JPH0325101Y2 - - Google Patents

Info

Publication number
JPH0325101Y2
JPH0325101Y2 JP1982166739U JP16673982U JPH0325101Y2 JP H0325101 Y2 JPH0325101 Y2 JP H0325101Y2 JP 1982166739 U JP1982166739 U JP 1982166739U JP 16673982 U JP16673982 U JP 16673982U JP H0325101 Y2 JPH0325101 Y2 JP H0325101Y2
Authority
JP
Japan
Prior art keywords
refrigerant passages
condensation water
water discharge
evaporator
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982166739U
Other languages
Japanese (ja)
Other versions
JPS5970181U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16673982U priority Critical patent/JPS5970181U/en
Publication of JPS5970181U publication Critical patent/JPS5970181U/en
Application granted granted Critical
Publication of JPH0325101Y2 publication Critical patent/JPH0325101Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Water From Condensation And Defrosting (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 この考案は、カー・クーラー等に用いられる蒸
発器に関する。
[Detailed Description of the Invention] Industrial Application Field This invention relates to an evaporator used in car coolers and the like.

従来の技術 従来のカー・クーラー用蒸発器は、実開昭57−
36574号公報に示されているように、横断面積が
同一である複数の冷媒通路を備えたアルミニウム
押出形材製蛇行状偏平熱交換管の各直管部間にコ
ルゲート・フインが介在され、かつ強制送風によ
り冷媒通路と直交状に風が流されるようになつて
おり、偏平熱交換管の両面にその長さ方向にのび
た結露水排出溝がそれぞれ並列状に設けられると
ともに、蛇行状の管の下部屈曲部上面において結
露水排出溝と直交する別個の集合結露水排出溝が
設けられたものである。
Conventional technology Conventional evaporators for car coolers were developed in 1982.
As shown in Publication No. 36574, a corrugated fin is interposed between each straight pipe section of a serpentine flat heat exchange tube made of extruded aluminum having a plurality of refrigerant passages having the same cross-sectional area, and Air is forced to flow perpendicularly to the refrigerant passage, and condensation water drainage grooves extending along the length of the flat heat exchange tubes are provided in parallel on both sides of the tube. A separate collecting condensation water drain groove is provided on the upper surface of the lower bent portion and is perpendicular to the condensation water drain groove.

考案が解決しようとする課題 上記従来の蒸発器には、つぎの3つの問題があ
る。
Problems to be Solved by the Invention The conventional evaporator described above has the following three problems.

第1に、偏平状熱交換管がアルミニウム押出形
材製であるため、蒸発器の軽量化をはかつてもそ
の肉厚を薄くするには限度があつた。
First, since the flat heat exchange tubes are made of extruded aluminum, there has been a limit to the reduction in the weight of the evaporator.

第2に、冷媒は風上側程蒸発し易く風下側程蒸
発しにくくなるに拘わらず、複数の冷媒通路の横
断面積がすべて同一であるから、熱交換効率が悪
い。
Second, although the refrigerant evaporates more easily on the windward side and less evaporates on the leeward side, the cross-sectional areas of the plurality of refrigerant passages are all the same, resulting in poor heat exchange efficiency.

第3に、偏平熱交換管の両面にある結露水排出
溝は、アルミニウム押出形材の押出方向にのびて
いるので、管の成形時同時に得ることができる
が、蛇行状の管の下部屈曲部上面にある集合結露
水排出溝は、前記押出方向と直交しているので、
必然的に押出成形後さらに溝加工しなければ得ら
れない。
Thirdly, since the condensation water drainage grooves on both sides of the flat heat exchange tube extend in the extrusion direction of the aluminum extruded section, they can be obtained at the same time when forming the tube, but the condensation water drainage grooves on both sides of the flat heat exchange tube can be obtained at the same time when the tube is formed. The collective condensation water drain groove located in is perpendicular to the extrusion direction, so
This cannot be obtained without further groove processing after extrusion molding.

