JPH03251073A - Turning unit for superconducting generator - Google Patents

Turning unit for superconducting generator

Info

Publication number
JPH03251073A
JPH03251073A JP2042678A JP4267890A JPH03251073A JP H03251073 A JPH03251073 A JP H03251073A JP 2042678 A JP2042678 A JP 2042678A JP 4267890 A JP4267890 A JP 4267890A JP H03251073 A JPH03251073 A JP H03251073A
Authority
JP
Japan
Prior art keywords
superconducting
rotor
generator
field winding
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2042678A
Other languages
Japanese (ja)
Inventor
Noboru Ando
昇 安藤
Makoto Adachi
真 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2042678A priority Critical patent/JPH03251073A/en
Publication of JPH03251073A publication Critical patent/JPH03251073A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PURPOSE:To prevent distortion at a rotor section due to thermal imbalance by sustaining high speed turning drive of a rotor, until inner cooling liquid is evaporized, upon tripping of a drive unit. CONSTITUTION:Upon function of an overcurrent relay 14 due to short circuit in the main circuit of a generator, for example, liquid helium supply to a superconducting field winding is interrupted and a generator circuit breaker 13 and a field circuit breaker 16 are tripped. Upon confirmation of tripping of the generator circuit breaker 13 and the field circuit breaker 16, a drive stop command is provided. At this time, a high speed rotation turning command is provided on condition that the liquid helium exists in the superconducting field winding and the temperature of the field winding is low, and a turning unit 19 keeps the rotational speed of the rotor of a superconducting generator 11 at such level as the liquid helium is brought centrifugally into tight contact with the field winding thus maintaining a uniform liquid level around the rotor.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、超電導巻線を冷却用液体を用いて冷却する超
電導発電機の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a control device for a superconducting generator that cools superconducting windings using a cooling liquid.

(従来の技術) 一般に、超電導発電機内部の回転子部(以下、ロータと
呼ぶ)は、断熱用真空層内に界磁巻線が配設されてなり
、その界磁巻線内部は冷却用液体を保持する構造となっ
ている。
(Prior art) Generally, the rotor section (hereinafter referred to as rotor) inside a superconducting generator has a field winding disposed within a heat insulating vacuum layer, and the inside of the field winding is used for cooling. It has a structure that holds liquid.

そのようなロータの概念構成断面図を第3図に示す。ロ
ータは、気密に形成された回転体l内部に超電導界磁巻
線2が配設されてなる。その超電導界磁巻線2も気密に
構成され内部に液体ヘリウムが封入されて巻線部分が冷
却される。回転体1と超電導界磁巻線2との間の空間部
3は断熱するため、図示せぬ真空ポンプにより真空に引
かれている。また、巻線部分には温度を見るため温度検
出器4が複数個配設されている。
A conceptual cross-sectional view of such a rotor is shown in FIG. The rotor includes a superconducting field winding 2 disposed inside a rotating body l formed airtight. The superconducting field winding 2 is also constructed airtight, and liquid helium is sealed inside to cool the winding portion. A space 3 between the rotating body 1 and the superconducting field winding 2 is evacuated by a vacuum pump (not shown) for heat insulation. Further, a plurality of temperature detectors 4 are arranged in the winding portion to check the temperature.

この構成で、超電導発電機運転中は、回転体1、超電導
発電機R2が一体的に回転する。このとき、第4図(a
)(第3図のA−A断面図)に示すごとく、外部から超
電導界磁巻線2内部に供給された液体ヘリウム5は、遠
心力により超電導界磁巻線2内面に平均して密着すると
共に、気化したガスヘリウム6はその内側に溜って、超
電導昇磁巻線2部分の冷却が一様に行なわれる。
With this configuration, while the superconducting generator is in operation, the rotating body 1 and the superconducting generator R2 rotate integrally. At this time, Fig. 4 (a
) (A-A sectional view in Figure 3), liquid helium 5 supplied from the outside into the superconducting field winding 2 adheres to the inner surface of the superconducting field winding 2 on average due to centrifugal force. At the same time, the vaporized gas helium 6 accumulates inside, and the superconducting magnetizing winding 2 portion is uniformly cooled.

