JPH03251178A - Immobilized biocatalyst and process for converting and removing toxic substance using the same - Google Patents

Immobilized biocatalyst and process for converting and removing toxic substance using the same

Info

Publication number
JPH03251178A
JPH03251178A JP2050645A JP5064590A JPH03251178A JP H03251178 A JPH03251178 A JP H03251178A JP 2050645 A JP2050645 A JP 2050645A JP 5064590 A JP5064590 A JP 5064590A JP H03251178 A JPH03251178 A JP H03251178A
Authority
JP
Japan
Prior art keywords
immobilized biocatalyst
substances
carrier
immobilized
toxic substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2050645A
Other languages
Japanese (ja)
Inventor
Rikisaku Suemitsu
末光 力作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2050645A priority Critical patent/JPH03251178A/en
Publication of JPH03251178A publication Critical patent/JPH03251178A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treating Waste Gases (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To convert a substance having toxicity such as carcinogenicity and causing the problem of environmental pollution into a substance having low toxicity using an enzymatic reaction in high efficiency by using an immobilized biocatalyst produced by immobilizing Pseudomonas cepacia on a carrier. CONSTITUTION:The objective immobilized biocatalyst is produced by immobilizing Pseudomonas cepacia on a carrier. A polyacrylamide or carageenan can be used as the carrier. Toxic substances can be decomposed, converted and eliminated by contacting with the above immobilized biocatalyst at 0-40 deg.C. The toxic substances eliminable with the immobilized biocatalyst are phenolic compounds, carcinogenic substances (e.g. phenacetin or a alpha-naphthylamine), stenchful substances (e.g. indole or skatole), etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、環境汚染をもたらす毒性物質の変換除去や悪
臭物質の消臭が可能な固定化生体触媒、及びこれを使用
した毒性物質の変換除去方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides an immobilized biocatalyst capable of converting and removing toxic substances that cause environmental pollution and deodorizing malodorous substances, and a method for converting toxic substances using the same. This relates to a removal method.

〔従来の技術〕[Conventional technology]

近年、発癌性等の毒性を有する物質に対する関心か高ま
るにつれて、環境汚染の問題が大きく取り上げられ、こ
れらの物質を除去する方法に注目か集まっている。
In recent years, as interest in toxic substances such as carcinogenic substances has increased, the problem of environmental pollution has been widely discussed, and methods for removing these substances have been attracting attention.

今日までに、環境汚染物質を除去する方法については数
多くの報告がなされ、例えば、これまで行われている物
理化学的な方法には、活性炭等を使用する方法や化学触
媒により分解除去する方法等が挙げられる。
To date, many reports have been made on methods for removing environmental pollutants.For example, the physicochemical methods that have been used so far include methods using activated carbon, decomposition removal methods using chemical catalysts, etc. can be mentioned.

しかし、上記のような方法においては、一定の除去効果
は得られるものの、技術的にも経済的にも困難な点が多
く、例えば、活性炭等を使用する方法にあっては、吸着
量に限界あるという問題点かあり、化学触媒により分解
除去する方法にあっては、設備か巨大なものとなり巨額
の費用を要するという問題点かある。
However, although the above methods can achieve a certain level of removal effect, there are many technical and economical difficulties.For example, methods using activated carbon etc. have a limit to the amount of adsorption However, the method of decomposition and removal using a chemical catalyst requires a huge amount of equipment and costs a huge amount of money.

又、一方では、生体触媒が、一般的な化学触媒では得ら
れない優れた特性(例えば、基質特異性、常温常圧で反
応が起こる等)を持つことが知られるようになり、生体
触媒を利用した技術開発か注目され、その中でも、特に
、固定化生体触媒による環境浄化に関する技術開発には
大きな期待がかけられている。
On the other hand, it has become known that biocatalysts have excellent properties that cannot be obtained with general chemical catalysts (e.g., substrate specificity, reactions occur at room temperature and pressure, etc.). The development of technologies that utilize this technology is attracting attention, and in particular, there are high expectations for the development of technologies related to environmental purification using immobilized biocatalysts.