この考案の目的は、上記3つの問題を一挙に解
決した蒸発器を提供するにある。
The purpose of this invention is to provide an evaporator that solves the above three problems all at once.

課題を解決するための手段 この考案は、複数の冷媒通路を有する蛇行状熱
交換管体の各垂直状直管部間にコルゲート・フイ
ンが介在され、かつ強制送風により冷媒通路と直
交状に風が流される蒸発器において、上記の目的
の達成するために、管体が、横断面形でその長
さ方向にのびた第1および第2結露水排出溝をそ
れぞれ並列状に備えている第1および第2金属板
を相互に接合することにより構成されており、両
溝はともに溝間隔が風上側から風下側にかけて順
次小さくせられ、かつ第1結露水排出溝は第2結
露水排出溝の底外面どうしが密着せしめられるこ
とにより、横断面積が風上側から風下側にかけて
順次小さくせられた複数の冷媒通路が形成せら
れ、さらに蛇行形態における管体の各下部屈曲部
の上面で第1結露水排出溝がとぎれ、溝無し部と
なされるとともに、溝無し部の下方において隣り
合う冷媒通路どうしを連絡する連通部が形成せら
れているものである。
Means for Solving the Problems This invention has corrugated fins interposed between each vertical straight pipe section of a meandering heat exchange tube having a plurality of refrigerant passages, and which blows air perpendicularly to the refrigerant passages by forced air blowing. In order to achieve the above-mentioned purpose in the evaporator through which water flows, the pipe body is provided with first and second condensation water drain grooves in parallel, each having a cross-sectional shape and extending in the length direction thereof. It is constructed by joining second metal plates to each other, and the groove spacing of both grooves is gradually decreased from the windward side to the leeward side, and the first condensation water drain groove is located at the bottom of the second condensation water drain groove. By bringing the outer surfaces into close contact with each other, a plurality of refrigerant passages whose cross-sectional areas are successively smaller from the windward side to the leeward side are formed, and a first condensation water is formed on the upper surface of each lower bent part of the pipe body in the meandering configuration. The discharge groove is cut off to form a grooveless portion, and a communication portion is formed below the grooveless portion to connect adjacent refrigerant passages.

作 用 この考案の蒸発器によれば、管体が、横断面
形でその長さ方向にのびた第1および第2結露水
排出溝をそれぞれ並列状に備えている第1および
第2金属板を相互に接合することにより構成され
ているから、従来のアルミニウム押出形材製のも
のに較べ、その肉厚を薄くすることができる。
According to the evaporator of this invention, the tube body includes first and second metal plates each having first and second condensation water drain grooves in parallel in a cross-sectional shape and extending in the length direction thereof. Since they are constructed by joining them together, their wall thickness can be made thinner than those made of conventional aluminum extrusion shapes.

また管体が上述のようにして構成せられるとと
もに、両溝はともに溝間隔が風上側から風下側に
かけて順次小さくせられ、かつ第1結露水排出溝
と第2結露水排出溝の底外面どうしが密着せしめ
られることにより、横断面積が風上側から風下側
にかけて順次小さくせられた複数の冷媒通路が形
成せられているから、第1および第2結露水排出
溝と、冷媒の相対的蒸発量に対応するように順次
横断面積を異にした複数の冷媒通路とが、第1金
属板および第2金属板の接合により同時に得られ
る。
In addition, the pipe body is configured as described above, and the groove spacing of both grooves is gradually decreased from the windward side to the leeward side, and the bottom outer surfaces of the first condensation water drain groove and the second condensation water drain groove are connected to each other. are brought into close contact with each other to form a plurality of refrigerant passages whose cross-sectional area gradually decreases from the windward side to the leeward side. A plurality of refrigerant passages having sequentially different cross-sectional areas corresponding to the above are simultaneously obtained by joining the first metal plate and the second metal plate.