(発明が解決しようとする課題) ところが、事故発生時、超電導発電機をトリップさせる
と、第4図(b)に示す如く、超電導界磁巻線2の冷却
媒体である液体ヘリウム5がロータの遠心力低下によっ
て下部に溜り、上部はガスヘリウム6のみとなる。これ
により、界磁巻線取付軸7の下部のみ不要に冷却され、
超電導界磁巻線2を含むロータの上部と下部とで極端な
温度差が生じる。この結果、ストレスが発生し、界磁巻
線取付軸7及び超電導界磁巻線2に歪みが生じる問題点
があった。
(Problem to be Solved by the Invention) However, when an accident occurs and the superconducting generator is tripped, as shown in FIG. Due to the decrease in centrifugal force, it accumulates in the lower part, and only gas helium 6 remains in the upper part. As a result, only the lower part of the field winding mounting shaft 7 is cooled unnecessarily,
An extreme temperature difference occurs between the upper and lower parts of the rotor, including the superconducting field windings 2. As a result, there is a problem in that stress is generated and the field winding mounting shaft 7 and the superconducting field winding 2 are distorted.

そこで1本発明は、事故時により発電機をトリップさせ
る場合も、ロータに歪みが生じることのない超電導発電
機のターニング装置を提供することを目的とする。
One object of the present invention is to provide a turning device for a superconducting generator that does not cause distortion to the rotor even when the generator is tripped due to an accident.

[発明の構成コ (課題を解決するための手段) 本発明は、事故発生でロータを駆動する駆動機がトリッ
プした時、超電導界磁巻線の冷却液体が残存している間
はロータを冷却液体が超電導界磁巻線に平均に密着させ
るに必要な遠心力が得られる最低の回転数(通常数10
0回転)で高速ターニングをし、冷却媒体が全て蒸発し
てから通常の低速ターニングに切替える回路を備えるも
のである。
[Structure of the Invention (Means for Solving the Problems)] The present invention provides a method for cooling the rotor while the cooling liquid of the superconducting field winding remains when the drive machine that drives the rotor trips due to an accident. The lowest rotational speed (usually several tens of
It is equipped with a circuit that performs high-speed turning at 0 rotations) and switches to normal low-speed turning after all the cooling medium has evaporated.

(作 用) 事故発生により超電導発電機をトリップさせる場合、発
電機遮断器、励磁遮断器を開放し、超電導界磁巻線への
冷却用液体の供給を停止させ駆動機をトリップするが、
高速ターニングによりロータの回転数を、冷却用液体が
蒸発するまで規定回転数に保持することにより、サーマ
ルアンバランスによるロータの歪みの発生を防止する。
(Function) When a superconducting generator is tripped due to an accident, the generator circuit breaker and excitation circuit breaker are opened, the supply of cooling liquid to the superconducting field winding is stopped, and the drive machine is tripped.
By maintaining the rotational speed of the rotor at a specified rotational speed through high-speed turning until the cooling liquid evaporates, distortion of the rotor due to thermal imbalance is prevented.

また冷却用液体が蒸発後はロータの自重による歪しか発
生しない為、高速でターニングをする必要はなく、低速
ターニングに切替えてロータの歪み発生を防止する。
Furthermore, after the cooling liquid evaporates, only distortion occurs due to the rotor's own weight, so there is no need for high-speed turning, and instead switching to low-speed turning prevents distortion of the rotor.

(実施例) 以下、本発明の一実施例を第1図の概略系統図と第2図
の制御装置内の部分ブロック図を参照して説明する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described with reference to a schematic system diagram in FIG. 1 and a partial block diagram within a control device in FIG. 2.

