JPH03251324A - Metal cutting method - Google Patents

Metal cutting method

Info

Publication number
JPH03251324A
JPH03251324A JP2047254A JP4725490A JPH03251324A JP H03251324 A JPH03251324 A JP H03251324A JP 2047254 A JP2047254 A JP 2047254A JP 4725490 A JP4725490 A JP 4725490A JP H03251324 A JPH03251324 A JP H03251324A
Authority
JP
Japan
Prior art keywords
electrode
work
machining
cutting
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2047254A
Other languages
Japanese (ja)
Inventor
Tetsuro Sakano
哲朗 坂野
Norio Karube
規夫 軽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2047254A priority Critical patent/JPH03251324A/en
Publication of JPH03251324A publication Critical patent/JPH03251324A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To mass-productively perform cutting of a complicated shape with improvement of the surface roughness of the cutting surface, by executing electric discharge machining on the cutting surface by the following work with one part of the metal work cut by laser cutting as the electrode, after laser cutting. CONSTITUTION:In laser cutting, a fitting hole 20 in the specific shape to the chuck of an electrode head 9 is formed at a specified position of an initial work 18 and thereafter a required work shape is subjected to cutting. Then, the fitting hole 20 of the work (mold electrode) 19 whose one part is cut off is correctly arranged to the lower part of an electrode head 9 and the mold electrode 19 is fixed to the electrode head 9. A work liquid is then poured into a work tank to perform diesinking rocking electric discharge machining. After completion of the electric discharge machining, the work liquid is recovered from the work tank and a series of metal compound work is completed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はレーザ切断加工と型彫り放電加工を利用した
金属ワークの切断加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for cutting a metal workpiece using laser cutting and die-sinking electrical discharge machining.

従来技術 金属ワークの切断加工は剪断、旋削などの純機械的な手
段では複雑な形状の加工が困難であり、また精密な仕上
げにはさらに研削装置を必要とした。この点レーザ切断
加工は複雑な形状を高速で切断加工することが可能であ
る(1500mm/分程度、板厚IQmm)。しかし、
切断面の面粗さは比較的大きく(50μRmax程度)
、切断面の仕上げ加工を必要とした場合がある。
Prior art When cutting metal workpieces, it is difficult to process complex shapes using pure mechanical means such as shearing and turning, and additionally, a grinding device is required for precise finishing. In this respect, laser cutting allows complex shapes to be cut at high speed (approximately 1500 mm/min, plate thickness IQ mm). but,
The surface roughness of the cut surface is relatively large (about 50μRmax)
In some cases, finishing of the cut surface was required.

一方、型彫り放電加工は面粗さが小さく(10μRma
x程度)、三次元曲面の精密な加工を行うことができる
が、加工速度(送り深さ)が遅い(0,1mm/mi 
n)上、型電極を他の工作機械を用いて作らねばならず
、その型が複雑な形状であると製作に非常な手間と費用
がかかる難点がある。
On the other hand, die-sinking electrical discharge machining has a small surface roughness (10μRma
x), three-dimensional curved surfaces can be precisely machined, but the processing speed (feed depth) is slow (0.1mm/mi).
n) Above, the mold electrode must be made using another machine tool, and if the mold has a complicated shape, the manufacturing process is very time consuming and costly.

従来、レーザ切断装置と放電加工装置はそれぞれ独立し
て存在しており、レーザ切断加工をしたワークを型彫り
放電加工で仕上げ加工しようとしたと、後の装置におい
てワークと電極との位置合せが非常に困難になる。また
、型彫り放電加工に際して製作が困難で高価な型電極を
準備しなければならない難点は解決されない。
Conventionally, laser cutting equipment and electrical discharge machining equipment exist independently, and when a workpiece that has been laser cut is attempted to be finished by die-sinking electrical discharge machining, the positioning of the workpiece and electrode may be difficult in the later equipment. becomes very difficult. Furthermore, the problem of having to prepare mold electrodes that are difficult and expensive to manufacture during die sinking electric discharge machining is not solved.