ところが、バイオリアクターの研究は、有用物質の製造
に関しては、日進月歩の進歩を見せているが、環境汚染
をもたらす毒性物質の変換除去に関する報告はほとんど
見られない。
However, although bioreactor research is showing rapid progress in the production of useful substances, there are almost no reports on the conversion and removal of toxic substances that cause environmental pollution.

環境汚染をもたらす毒性物質の変換除去に関するものと
しては、例えば、活性汚泥を用いる方法等が良く知られ
ているが、処理する対象物質が特定の化合物であるわけ
ではな゛く、使用される微生物も特定されていない。
For example, a method using activated sludge is well known as a method for converting and removing toxic substances that cause environmental pollution, but the target substance to be treated is not a specific compound, but rather the microorganisms used. has not been identified either.

従って、基質特異性のある変換反応を提供することが可
能な微生物を用いた固定化生体触媒を開発することがで
きれば、毒性を有する環境汚染物質の除去を容易に行う
ことかでき、その利用性は極めて高いものと言える。
Therefore, if we could develop an immobilized biocatalyst using microorganisms that can provide a conversion reaction with substrate specificity, it would be possible to easily remove toxic environmental pollutants, and its utilization would be greatly improved. can be said to be extremely high.

この点に関して言えば、自然界に広く分布し、多くの有
機化合物を分解する能力を有する細菌の一種であるシュ
ードモナス(Pseudomonas)には、膨大な種
類が含まれ、地球上の炭素循環に大きく寄与しているも
のと考えられている。しかしながら、それらか有する有
機化合物の分解系や生化学的な研究に関する報告は少な
く、研究が行われている種も少ない。
In this regard, Pseudomonas, a type of bacteria that is widely distributed in nature and has the ability to degrade many organic compounds, includes a huge number of species and contributes significantly to the global carbon cycle. It is believed that However, there are few reports on the decomposition systems and biochemical studies of the organic compounds they possess, and only a few species have been studied.

よって、Pseudomonas ノ中で、工業的に利
用できるものを使用し、これを固定化させた固定化生体
触媒を得ることは、環境汚染の解決にとって重要な意味
をもつことになる。
Therefore, using industrially available Pseudomonas and obtaining an immobilized biocatalyst in which this is immobilized has an important meaning for solving environmental pollution.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、発癌性等の毒性を存し、環境汚染の問題とな
っている物質を、酵素反応によって効率良く毒性の低い
物質に変換することができる固定化生体触媒、及び上記
固定化生体触媒を使用した毒性物質の変換除去方法を提
供することを課題とする。
The present invention relates to an immobilized biocatalyst that can efficiently convert substances that are carcinogenic or other toxic substances and cause environmental pollution into less toxic substances through an enzymatic reaction, and the immobilized biocatalyst. The object of the present invention is to provide a method for converting and removing toxic substances using the method.

〔課題を解決をするための手段〕[Means for solving problems]

本発明の固定化生体触媒は、ノユートモナスセバンア(
Pseudomonas cepacia)を担体に固
定化させたことを特徴とするものである。
The immobilized biocatalyst of the present invention is Noeutomonas sevana (
Pseudomonas cepacia) is immobilized on a carrier.

更に、本発明の固定化生体触媒は、上記担体がポリアク
リルアミド又はカラギーナン(紅藻類に含まれる多糖類
)であることを特徴とするものでもある。
Furthermore, the immobilized biocatalyst of the present invention is characterized in that the carrier is polyacrylamide or carrageenan (a polysaccharide contained in red algae).

本発明に使用されるPseudomonas cepa
ciaは、水棲細菌の一種で0°C〜40℃の純水中に
生存し得る極めて栄養要求の少ない微生物である。
Pseudomonas cepa used in the present invention
Cia is a type of aquatic bacteria that can survive in pure water at 0°C to 40°C and has extremely low nutritional requirements.

毒性も低いことから、取扱いかかなり容易であり、一般
的な方法で、その増殖を制御することができる。又、は
とんどの微生物が死滅する塩化ヘンザルコニウム等の防
腐剤溶液中でも生き残るという特徴を有しているため、
あらゆる環境に適応する可能性を持つものである。
Since it has low toxicity, it is fairly easy to handle, and its proliferation can be controlled using common methods. In addition, it has the characteristic that it can survive even in preservative solutions such as henzalkonium chloride, which kill most microorganisms.
It has the potential to adapt to any environment.