第1図において、超電導発電機11のロータは駆動機1
2に直結され、ロータ部分には更にターニングモータ等
からなるターニング装置19が接続されており、その電
機子巻線は発電機遮断器13を介して系統母線に接続さ
れると共に、その発電機遮断器13の手前には過電流リ
レー14が設けられる。また、超電導発電機11の界磁
巻1slX15は界磁遮断器I6、励磁用変圧器17、
励磁用遮断器18を介して系統母線に接置されている。
In FIG. 1, the rotor of the superconducting generator 11 is the drive unit 1.
2, and a turning device 19 consisting of a turning motor etc. is further connected to the rotor portion, and its armature winding is connected to the system bus via a generator breaker 13, and the generator is also An overcurrent relay 14 is provided in front of the device 13. In addition, the field winding 1slX15 of the superconducting generator 11 includes a field breaker I6, an excitation transformer 17,
It is connected to the system bus through an excitation circuit breaker 18.

第2図は、超電導発電機11の制御装置内の部分制御部
ブロック図を示したもので、超電導発電機11の平常運
転時には1図示せぬ制御ブロックより各種vJ御指令が
出されて、発電機遮断器13、界磁遮断器16、励磁用
遮断器18が閉じられ、超電導発電機11のロータは駆
動機12により定格回転駆動される。また、ロータ内の
超電導界磁巻線2内には液体ヘリウム5が送給されて超
電導発電運転が保たれている。
FIG. 2 shows a block diagram of a partial control section in the control device of the superconducting generator 11. During normal operation of the superconducting generator 11, various vJ commands are issued from the control block (not shown in the figure), and the power is generated. The machine breaker 13, the field circuit breaker 16, and the excitation circuit breaker 18 are closed, and the rotor of the superconducting generator 11 is driven to the rated rotation by the driver 12. Furthermore, liquid helium 5 is fed into the superconducting field winding 2 in the rotor to maintain superconducting power generation operation.

この状態で、例えば発電機の主回路短絡等により過電流
リレー14が動作すると(20)、液体ヘリウム供給停
止指令を発生しく22)、超電導界磁巻線2内への液体
ヘリウム5の送給を停止すると共に、発電機遮断器13
、界磁遮断器16をトリップさせる(23.24)。次
に発電機遮断器13、および界磁遮断器16のトリップ
をAND回路25を介して確認し、能動機停止指令21
を出力する。このとき、超電導界磁巻線2内に液体ヘリ
ウム5が存在し界磁巻線温度が低であること(26出力
)を条件に、AND回路27を介して高速ターニング指
令が発生しく28)、ターニング装置19は、超電導発
電機11のロータ回転速度を界磁巻線2に液体ヘリウム
5が遠心力により密着し得る回転数に保ち、ロータ周囲
に均一液面が保持できるようにする。
In this state, if the overcurrent relay 14 operates due to a short circuit in the main circuit of the generator (20), a command to stop the supply of liquid helium is generated (22), and the liquid helium 5 is supplied into the superconducting field winding 2. At the same time, the generator circuit breaker 13
, trips the field circuit breaker 16 (23.24). Next, tripping of the generator circuit breaker 13 and the field circuit breaker 16 is confirmed via the AND circuit 25, and the active machine stop command 21
Output. At this time, on condition that liquid helium 5 exists in the superconducting field winding 2 and the field winding temperature is low (26 outputs), a high-speed turning command is generated via the AND circuit 27 (28). The turning device 19 maintains the rotor rotational speed of the superconducting generator 11 at a rotational speed at which the liquid helium 5 can be brought into close contact with the field winding 2 by centrifugal force, so that a uniform liquid level can be maintained around the rotor.