発明が解決しようとした課題 この発明は、金属ワークにレーザ切断加工と放電加工を
一連に、かつ、正確に行え、また、放電加工用の電極を
別途に作成する必要が無い金属切断加工方法の提供を課
題とした。
Problems to be Solved by the Invention The present invention provides a metal cutting method that allows laser cutting and electrical discharge machining to be performed on a metal workpiece in series and accurately, and that eliminates the need to separately prepare electrodes for electrical discharge machining. The challenge was to provide it.

課題を解決するための手段 金属ワークに対し、必要な形状をまずレーザ切断で加工
する。
Means to solve the problem First, the required shape is processed by laser cutting the metal workpiece.

ついで、切断されたワークの一方をそのまま電極に使用
し、前記加工による切断面に型彫り放電加工を実施する
Next, one of the cut workpieces is used as an electrode as it is, and die-sinking electrical discharge machining is performed on the cut surface obtained by the machining.

作   用 レーザ切断はワークの荒加工を行い、型彫り放電加工は
その切断面の仕上げ加工を行う。
Operation Laser cutting performs rough machining of the workpiece, and die-sinking electrical discharge machining performs finishing machining of the cut surface.

切断されたワークの一方をそのまま電極とした構成は、
複雑な形の型電極を簡単に提供し、該型電極を別途製作
する必要を無くする。また、ワークと電極の面倒な位置
合せをする必要を解消する。
A configuration in which one side of the cut workpiece is used as an electrode is,
To easily provide a mold electrode with a complicated shape and eliminate the need to separately manufacture the mold electrode. It also eliminates the need for troublesome alignment between the workpiece and the electrode.

実施例 本発明方法を実施するためのNCレーザ・放電複合加工
装置1は、第2図のように機械装置2に対しレーザ発振
装置3、放電加工用電源装置4、加工液装置5およびN
C制御装置6が組み合わされた構成を有する。
Embodiment As shown in FIG. 2, the NC laser/discharge combined machining apparatus 1 for carrying out the method of the present invention includes a laser oscillation device 3, a power supply device 4 for electric discharge machining, a machining fluid device 5, and a mechanical device 2.
It has a configuration in which the C control device 6 is combined.

機械装置2は、第3図に示すようにX軸テーブル、Y軸
テーブルからなるテーブル機構7と、Z軸方向の上下移
動機構8を備え、Z軸、Y軸、Z軸はそれぞれがザーポ
モータで駆動される。
As shown in Fig. 3, the mechanical device 2 includes a table mechanism 7 consisting of an X-axis table and a Y-axis table, and a vertical movement mechanism 8 in the Z-axis direction, and each of the Z-axis, Y-axis, and Z-axis is operated by a zarpo motor. Driven.

上下移動機構8の下端には放電加工用の電極ヘッド9と
レーザヘッド10が隣接して共に設けられている。レー
ザヘッド10はアシストガスの噴射機能を備え、また、
放電加工時に加工液のスプラッシュなどで汚染されない
よう保護筒により保護されている。なお、先端部は放電
加]二時に加工液中に没しないよう、電極ヘッド9とほ
ぼ等しい上下位置にある。
At the lower end of the vertical movement mechanism 8, an electrode head 9 and a laser head 10 for electrical discharge machining are provided adjacent to each other. The laser head 10 has an assist gas injection function, and
It is protected by a protective tube to prevent contamination from machining fluid splash during electrical discharge machining. Note that the tip portion is located at approximately the same vertical position as the electrode head 9 so as not to be submerged in the machining fluid during discharge application.

電極ヘッド9は第4.5図に示すようなチャック式とな
っている。このチャックは垂直方向に上下移動する2木
の爪11を備え、各型11は下端に外側を向いた水平方
向の係合部12とその上面から上方へ角柱状に形成され
た位置決め部13を備え、ヘッド9の押え部14から間
隔を狭めて下降した後、間隔を広げて型電極19(切断
された一方のワーク)を把持し、そのまま上昇して前記
押え部13との間に型電極19を挟持して固定するよう
になっている。
The electrode head 9 is of a chuck type as shown in FIG. 4.5. This chuck is equipped with two wooden claws 11 that move up and down in the vertical direction, and each mold 11 has a horizontal engaging part 12 facing outward at the lower end and a positioning part 13 formed in a prismatic shape upward from its upper surface. The head 9 descends from the holding part 14 of the head 9 with a narrowed gap, then widens the gap and grips the mold electrode 19 (one of the cut workpieces), and then ascends to place the mold electrode between it and the holding part 13. 19 is clamped and fixed.