さらに蛇行形態における管体の各下部屈曲部の
上面で第1結露水排出溝がとぎれ、溝無し部とな
されているので、管体の各下部屈曲部の上面自体
が、第1結露水排出溝を流下してきた結露水を集
めて風の流れ方向に流す集合結露水排出溝の役割
を果たす。
Furthermore, since the first condensation water drain groove is cut off at the upper surface of each lower bent portion of the tube body in the meandering configuration, and is made into a grooveless portion, the upper surface of each lower bent portion of the tube body itself is connected to the first condensed water drain groove. It serves as a collection condensation water drainage channel that collects condensation water that flows down the ground and directs it in the direction of the wind flow.

しかも上記溝無し部が形成せられることによ
り、必然的に溝無し部の下方において隣り合う冷
媒通路どうしを連絡する連通部が形成せられ、連
通部を介して各冷媒通路内の冷媒が混ざり合う。
Moreover, by forming the grooveless portion, a communication portion is inevitably formed below the grooveless portion that connects adjacent refrigerant passages, and the refrigerants in each refrigerant passage mix through the communication portion. .

実施例 つぎに、この考案の実施例を図面に基づいて詳
しく説明する。
Embodiment Next, an embodiment of this invention will be described in detail based on the drawings.

図示の蒸発器1は、複数の冷媒通路4A,4
B,4Cを有する蛇行状熱交換管体2の各垂直状
直管部2a間にコルゲート・フイン3が介在さ
れ、かつ強制送風により冷媒通路4と直交状に風
Aが流されるカー・クーラー用蒸発器であつて、
管体2が、横断面形でその長さ方向にのびた第
1および第2結露水排出溝7,8をそれぞれ並列
状に備えている第1および第2金属板5,6を相
互に接合することにより構成されており、両溝
7,8はともに溝間隔が風上側から風下側にかけ
て順次小さくせられ、かつ第1結露水排出溝7は
第2結露水排出溝8の底外面どうしが密着せしめ
られることにより、横断面積が風上側から風下側
にかけて順次小さくせられた複数の冷媒通路4
A,4B,4Cが形成せられ、さらに蛇行形態に
おける管体2の各下部屈曲部2bの上面で第1結
露水排出溝7がとぎれ、溝無し部9となされると
ともに、溝無し部9の下方において隣り合う冷媒
通路4A,4B,4Cどうしを連絡する連通部1
0が形成せられているものである。
The illustrated evaporator 1 includes a plurality of refrigerant passages 4A, 4.
For car coolers, in which a corrugated fin 3 is interposed between each vertical straight pipe part 2a of a meandering heat exchange tube body 2 having B, 4C, and the wind A is forced to flow perpendicularly to the refrigerant passage 4. It is an evaporator,
The pipe body 2 mutually joins first and second metal plates 5 and 6, each of which has first and second condensation water discharge grooves 7 and 8 arranged in parallel in a cross-sectional shape and extending in the length direction thereof. The grooves 7 and 8 are configured so that the groove spacing is gradually decreased from the windward side to the leeward side, and the first condensation water discharge groove 7 and the second condensation water discharge groove 8 have their bottom outer surfaces in close contact with each other. A plurality of refrigerant passages 4 whose cross-sectional areas are gradually reduced from the windward side to the leeward side by
A, 4B, and 4C are formed, and the first condensation water discharge groove 7 is cut off at the upper surface of each lower bent portion 2b of the tube body 2 in the meandering form, forming a grooveless portion 9, and the grooveless portion 9 is formed. A communication part 1 that connects the refrigerant passages 4A, 4B, and 4C that are adjacent to each other in the lower part.
0 is formed.