一方、本発明に使用できる担体は、特にその種類が限定
されるものではなく、ポリアクリルアミドゲルやカラギ
ーナン等の一般的な素材を使用することができる。
On the other hand, the type of carrier that can be used in the present invention is not particularly limited, and common materials such as polyacrylamide gel and carrageenan can be used.

次に、本発明の固定化生体触媒を製造する方法について
説明する。
Next, a method for producing the immobilized biocatalyst of the present invention will be explained.

製造方法としては、通常の方法が使用でき、例えば、培
養した菌体を生理食塩水に懸濁させ、これに担体となる
モノマー及び架橋剤を添加し、攪拌しながら重合開始剤
及び重合促進剤を添加し、得られたゲルを、最後に磨り
潰して固定化生体触媒とする方法か使用できる。ゲルを
磨り潰す際には、金属製の網等を使用し、直径が311
1ffl程度の粒子となるようにする。
As a production method, a conventional method can be used. For example, cultured bacterial cells are suspended in physiological saline, a carrier monomer and a crosslinking agent are added thereto, and a polymerization initiator and a polymerization accelerator are added while stirring. can be used, and the resulting gel is finally ground to form an immobilized biocatalyst. When grinding the gel, use a metal net etc. with a diameter of 311 mm.
The particles should be about 1 ffl.

本発明の固定化生体触媒では、Pseudomonas
cepaciaが純水中でも生存し得る特徴を有してい
るために、過酷な固定化条件下でも、安定して製造でき
るという利点がある。
In the immobilized biocatalyst of the present invention, Pseudomonas
Since cepacia has the characteristic of being able to survive even in pure water, it has the advantage that it can be stably produced even under severe immobilization conditions.

本発明の固定化生体触媒によって除去処理を行うことの
できる毒性物質としては、フェノール性化合物(フェノ
ール、0−クレゾール、mクレゾール、p−クレゾール
、サリチル酸、m−オキン安息香酸、p−オキン安息香
酸、pオキンベンズアルデヒト、メチルパラベン、エチ
ルパラベン、n−プロピルパラヘン、nブチルハラベン
)、安息香酸、ベンジルアルコール、α−ナフトール、
β−ナフトール、発癌性物質(ツェナセチン、フェネチ
ジン、α−ナフチルアミン、β−ナフチルアミン、カル
バリル、0−アミノヒフェニル、p−アミノヒフェニル
)、悪臭物質(インドール、スカトール)、インドール
酢酸、アントラニル酸、馬尿酸、フェナセツール酸、メ
ントール、リモネン等が挙げられる。
Toxic substances that can be removed by the immobilized biocatalyst of the present invention include phenolic compounds (phenol, 0-cresol, m-cresol, p-cresol, salicylic acid, m-ochynebenzoic acid, p-ochynebenzoic acid). , p-oxinebenzaldehyde, methylparaben, ethylparaben, n-propylparahen, n-butylhalaben), benzoic acid, benzyl alcohol, α-naphthol,
β-naphthol, carcinogens (zenacetin, phenetidine, α-naphthylamine, β-naphthylamine, carbaryl, 0-aminohyphenyl, p-aminohyphenyl), malodorous substances (indole, skatole), indoleacetic acid, anthranilic acid, horse Examples include uric acid, phenaceturic acid, menthol, and limonene.

本発明の固定化生体触媒を、上記の毒性物質に作用させ
て変換除去を行う場合には、調製した固定化生体触媒に
対して毒性物質を含んだ溶液を、0〜40℃の温度範囲
において直接接触させ、この温度範囲にて静置保存すれ
ばよく、他に特別な条件を必要とすることなく簡単に実
施できる。毒性物質の変換除去をより効率的に実施する
には、作用させる際の温度を25〜35°Cとすること
か好ましく、30℃か最も好ましい。又、本発明の固定
化生体触媒を基質と接触させる方法として、バッチ法で
の攪拌やフローシステム等を用いた場合には、効率的な
作用が得られる。
When the immobilized biocatalyst of the present invention is used to convert and remove the above-mentioned toxic substances, a solution containing the toxic substance is added to the prepared immobilized biocatalyst at a temperature of 0 to 40°C. It is sufficient to bring them into direct contact and store them stationary within this temperature range, which can be easily carried out without requiring any other special conditions. In order to convert and remove toxic substances more efficiently, the temperature at which the reaction takes place is preferably 25 to 35°C, most preferably 30°C. Furthermore, when the method of bringing the immobilized biocatalyst of the present invention into contact with a substrate uses batch stirring, a flow system, or the like, an efficient effect can be obtained.