符号15は加工槽でありテーブル機構7の上面に取付け
られている。符号16はビームダクトで内部に反射鏡を
備え、先端部はテレスコピックな補助ダクト17に形成
されている。補助ダクト17は上下移動機構8に固定さ
れ、これと共に移動する構造であり、その先端に前記の
レーザヘッド10が装着されている。
Reference numeral 15 denotes a processing tank, which is attached to the upper surface of the table mechanism 7. Reference numeral 16 denotes a beam duct which is equipped with a reflecting mirror inside, and whose tip is formed into a telescopic auxiliary duct 17. The auxiliary duct 17 is fixed to the vertical movement mechanism 8 and moves together with it, and the laser head 10 described above is attached to the tip thereof.

レーザ発振装置3は出力2KWの連続ビーム型C02ガ
スレーサ装置で市販のものであり、安定した強力なレー
ザビームを前記ビームダクト16に出力する。
The laser oscillation device 3 is a commercially available continuous beam type C02 gas laser device with an output of 2 kW, and outputs a stable and powerful laser beam to the beam duct 16.

放電加工用電源装置4は型彫り用に開発された公知のも
のであって、トランジスタによるパルス発生方式で所用
電源9 KVAのものである。パルスは電極ヘッド9に
加工用電力として供給される。
The electric discharge machining power supply device 4 is a known one developed for die engraving, uses a pulse generation method using a transistor, and requires a power supply of 9 KVA. The pulses are supplied to the electrode head 9 as processing power.

加工液装置5は放電加工に際して必要な加工液を加工槽
11に供給し、また、回収して前記加工槽を空にする能
力を備えると共に、放電加工中は加工液を濾過再生装置
を経由させて循環さぜる機能を備えている。
The machining fluid device 5 has the ability to supply the machining fluid necessary for electrical discharge machining to the machining tank 11 and to recover the machining fluid to empty the machining tank. It has a function to circulate the water.

NC制御装置6は入・出力部、RAM、ROM、からな
るメモリ一部、プロセッサ一部および前記メモリ一部に
作動プログラムと加ニブログラムが格納された通常のも
のである。作動プログラムは加ニブログラムや各部に配
置したセンサーの信号あるいは外部から入力される指令
などのデータをプロセッサ一部を介して処理し、NCレ
ーザ・放電複合加工装置1の作動を全体的に管理するも
のである。
The NC control device 6 is a conventional one in which an input/output section, a memory part consisting of RAM and ROM, a processor part, and an operating program and a program are stored in the memory part. The operation program processes data such as the machine program, signals from sensors placed in various parts, or commands input from the outside through a part of the processor, and manages the overall operation of the NC laser/discharge combined machining device 1. It is.

加ニブログラムはワークに施す加工形状と型電極19と
なる部分に形成する装着孔の形状をデータと共に記録し
たものである。
The Ni program records the shape of the workpiece to be machined and the shape of the mounting hole to be formed in the part that will become the mold electrode 19, together with data.

NC制御装置6は、入・出力部を介して前記の機械装置
2、レーザ発振装置3、放電加工用電源装置4および加
工液装置5と接続され、それぞれにおけるザーポモータ
の回転、発振や電源のON・OI” Fあるいは電磁弁
の開閉を制御するようになっている。
The NC control device 6 is connected to the mechanical device 2, the laser oscillation device 3, the electric discharge machining power supply device 4, and the machining fluid device 5 through input/output sections, and controls the rotation and oscillation of the sarpo motor and turning on the power in each.・It is designed to control the opening and closing of OI"F or a solenoid valve.

今、ワーク18から第6図に示す半月形の精密な切抜き
孔(メス形)を加]ニする必要があるとき、ワーク14
をテーブル機構7に固定して複合加工装置1を作動する
Now, when it is necessary to cut a precise half-moon-shaped cutout hole (female shape) in the workpiece 18 as shown in FIG.
is fixed to the table mechanism 7 and the composite processing device 1 is operated.