これにより、超電導発電機11をトリップさせたときも
、超電導界磁巻線2内部の液体ヘリウム5を第4図(a
)に示した状態に保つことができる。
As a result, even when the superconducting generator 11 is tripped, the liquid helium 5 inside the superconducting field winding 2 is removed as shown in Fig. 4 (a).
) can be maintained in the state shown in

さらに、超電導界磁巻線2内面付着した液体ヘリウム5
が全て蒸発してガスヘリウム6に変わり超電導界磁巻線
2の温度が上昇したとき、これを温度検出器4で検出し
て温度高の状態(26出力反転)となることにより、A
ND回路29を介して低速ターニング指令が発生しく3
0)、超電導発電機11のロータの回転をロータの自重
による歪みの発生しない低速度へ切替える。
Furthermore, liquid helium 5 attached to the inner surface of the superconducting field winding 2
When the temperature of the superconducting field winding 2 increases, the temperature detector 4 detects this and becomes a high temperature state (26 output inversion).
A low speed turning command is generated via the ND circuit 29.
0), the rotation of the rotor of the superconducting generator 11 is switched to a low speed at which distortion due to the rotor's own weight does not occur.

この様に超電導発電機11においては、事故等により駆
動機12がトリップしても、高速ターニングにより、超
電導発電機11のロータの回転を規定値に保持し、その
遠心力により界磁巻線16の冷却媒体である液体ヘリウ
ム5が回転子内で不均衡な状態になるのを防止すること
で、界磁巻線のサーマルアンバランスによる回転子のひ
ずみの問題を解決することができる。
In this way, in the superconducting generator 11, even if the drive unit 12 trips due to an accident or the like, the rotation of the rotor of the superconducting generator 11 is maintained at a specified value by high-speed turning, and the field winding 16 is maintained by the centrifugal force. By preventing liquid helium 5, which is a cooling medium, from becoming unbalanced within the rotor, it is possible to solve the problem of rotor distortion due to thermal imbalance of the field windings.

尚、本発明の実施例では液体ヘリウムが蒸発したことを
温度検出器で行なった例を示したが、液体ヘリウムの液
面がなくなったこと液面検出器により検出して、ターニ
ング速度を切替えることも可能である。
In addition, in the embodiment of the present invention, an example was shown in which the temperature sensor was used to detect that the liquid helium had evaporated, but it is also possible to detect that the liquid helium level has disappeared using the liquid level detector and switch the turning speed. is also possible.

[発明の効果コ 以上説明したように本発明によれば、事故発生により駆
動機をトリップさせた場合ロータの回転を内部の冷却用
液体が気化するまで高速ターニング駆動し続けるように
したので、サーマルアンバランスによりロータ部におけ
る歪の発生を防止することができるようになる。
[Effects of the Invention] As explained above, according to the present invention, when the drive machine is tripped due to an accident, the rotor continues to rotate at high speed until the cooling liquid inside is vaporized. It becomes possible to prevent distortion from occurring in the rotor section due to unbalance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の制御装置が適用される超電導発電機装
置の概略系統図、第2図は本発明の一実施例を示す超電
導発電機の制御装置の部分ブロック図、第3図は一般的
な超電導発電機の回転子部の断面図、第4図(a)、(
b)はその回転子部のA−^断面図である。 11・・・超電導発電機、12・・・駆動機、13・・
・発電機遮断器、 15・・・界磁巻線、 16・・・界磁遮断器、 19・・・ター ニング装置。
Fig. 1 is a schematic system diagram of a superconducting generator device to which the control device of the present invention is applied, Fig. 2 is a partial block diagram of a superconducting generator control device showing an embodiment of the present invention, and Fig. 3 is a general system diagram of a superconducting generator device to which the control device of the present invention is applied. A cross-sectional view of the rotor part of a typical superconducting generator, Fig. 4(a), (
b) is a sectional view taken along line A-^ of the rotor portion. 11...Superconducting generator, 12...Driver, 13...
- Generator circuit breaker, 15... Field winding, 16... Field circuit breaker, 19... Turning device.