このような条件で毒性物質と接触させた場合、Pseu
domonas cepaciaは、毒性物質と酵素反
応を起こし、毒性物質の分解か生じて毒性の低い物質に
変換され、毒性物質の濃度は著しく低下する。この理由
としては恐ら(、Pseudomonaseepaci
aの有する酵素及びその酵素を生成する遺伝子の存在に
起因するものと考えられる。
When in contact with toxic substances under these conditions, Pseu
Domonas cepacia causes an enzymatic reaction with a toxic substance, causing decomposition of the toxic substance and converting it into a less toxic substance, and the concentration of the toxic substance is significantly reduced. The reason for this is probably (, Pseudomonaseepaci
This is thought to be due to the presence of the enzyme possessed by A. and the gene that produces the enzyme.

上記の毒性物質の中で、本発明の固定化生体触媒が最も
有効に作用する例としては、インドールやスカトール等
の悪臭物質に対して作用させた場合が挙げられる。すな
わち、この場合においては消臭効果が得られると同時に
、これらの悪臭物質を、染料として有用なインジゴイド
系色素に転換することかでき、作用後に得られたインジ
ゴイド系色素は繊維の染色にも利用することができる。
Among the above-mentioned toxic substances, an example in which the immobilized biocatalyst of the present invention acts most effectively is when it acts on malodorous substances such as indole and skatole. In other words, in this case, a deodorizing effect can be obtained, and at the same time, these malodorous substances can be converted into indigoid pigments useful as dyes, and the indigoid pigments obtained after the action can be used to dye fibers. can do.

このように、本発明の固定化生体触媒は、単に発癌性等
の毒性を有する物質を、酵素反応により毒性の低い物質
へ変換する汚染物質処理用材料として使用されるだけで
なく、悪臭物質に対する消臭効果ももつので、工業用あ
るいは家庭用の消臭剤としても使用することかでき、こ
の他、有用物質を数多く生産する媒体として利用し得る
ものである。
As described above, the immobilized biocatalyst of the present invention can be used not only as a pollutant treatment material for converting toxic substances such as carcinogens into less toxic substances through enzymatic reactions, but also as a material for treating malodorous substances. Since it also has a deodorizing effect, it can be used as an industrial or household deodorizing agent, and can also be used as a medium for producing many useful substances.

尚、使用されるPseudoa+onasの毒性が低く
、取扱いが容易であるために、得られる固定化生体触媒
も毒性が低く、取扱いが容易であるという利点がある。
Incidentally, since the Pseudoa+onas used has low toxicity and is easy to handle, the obtained immobilized biocatalyst has the advantage that it is also low in toxicity and easy to handle.

〔実施例〕〔Example〕

実施例l 5CD寒天平板培地上で継代培養したPseudo−a
+onas cepaciaの菌体3.4 g (湿重
量)を滅菌生理食塩水1001111に懸濁させ、これ
にアクリルアミドモノマー4.5g、架橋剤N、N’−
メチレンビスアクリルアミド240mgを加えた。この
懸濁液を攪拌しなから、重合開始剤2.5%ペルオキソ
硫酸カリウム水溶液3ml及び重合促進剤N、N、N’
 、N’−テトラメチルエチレンシアミン3mlを加え
た。生成したケルを擦りつぶし、滅菌生理食塩水で洗浄
し、本発明の固定化生体触媒115g(湿重量)を得た
Example 1 Pseudo-a subcultured on 5CD agar plate medium
+3.4 g (wet weight) of Onas cepacia cells were suspended in sterile physiological saline 1001111, and 4.5 g of acrylamide monomer, crosslinking agents N, N'-
240 mg of methylenebisacrylamide was added. While stirring this suspension, add 3 ml of a 2.5% aqueous solution of potassium peroxosulfate as a polymerization initiator and the polymerization accelerators N, N, N'
, 3 ml of N'-tetramethylethylenecyamine was added. The generated keratin was crushed and washed with sterile physiological saline to obtain 115 g (wet weight) of the immobilized biocatalyst of the present invention.