複合加工装置1はプロセッサ一部を中心に基本的に第1
図に示すフローの処理、すなわち本発明方法を実行する
こととなり、まずレーザ切断加工モードとなる。
The multi-tasking device 1 basically consists of a part of the processor and the first
The process of the flow shown in the figure, that is, the method of the present invention is executed, and the laser cutting mode is first entered.

作動プログラムにより、レーザヘッド10の焦点位置が
ワーク14の表面上となる位置まで上下移動機構8がZ
軸に沿って下降され、ついで加ニブログラムに沿ってテ
ーブル機構7を高速移動させながら、アシストガスの噴
射とともにレーザ発振装置3からのビームにより切断加
工を行う。
According to the operating program, the vertical movement mechanism 8 moves to the position where the focal position of the laser head 10 is on the surface of the workpiece 14.
The table mechanism 7 is lowered along the axis and then moved at high speed along the cutting program, while cutting is performed using the beam from the laser oscillation device 3 along with the injection of assist gas.

この加工は最初ワーク18の所定位置に電極ヘッド9の
チャックに対する特定形状の装着孔20を形成しくステ
ップ1)、その後求める加工形状を切断加工する。(ス
テップ2)。
In this processing, first, a mounting hole 20 of a specific shape for the chuck of the electrode head 9 is formed at a predetermined position of the workpiece 18 (step 1), and then the desired processing shape is cut. (Step 2).

なお、前記求める加工形状はプログラムされた加工通路
からQ、3mm幅の仕上げ取代を残した荒加工に相当す
るものである。
Note that the desired machining shape corresponds to rough machining that leaves a finish machining allowance of Q, 3 mm width from the programmed machining path.

これにより荒加工の完了と同時に第7図の型電極19(
オス形)が形成される。この型電極19はレーザによる
切り代によりワーク(製品側・・・メス形)と0.5m
m程度の間隔がある。また、当然にワーク18と同じ厚
さを備え、その周面が加工電極面となる。
As a result, the rough machining is completed and the mold electrode 19 (
male form) is formed. This mold electrode 19 is 0.5m away from the workpiece (product side...female type) due to the laser cutting margin.
There is an interval of about m. Moreover, it naturally has the same thickness as the workpiece 18, and its peripheral surface becomes the processing electrode surface.

切断加工が終了するとレーザ発振およびガスの供給が停
止トされて上下移動機構8がホームポジションに戻され
、ついで、テーブル機構7がレーザヘッド10と電極ヘ
ッド9の位置ズレ分だけX軸、Y軸方向に移動して切断
加工されたワーク18(メス形)を型電極19(オス形
)と共に移動し型電極19の装着穴20を電極ヘッド9
の下部に正しく配置する(ステップ3)。
When the cutting process is completed, the laser oscillation and gas supply are stopped, the vertical movement mechanism 8 is returned to the home position, and then the table mechanism 7 is moved along the X-axis and Y-axis by the positional deviation between the laser head 10 and the electrode head 9. The cut workpiece 18 (female type) is moved along with the mold electrode 19 (male type), and the mounting hole 20 of the mold electrode 19 is inserted into the electrode head 9.
(Step 3).

なお、この実施例において切抜かれたオス形(型電極1
9)は、第8図のようにその下面にあらかじめ配置され
ている多数の針を植設した受は台21に支持されてメス
形の上面かられずかに低くなるだけである。
In addition, in this example, the cutout male shape (type electrode 1
9), as shown in FIG. 8, the receiver in which a number of needles are implanted, which are previously arranged on the lower surface, is supported by the stand 21 and is only slightly lower than the upper surface of the female shape.

次に、複合装置1は揺動放電加工モードとなり、電極ヘ
ッド9におけるチャックの爪11を下方に伸ばしたまま
上下移動機構8が下降し、爪11を型電極19の装着孔
20に挿通し、ついで間隔を開げて上昇することにより
前記の型電極19を電極ヘッド9に固定する(ステップ
4)。このとき、型電極19は爪11の係合部12と押
え部14との挟着により水平姿勢と上下位置が、また、
角柱状の位置決め部13とこれに対応した特定形状の装
着孔20の形状部分の嵌合によって、回転方向の位置が
正確に決められる。
Next, the composite device 1 enters the oscillating electric discharge machining mode, and the vertical movement mechanism 8 descends while keeping the chuck claws 11 of the electrode head 9 extended downward, and inserts the claws 11 into the mounting holes 20 of the mold electrode 19. Then, the mold electrode 19 is fixed to the electrode head 9 by increasing the distance and lifting it up (step 4). At this time, the mold electrode 19 is held between the engaging part 12 of the claw 11 and the holding part 14, so that the horizontal position and the vertical position are changed.
The position in the rotation direction is accurately determined by fitting the prismatic positioning part 13 with the correspondingly shaped part of the mounting hole 20.