第1および第2金属板6,7は、ともに厚さ
0.5mm程度のアルミニウム・ブレージング・シー
トよりなり、コルゲート・フイン3はアルミニウ
ム薄板製で、管体2にろう接せられており、かつ
多数のルーバ11を備えている。冷媒通路4A,
4B,4C内に耐圧強度に増大および内部の熱伝
達率の一層の向上をはかるため、波形のアルミニ
ウム薄板製インナー・フイン12が配されてい
る。
The first and second metal plates 6 and 7 both have a thickness
The corrugated fin 3 is made of an aluminum brazing sheet with a thickness of about 0.5 mm, and is soldered to the tube body 2, and is provided with a large number of louvers 11. Refrigerant passage 4A,
In order to increase the pressure resistance and further improve the internal heat transfer coefficient, inner fins 12 made of corrugated thin aluminum plates are disposed within the fins 4B and 4C.

上記実施例において、送風機によつて生じた風
Aは矢印方向へ流される。
In the above embodiment, the wind A generated by the blower is blown in the direction of the arrow.

そして、蒸発器1の管体2の外表面に結露した
水は、コルゲート・フイン3の上面側に流下する
とともに、コルゲート・フイン3上面に結露した
水は、強制送風による結果、前記流下水と合わせ
てフイン3の風下側に移行せしめられるが、その
途上においてルーバー11のスリツトより流下
し、あるいは管体2の結露水排出溝7,8に沿つ
て流下する。
The water that has condensed on the outer surface of the tube body 2 of the evaporator 1 flows down to the upper surface of the corrugated fins 3, and the water that has condensed on the upper surface of the corrugated fins 3 becomes the flowing water due to the forced air flow. Together, they are moved to the leeward side of the fins 3, but on the way, they flow down through the slits in the louver 11 or flow down along the condensed water drain grooves 7 and 8 in the tube body 2.

勿論、管体2の結露水排出溝7,8近くの外表
面に結露した水はコルゲート・フイン3上面に流
下することなく、直接これらの溝7,8に沿つて
流下する。
Of course, the water condensed on the outer surface of the tube body 2 near the condensation water discharge grooves 7 and 8 does not flow down onto the upper surface of the corrugated fin 3, but directly flows down along these grooves 7 and 8.

また管体2の風下側縁部近くで結露した水およ
びコルゲート・フイン3の風下側縁部近くで結露
した水は、ともに蛇行状の管体2の風下側縁部に
沿つて流下する。
Further, water condensed near the leeward edge of the tube 2 and water condensed near the leeward edge of the corrugated fin 3 both flow down along the leeward edge of the meandering tube 2.

このようにして管体2の下部屈曲部2bに流下
した結露水は、同屈曲部2bの下側ではそのまゝ
管体2より落下して、蒸発器1下方に排出せられ
るが、同屈曲部2bの上側には溝無し部9がある
ので、第1結露水排出溝7の流下水はここに集め
られ、そして強制送風によつて風下側縁部に吹き
寄せられ、そこから蒸発器1外に速やかに排出さ
れるものである。
The condensed water that has flowed down to the lower bent part 2b of the pipe body 2 in this way falls from the pipe body 2 as it is below the bent part 2b and is discharged below the evaporator 1. Since there is a grooveless part 9 on the upper side of the part 2b, the flowing water from the first condensation water discharge groove 7 is collected there, and is blown to the leeward edge by forced air, and from there is discharged to the outside of the evaporator 1. It is quickly discharged.

一方、溝無し部9の下方において隣り合う冷媒
通路4A,4B,4Cどうしを連絡する連通部1
0を介して各冷媒通路4A,4B,4C内の冷媒
がよく混ざり合う。
On the other hand, a communication portion 1 connecting adjacent refrigerant passages 4A, 4B, and 4C below the grooveless portion 9
The refrigerants in each refrigerant passage 4A, 4B, and 4C mix well through the refrigerant passages 4A, 4B, and 4C.

考案の効果 この考案の蒸発器によれば、従来のアルミニウ
ム押出形材製のものに較べ、管体の肉厚を薄くす
ることができるので、蒸発器を軽量化することが
できる。
Effects of the invention According to the evaporator of this invention, the wall thickness of the tube body can be made thinner than that of the conventional evaporator made of extruded aluminum, so that the weight of the evaporator can be reduced.