上記固定化生体触媒7,5gを、フェノール約lQQp
pmを含有する溶液50−]001111+、−加え、
30℃の温度で静置して作用させ、この時のフェノール
の経時的濃度変化を高速液体クロマトグラフィーで測定
した。
About 1QQp of phenol was added to 7.5g of the above immobilized biocatalyst.
solution containing pm 50-]001111+,-addition,
The mixture was allowed to stand at a temperature of 30° C. and the change in phenol concentration over time was measured using high performance liquid chromatography.

実施例2〜4 実施例1に記載されるフェノールの代わりに、以下の表
に示す毒性物質を使用した場合についても同様に経時的
濃度変化を測定した。
Examples 2 to 4 Changes in concentration over time were similarly measured when toxic substances shown in the table below were used instead of the phenol described in Example 1.

上記の実施例1〜4における測定結果を、以下の表に示
す。
The measurement results in Examples 1 to 4 above are shown in the table below.

尚、表中の数値の単位は、全てppmである。Note that all numerical values in the table are in ppm.

〔発明の効果〕〔Effect of the invention〕

本発明の固定化生体触媒は、発癌性等の毒性を存する物
質を、酵素反応により毒性の低い物質へ変換することが
でき、汚染物質処理用材料として有効に使用できるもの
である。
The immobilized biocatalyst of the present invention can convert toxic substances such as carcinogenic substances into less toxic substances by enzymatic reaction, and can be effectively used as a material for treating pollutants.

尚、毒性物質の変換除去を行う場合の反応温度が0〜4
0℃であるため、特別な温度制御装置を必要としない。
In addition, when converting and removing toxic substances, the reaction temperature is 0 to 4.
Since the temperature is 0°C, no special temperature control device is required.

更に、本発明の固定化生体触媒は、悪臭物質に対する消
臭作用も有するので、工業用あるいは家庭用の消臭剤と
しても使用できるものである。
Furthermore, since the immobilized biocatalyst of the present invention also has a deodorizing effect on malodorous substances, it can be used as an industrial or household deodorizer.

Claims (4)

【特許請求の範囲】[Claims] (1)シュードモナスセパシア(Pseudomona
scepacia)を担体に固定化させたことを特徴と
する固定化生体触媒。
(1) Pseudomonas cepacia (Pseudomonas cepacia)
1. An immobilized biocatalyst characterized by immobilizing S. scepacia on a carrier.
(2)上記担体がポリアクリルアミド又はカラギーナン
であることを特徴とする特許請求の範囲第1項記載の固
定化生体触媒。
(2) The immobilized biocatalyst according to claim 1, wherein the carrier is polyacrylamide or carrageenan.
(3)シュードモナスセパシア(Pseudomona
scepacia)を担体に固定化させた固定化生体触
媒を、毒性物質と0〜40℃の温度にて接触させること
により、毒性物質を分解させることを特徴とする毒性物
質の変換除去方法。
(3) Pseudomonas cepacia
1. A method for converting and removing a toxic substance, which comprises decomposing a toxic substance by contacting an immobilized biocatalyst in which S. cepacia is immobilized on a carrier with a toxic substance at a temperature of 0 to 40°C.
(4)上記担体がポリアクリルアミド又はカラギーナン
であることを特徴とする特許請求の範囲第3項記載の毒
性物質の変換除去方法。
(4) The method for converting and removing toxic substances according to claim 3, wherein the carrier is polyacrylamide or carrageenan.
JP2050645A 1990-02-28 1990-02-28 Immobilized biocatalyst and process for converting and removing toxic substance using the same Pending JPH03251178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050645A JPH03251178A (en) 1990-02-28 1990-02-28 Immobilized biocatalyst and process for converting and removing toxic substance using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050645A JPH03251178A (en) 1990-02-28 1990-02-28 Immobilized biocatalyst and process for converting and removing toxic substance using the same

Publications (1)