加工液装置5の電磁弁が開かれて加工液が加工槽11に
供給され、ワーク14が加工液中におかれる(ステップ
5)。
The electromagnetic valve of the machining fluid device 5 is opened, machining fluid is supplied to the machining tank 11, and the workpiece 14 is placed in the machining fluid (step 5).

加工液の供給完了がレベルスイッチ等により確認される
と、放電加工用電源装置4からパルス電力が型電極19
とワーク18間に供給され、テーブル機構7は低速でワ
ーク18が半径0.5mm弱から徐々に0.6mm弱(
設定値)に至る円揺動を行いながら放電の持続に必要な
放電間隔(約20μ)を維持するよう駆動される。また
、Z軸はワーク18と型電極]9との上下位置を維持し
て固定される。すなわち、ワーク18における切抜き孔
の切断面が型彫り揺動放電加工により精密に仕上げられ
る(ステップ6)。
When the completion of machining fluid supply is confirmed by a level switch or the like, pulsed power is applied from the electric discharge machining power supply 4 to the mold electrode 19.
and the workpiece 18, and the table mechanism 7 moves the workpiece 18 at a low speed from a radius of a little less than 0.5mm to a radius of a little less than 0.6mm (
It is driven to maintain the discharge interval (approximately 20μ) necessary for sustaining the discharge while performing circular oscillation to reach the set value (set value). Further, the Z axis is fixed while maintaining the vertical position between the workpiece 18 and the mold electrode]9. That is, the cut surface of the cutout hole in the workpiece 18 is precisely finished by die-sinking oscillating electrical discharge machining (step 6).

放電加工が完了すると型電極19に対するパルス電力の
供給が停止し、チャックの爪11が閉じ、上下移動機構
8が型電極19を残してホームポジョンに復帰し、さら
に、加工槽11から加工液が回収されて(ステップ7)
、一連の金属複合加工が終了する。
When electrical discharge machining is completed, the supply of pulse power to the mold electrode 19 is stopped, the chuck claws 11 are closed, the vertical movement mechanism 8 returns to the home position leaving the mold electrode 19, and the machining fluid is discharged from the machining bath 11. Recovered (Step 7)
, a series of metal composite processing is completed.

なお、これら各ステップにおける具体的な処理はそれぞ
れ公知のレーザ切断加工、型彫り揺動放電加工と同じで
あり、ただ両加工が共通の作業プログラムおよび加ニブ
ログラムに基づき実行される。
It should be noted that the specific processing in each of these steps is the same as the well-known laser cutting processing and die-sinking oscillating electrical discharge machining, respectively, but both processing are executed based on a common work program and machine program.

以上において、レーザ切断加工による切断面ば面粗さが
前記のように50μRmax程度になるが、その凹凸は
ランダムであり、切り離された両側の面で相関関係が無
いとされている。したがって、この様なランタムな凹凸
の面粗さを持つ面を対面させて揺動放電加工を行えば、
すなわちレーザ切断加工により切断されたワークの一方
をそのまま型電極として使用すると、突出した部分から
消耗が進みこれに揺動が加わって対向面がずれるので加
工作用が平均化される。このため、加工面の大きなピッ
チのうねり誤差まで修正するのは困難であるが、小さな
ピッチの凹凸は双方の面で消耗が進み面粗さが効率良く
改善される。
In the above, the surface roughness of the cut surface due to the laser cutting process is about 50 μRmax as described above, but the unevenness is random and there is no correlation between the cut surfaces on both sides. Therefore, if oscillating electrical discharge machining is performed with surfaces with such random uneven surface roughness facing each other,
That is, if one of the workpieces cut by laser cutting is used as a mold electrode as it is, the protruding portion will wear out and swing will be added to this, causing the facing surface to shift, so that the machining action will be averaged out. For this reason, it is difficult to correct waviness errors with large pitches on the machined surface, but unevenness with small pitches will wear out on both surfaces and the surface roughness will be efficiently improved.