また第1および第2結露水排出溝と、冷媒の相
対的蒸発量に対応するように順次横断面積を異に
した複数の冷媒通路とが、第1金属板および第2
金属板の接合により同時に得られるから、結露水
の排出が良好でしかも熱交換効率のよい蒸発器を
簡単にうることができる。
Further, the first and second condensed water drain grooves and a plurality of refrigerant passages having different cross-sectional areas in order to correspond to the relative evaporation amount of the refrigerant are connected to the first metal plate and the second condensation water drain groove.
Since they can be obtained at the same time by joining metal plates, it is possible to easily obtain an evaporator with good discharge of condensed water and good heat exchange efficiency.

また蛇行形態における管体の各下部屈曲部の上
面自体が、第1結露水排出溝を流下してきた結露
水を集めて風の流れ方向に流す集合結露水排出溝
の役割を果たすので、従来のように押出成形後集
合結露水排出溝をわざわざ溝加工することによつ
て形成する必要がないので、製作上有利である。
In addition, the upper surface of each lower bent part of the pipe body in the meandering configuration itself plays the role of a collecting condensation water drain that collects the condensed water that has flowed down the first condensed water drain and flows it in the direction of the wind flow. This is advantageous in terms of manufacturing since there is no need to take the trouble of forming the collective condensation water drainage groove after extrusion molding.

さらに溝無し部の下方に形成せられた隣り合う
冷媒通路どうしを連絡する連通部を介して各冷媒
通路内の冷媒がよく混ざり合うので、冷媒通路の
横断面積が上記のように異にせられていることと
相俟つて一層熱交換効率を向上せしめうるし、し
かも連絡部は溝無し部を設けることにより必然的
に得られるので、この点でも製作上有利である。
Furthermore, since the refrigerant in each refrigerant passage mixes well through the communication part that connects adjacent refrigerant passages formed below the grooveless part, the cross-sectional areas of the refrigerant passages are made different as described above. In combination with this, the heat exchange efficiency can be further improved, and since the connecting portion is naturally obtained by providing the grooveless portion, this point is also advantageous in terms of manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの考案の実施例を示すもので、第1図
は側面図、第2図は部分拡大斜視図、第3図は第
1図−線に沿う拡大断面図、第4図は第1図
−線に沿う拡大断面図である。 1……蒸発器、2……熱交換管体、2a……直
管部、2b……下部屈曲部、3……コルゲート・
フイン、4A,4B,4C……冷媒通路、5……
第1金属板、6……第2金属板、7……第1結露
水排出溝、8……第2結露水排出溝、9……溝無
し部、10……連絡部。
The drawings show an embodiment of this invention: Fig. 1 is a side view, Fig. 2 is a partially enlarged perspective view, Fig. 3 is an enlarged sectional view taken along the line of Fig. 1, and Fig. 4 is a drawing of Fig. 1. It is an enlarged sectional view along the - line. DESCRIPTION OF SYMBOLS 1... Evaporator, 2... Heat exchange tube body, 2a... Straight pipe part, 2b... Lower bent part, 3... Corrugated
Fin, 4A, 4B, 4C... Refrigerant passage, 5...
First metal plate, 6...Second metal plate, 7...First condensation water drain groove, 8...Second condensation water drain groove, 9...Non-grooved portion, 10...Connection portion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数の冷媒通路4A,4B,4Cを有する蛇行
状熱交換管体2の各垂直状直管部2a間にコルゲ
ート・フイン3が介在され、かつ強制送風により
冷媒通路4と直交状に風Aが流される蒸発器にお
いて、管体2が、横断面形でその長さ方向にの
びた第1および第2結露水排出溝7,8をそれぞ
れ並列状に備えている第1および第2金属板5,
6を相互に接合することにより構成されており、
両溝7,8はともに溝間隔が風上側から風下側に
かけて順次小さくせられ、かつ第1結露水排出溝
7と第2結露水排出溝8の底外面どうしが密着せ
しめられることにより、横断面積が風上側から風
下側にかけて順次小さくせられた複数の冷媒通路
4A,4B,4Cが形成せられ、さらに蛇行形態
における管体2の各下部屈曲部2bの上面で第1
結露水排出溝7がとぎれ、溝無し部9となされる
とともに、溝無し部9の下方において隣り合う冷
媒通路4A,4B,4Cどうしを連絡する連通部
10が形成せられている蒸発器。
A corrugated fin 3 is interposed between each vertical straight pipe portion 2a of the meandering heat exchange tube body 2 having a plurality of refrigerant passages 4A, 4B, and 4C, and wind A is perpendicular to the refrigerant passage 4 by forced air blowing. In the flowing evaporator, the tube body 2 includes first and second metal plates 5, each having first and second condensed water discharge grooves 7, 8 arranged in parallel in a cross-sectional shape and extending in the length direction thereof.
It is constructed by joining 6 to each other,
Both grooves 7 and 8 have a groove interval that is gradually reduced from the windward side to the leeward side, and the outer bottom surfaces of the first condensation water discharge groove 7 and the second condensation water discharge groove 8 are brought into close contact with each other, so that the cross-sectional area A plurality of refrigerant passages 4A, 4B, and 4C are formed in which the refrigerant passages are made smaller in order from the windward side to the leeward side.
An evaporator in which a condensed water discharge groove 7 is cut off to form a grooveless portion 9, and a communication portion 10 is formed below the grooveless portion 9 to connect adjacent refrigerant passages 4A, 4B, and 4C.
JP16673982U 1982-11-01 1982-11-01 Evaporator Granted JPS5970181U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16673982U JPS5970181U (en) 1982-11-01 1982-11-01 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16673982U JPS5970181U (en) 1982-11-01 1982-11-01 Evaporator