Publication Number Publication Date
JPH03251178A true JPH03251178A (en) 1991-11-08

Family

ID=12864686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050645A Pending JPH03251178A (en) 1990-02-28 1990-02-28 Immobilized biocatalyst and process for converting and removing toxic substance using the same

Country Status (1)

Country Link
JP (1) JPH03251178A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0567102A3 (en) * 1992-04-22 1994-11-23 Canon Kk Method of biologically decomposing phenol or furan compounds by microorganisms.
EP0646642A2 (en) * 1993-09-30 1995-04-05 Canon Kabushiki Kaisha Microorganism-holding carrier and method for remediation of soil employing the carrier
JP2010214310A (en) * 2009-03-17 2010-09-30 Prima Meat Packers Ltd Microorganism having oil-and-fat decomposition capability and method for treating oil-and-fat containing wastewater using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0567102A3 (en) * 1992-04-22 1994-11-23 Canon Kk Method of biologically decomposing phenol or furan compounds by microorganisms.
EP0646642A2 (en) * 1993-09-30 1995-04-05 Canon Kabushiki Kaisha Microorganism-holding carrier and method for remediation of soil employing the carrier
EP0646642A3 (en) * 1993-09-30 1995-08-16 Canon Kk Microorganism-holding carrier and method for remediation of soil employing the carrier.
JP2010214310A (en) * 2009-03-17 2010-09-30 Prima Meat Packers Ltd Microorganism having oil-and-fat decomposition capability and method for treating oil-and-fat containing wastewater using the same

Similar Documents

Publication Publication Date Title
Zhang et al. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment
Bandhyopadhyay et al. Reaction engineering studies on biodegradation of phenol by Pseudomonas putida MTCC 1194 immobilized on calcium alginate
Jianlong et al. Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan-chitosan gels
Tsuji et al. Degradation of microcystins using immobilized microorganism isolated in an eutrophic lake
Xiangli et al. Immobilization of activated sludge in poly (ethylene glycol) by UV technology and its application in micro-polluted wastewater
Charoenpanich Removal of acrylamide by microorganisms
CN101734801A (en) Method for removing 2, 4-dichlorophenol in water by using polyurethane sponge fixed white rot fungi
KR100574770B1 (en) Methods for the detoxification of nitrile and/or amide compounds
Swain et al. Removal of 4-Chlorophenol by Bacillus flexus as free and immobilized system: effect of process variables and kinetic study
Qiu et al. Formaldehyde biodegradation by immobilized Methylobacterium sp. XJLW cells in a three-phase fluidized bed reactor
Weetall et al. Preparation and characterization of isolubilized l‐amino acid oxidase
CN103602656A (en) Method for preparing immobilized enzymes and immobilized strains
Elbehiry et al. Environmental-Friendly and Cost-Effective Agricultural Wastes for Heavy Metals and Toxicants Removal from Wastewater
JPH03292970A (en) Decomposition of aliphatic chlorine compound using microbe and its microbe
JP2002192186A (en) Heavy metal trapping method and heavy metal recovering method
Landreau et al. Immobilization of active ammonia-oxidizing archaea in hydrogel beads
Asok et al. Biodegradation of Linear Alkylbenzene Sulfonate (LAS) by Immobilized Pseudomonas sp.
Win et al. An evaluation into the biosorption and biodegradation of azo dyes by indigenous siderophores-producing bacteria immobilized in chitosan
JPH03251178A (en) Immobilized biocatalyst and process for converting and removing toxic substance using the same
Liu et al. Immobilization of Horseradish Peroxidase for Phenol Degradation
JP2008043321A (en) Chlorella vulgaris, method of bioremediation by using the same, and also bioreactor and method for removing harmful substance by using the same
RU2093478C1 (en) Method of water and soil treatment from oil, petroleum products and polymeric additions in drilling fluid
Bayramoglu et al. Biodegradation Studies of Phenol, Diclofenac, and Pentachlorophenol in a Packed Bed Reactor Loaded with Immobilized White Rot Fungus Lentinus sajor-caju Biomass
Mallick Immobilization of microalgae
Putmai et al. Biodegradation characteristics of mixed phenol and p-cresol contaminants from a swine farm using bacteria immobilized in calcium alginate beads