なお、型彫り放電加工を同じ材質どうしの間で行うと、
電極と被加工物の消耗が同じ程度で形状精度の良い加工
ができないとされているが、本発明ではレーサ切断後の
切断面の仕上げ加工のみを行うのであるから、加工量が
少なく同じ材質どうしでも形状精度はそれ程悪くならず
、量産品の製造には充分である。むしろ、本発明では被
加工物と電極の消耗率が同じ程度であることがかえって
良い結果を生んでいる。
In addition, if die sinking electrical discharge machining is performed between two pieces of the same material,
It is said that the wear of the electrode and the workpiece is the same, making it impossible to perform machining with good shape accuracy. However, in the present invention, only the finishing machining of the cut surface after laser cutting is performed, so the amount of machining is small and it is possible to work with the same material. However, the shape accuracy is not so bad and is sufficient for manufacturing mass-produced products. In fact, in the present invention, the fact that the wear rates of the workpiece and the electrode are about the same produces better results.

また、全体の加工時間は放電加工のみによる場合の約5
0〜100分の1に短縮され、加工面の面粗さは放電加
工によって、レーザ切断加工だけの場合より2〜3分の
1程度になる。これは複雑な形状をレーザ切断加工で荒
加工し、ついで、その切断加工による一方の部分をその
まま型彫り放電加工用の型電極として使用し、而粗さを
改善する加工をすることによる。
Also, the total machining time is about 5
The roughness of the machined surface is reduced by 0 to 1/100 times, and the surface roughness of the machined surface is reduced to about 2 to 1/3 of that by laser cutting alone. This is done by rough-machining a complex shape by laser cutting, and then using one of the cut parts as a die electrode for die-sinking electrical discharge machining to improve the roughness.

レーザ切断加工、放電加工共に同一の装置で連続して行
われることになるから、ワーク18をレーザ切断装置か
ら放電加工装置に移転する際の位置ズレなどが無い。
Since both laser cutting and electrical discharge machining are performed continuously using the same device, there is no positional shift when transferring the workpiece 18 from the laser cutting device to the electrical discharge machining device.

以上は実施例である。The above are examples.

本発明では、円揺動による放電加工の他に寄せ放電加工
で仕上げることもてきる。
In the present invention, in addition to electric discharge machining using circular oscillation, it is also possible to finish by electric discharge machining.

また、仕上げ取代、揺動の範囲、寄せの寸法などは任意
であり、レーザ切断加工と放電加工の双方に適宜な値を
選択する。
Further, the finishing allowance, the range of swing, the size of the offset, etc. are arbitrary, and appropriate values are selected for both laser cutting and electrical discharge machining.

1 2 型電極とした切断されたワークの一方は目的に応じてメ
ス形、オス形のいずれでも良い。
One side of the cut workpiece, which is made into a 1 2 type electrode, may be either female or male depending on the purpose.

電極ヘッド9におけるチャックの機構およびワークに形
成される装着孔の特定形状は実施例のものに限定されな
い。
The mechanism of the chuck in the electrode head 9 and the specific shape of the mounting hole formed in the workpiece are not limited to those in the embodiment.

発明の効果 複雑な形状の切断加工を、切断面の面粗さを改善して、
量産的に行うことができる。
Effects of the invention: Cutting of complex shapes can be done by improving the surface roughness of the cut surface.
It can be mass-produced.