Publications (2)

Publication Number Publication Date
JPS5970181U JPS5970181U (en) 1984-05-12
JPH0325101Y2 true JPH0325101Y2 (en) 1991-05-31

Family

ID=30364967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16673982U Granted JPS5970181U (en) 1982-11-01 1982-11-01 Evaporator

Country Status (1)

Country Link
JP (1) JPS5970181U (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932258U (en) * 1972-06-20 1974-03-20
JPS4950857U (en) * 1972-08-07 1974-05-04
JPS5736574U (en) * 1980-08-11 1982-02-26
JPS57152580U (en) * 1981-03-21 1982-09-25

Also Published As

Publication number Publication date
JPS5970181U (en) 1984-05-12

Similar Documents

Publication Publication Date Title
US4982579A (en) Evaporator
US6435268B1 (en) Evaporator with improved condensate drainage
JP2004019999A (en) Finned heat exchanger and method of manufacturing the same
JP3359466B2 (en) Evaporator for room air conditioner
JPH11183076A (en) Heat exchanger
JPH0325100Y2 (en)
JP3048614B2 (en) Heat exchanger
JPH0325101Y2 (en)
JP2624336B2 (en) Finned heat exchanger
JPH02251093A (en) Finned heat exchanger
JP2010139115A (en) Heat exchanger and heat exchanger unit
JP2004317002A (en) Heat exchanger
JPH0330718Y2 (en)
JP4004335B2 (en) Heat exchanger
JPH025331Y2 (en)
JPH0245647Y2 (en)
JPS602475Y2 (en) Heat exchanger
CN216644376U (en) Air conditioner heat exchanger and air conditioner
JPH0327259Y2 (en)
JPH0327258Y2 (en)
JP2002090082A (en) Heat exchanger
JPH0435734Y2 (en)
JP2005037002A (en) Heat exchanger
JPH0547954Y2 (en)
JPH0666458A (en) Refrigerator evaporator