Claims (3)

【特許請求の範囲】[Claims] (1)真空層と、この真空層内に配設され、内部に冷却
用液体を保持する超電導巻線部とからなる回転子部を備
えた超電導発電機のターニング装置において、高速・低
速の回転数切替を有するターニングモータと、超電導巻
線部の温度を検出する温度検出器と、超電導発電機の駆
動機が停止されたとき、超電導巻線部の温度が設定値以
下の間、前記ターニングモータを高速で回転させる手段
とを備えることを特徴とする超電導発電機のターニング
装置。
(1) In a turning device for a superconducting generator equipped with a rotor section consisting of a vacuum layer and a superconducting winding section disposed within the vacuum layer and holding a cooling liquid inside, high-speed and low-speed rotation are possible. a turning motor having several switches; a temperature detector for detecting the temperature of the superconducting winding portion; and a temperature detector for detecting the temperature of the superconducting winding portion; A turning device for a superconducting generator, comprising means for rotating at high speed.
(2)前記超電導巻線部の温度が設定値以上の時、前記
回転子部を低速ターニングで回転させることを特徴とし
た請求項1記載の超電導発電機のターニング装置。
(2) The turning device for a superconducting generator according to claim 1, wherein the rotor section is rotated at low speed turning when the temperature of the superconducting winding section is higher than a set value.
(3)前記温度検出器に代えて液面計を備えたことを特
徴とする請求項1又は2記載の超電導発電機のターニン
グ装置。
(3) The turning device for a superconducting generator according to claim 1 or 2, further comprising a liquid level gauge in place of the temperature detector.
JP2042678A 1990-02-26 1990-02-26 Turning unit for superconducting generator Pending JPH03251073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2042678A JPH03251073A (en) 1990-02-26 1990-02-26 Turning unit for superconducting generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2042678A JPH03251073A (en) 1990-02-26 1990-02-26 Turning unit for superconducting generator

Publications (1)

Publication Number Publication Date
JPH03251073A true JPH03251073A (en) 1991-11-08

Family

ID=12642690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2042678A Pending JPH03251073A (en) 1990-02-26 1990-02-26 Turning unit for superconducting generator

Country Status (1)

Country Link
JP (1) JPH03251073A (en)

Similar Documents

Publication Publication Date Title
JP3215842B2 (en) Magnetic bearing protection device and turbo molecular pump
US4123676A (en) Rotor member for superconducting generator
JPH03251073A (en) Turning unit for superconducting generator
US7728466B2 (en) Machine based on superconducting technology with part support elements
EP0795952B1 (en) Method of and apparatus for stopping a motor having magnetic bearings
JP2550116B2 (en) Superconducting generator controller
Takahata et al. Characterization of superconducting magnetic bearings (runnout performance at high speed rotation)
JPH04156267A (en) Driving device for superconducting generator
JPH1084656A (en) Rotating machine for magnetic levitation
CA2698485A1 (en) A vacuum pump
JP2000253645A (en) Rotor for superconducting rotating machine
JPS6056061B2 (en) rotating cryostat
JP2885195B2 (en) Superconducting rotor
JPH06327232A (en) Rotor of superconducting rotary electric device
JPS605769A (en) Superconductive generator
JPS5829367A (en) Superconductive rotor
JP3577559B2 (en) Flywheel equipment
JPH07123613A (en) Superconducting magnetic device
JP5003437B2 (en) Flywheel uninterruptible power supply
JP2000120682A (en) Superconductive magnetic bearing device
JP2634709B2 (en) Containment vessel recirculation fan device
JP3937623B2 (en) Magnetic bearing device for power storage
JP2603002B2 (en) Superconducting rotating electric machine rotor
JPH0681857A (en) Torque transmitting device
JPH05202888A (en) Driving control for dry vacuum pump, device thereof and dry vacuum pump power source device