高価で製作に手間のかかる型電極を別途に準備する必要
が無い。
There is no need to separately prepare a molded electrode that is expensive and time-consuming to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は処理の基本的なフロー図、第2図は構成のブロ
ック図、第3図は機械装置の斜視図、第4図はチャック
の正面図、第5図は電極ヘッドを下方から見た下面図、
第6図はワークの斜視図(荒加工後)、第7図は型電極
(荒加工後のメス形)の斜視図、第8図はワークの支持
状況を断面にて示す正面図である。 1・・・NCレーザ・放電複合加工装置、7・・・テー
ブル機構、8・・・−上下移動機構、9・・・電極ヘッ
ド、10・・・レーザヘッド、18・・・ワーク、19
・・・型電極。 qコ n) 域
Figure 1 is a basic flow diagram of the process, Figure 2 is a block diagram of the configuration, Figure 3 is a perspective view of the mechanical device, Figure 4 is a front view of the chuck, and Figure 5 is a view of the electrode head from below. bottom view,
FIG. 6 is a perspective view of the workpiece (after rough machining), FIG. 7 is a perspective view of the mold electrode (female shape after rough machining), and FIG. 8 is a front view showing the state of support of the workpiece in cross section. DESCRIPTION OF SYMBOLS 1... NC laser/discharge combined processing device, 7... Table mechanism, 8... - Vertical movement mechanism, 9... Electrode head, 10... Laser head, 18... Work, 19
...type electrode. qconn) area

Claims (2)

【特許請求の範囲】[Claims] (1)金属ワークに対する切断加工であって、レーザ切
断加工の後、該加工により切断されたワークの一方を電
極として前記加工による切断面に放電加工を実施するこ
とを特徴とした金属切断加工方法。
(1) A metal cutting method for cutting a metal workpiece, which comprises performing electric discharge machining on the cut surface of the workpiece after the laser cutting process, using one side of the workpiece as an electrode. .
(2)レーザ切断加工の際、電極となる一方のワークに
電極ヘッドのチャックに対する装着孔も形成されること
を特徴とした特許請求の範囲第1項に記載の金属切断加
工方法。
(2) The metal cutting method according to claim 1, wherein during the laser cutting process, a mounting hole for a chuck of the electrode head is also formed in one of the workpieces that will become the electrode.
JP2047254A 1990-03-01 1990-03-01 Metal cutting method Pending JPH03251324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2047254A JPH03251324A (en) 1990-03-01 1990-03-01 Metal cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2047254A JPH03251324A (en) 1990-03-01 1990-03-01 Metal cutting method

Publications (1)

Publication Number Publication Date
JPH03251324A true JPH03251324A (en) 1991-11-08

Family

ID=12770137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2047254A Pending JPH03251324A (en) 1990-03-01 1990-03-01 Metal cutting method

Country Status (1)

Country Link
JP (1) JPH03251324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238333A (en) * 2007-03-27 2008-10-09 Shin Nippon Kogyo Kk Peripheral direction breaking and separating device of pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238333A (en) * 2007-03-27 2008-10-09 Shin Nippon Kogyo Kk Peripheral direction breaking and separating device of pipe

Similar Documents

Publication Publication Date Title
JP3162255B2 (en) Laser processing method and apparatus
CN100493810C (en) Burr removal apparatus for laser beam machine
JP4288223B2 (en) Method for processing arbitrary shape on workpiece made of conductive material and composite processing apparatus
JPH0529786Y2 (en)
EP1250975B1 (en) Laser beam hardening device
KR101778088B1 (en) Cemented carbide, high-quality laser micro-discharge complex processing device
US4746782A (en) Method for securing cut pieces in spark erosive cutting
US5091622A (en) Compound machining method and apparatus
US4544820A (en) Die forming method and machine
KR101973636B1 (en) Cemented carbide, high-quality laser micro-discharge complex processing device
JPH11170077A (en) Method and device for cutting molded work piece
JP4161178B2 (en) Cutting method
JPH03251324A (en) Metal cutting method
GB2310390A (en) Electrical discharge machining
JPH0265935A (en) Wire-cut electric discharge machine
CN110153896A (en) The method of fast and stable Water Cutting forging flash
JPH03251323A (en) Nc laser/electrical discharging composite machining device
Patel et al. A review on advanced manufacturing techniques and their applications
JP2013116493A (en) Laser processing method, automatic programing device, and processing system
EP0646434A1 (en) Laser beam machining method and apparatus therefor
JPH09267187A (en) Laser beam machining method
JPH04201019A (en) Method for electric discharge machining of profile
JP4247932B2 (en) Wire electrical discharge machine
JP2002254247A (en) High efficient hole forming method by diesinking micro electrical discharge machining
CN108480664A (en) A kind of double main spindle numerical control machining tools