012-06-21 2014-01-16 Toshiba Corp Condensate feed water control apparatus and condensate feed cycle system
CN102817644A (en) * 2012-08-08 2012-12-12 上海电力建设启动调整试验所 Flushing system and flushing method of steam side of high-pressure heater of steam turbine generator unit
CN102817644B (en) * 2012-08-08 2014-12-31 上海电力建设启动调整试验所 Flushing system and flushing method of steam side of high-pressure heater of steam turbine generator unit

Similar Documents

Publication Publication Date Title
US4873829A (en) Steam power plant
JPH03251603A (en) Downcomer of deaerator
JPS60201008A (en) Method and apparatus for controlling operation of plant
CN210740372U (en) Large-scale generating set high back pressure steam-driven feed pump control system
CN111735037B (en) High-pressure heater accident drainage system capable of recycling accident drainage heat
JPH0544405A (en) Steam turbine plant
US2722920A (en) Boiler feed water marine and like installations
JP2614350B2 (en) Feed water heater drain pump up system
JP3619551B2 (en) Water supply equipment in a steam turbine plant
JP3664759B2 (en) Flash prevention device
JP2630882B2 (en) Condensate recovery equipment
JP2923122B2 (en) Drain recovery equipment for nuclear power plants
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPS6134073B2 (en)
JPS63156902A (en) Waste-heat recovery boiler
JPS5842777Y2 (en) Condensate pressurization equipment for power generation plants
JP2650477B2 (en) Water hammer prevention method for deaerator water supply piping and piping equipment therefor
JP2752226B2 (en) Drain pump warming device
JPH0367904A (en) Drain pump up device for feed water heater
JP2014118887A (en) Piping leakage detection system
RU1815343C (en) Method of generation of additional power at power-and-heat supply plant with network heaters
JPH01203804A (en) Feed water heater drain system
JPH10176804A (en) Vertical waste heat recovery boiler and operating method thereof
JPH03122597A (en) Feed water system of nuclear power generating plant
JPH02259305A (en) Shaft sealing water control device for boiler water supply pump