JPH03250682A - Frequency stabilized laser light source - Google Patents

Frequency stabilized laser light source

Info

Publication number
JPH03250682A
JPH03250682A JP4740890A JP4740890A JPH03250682A JP H03250682 A JPH03250682 A JP H03250682A JP 4740890 A JP4740890 A JP 4740890A JP 4740890 A JP4740890 A JP 4740890A JP H03250682 A JPH03250682 A JP H03250682A
Authority
JP
Japan
Prior art keywords
frequency
semiconductor laser
output
beam splitter
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4740890A
Other languages
Japanese (ja)
Inventor
Koji Akiyama
浩二 秋山
Satoru Yoshitake
哲 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP4740890A priority Critical patent/JPH03250682A/en
Publication of JPH03250682A publication Critical patent/JPH03250682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a non-modulation highly stable frequency optical output by controlling the central frequency of oscillation of a semiconductor laser by current modulation to an absorption line frequency highly accurately in a highly stabilized frequency state, and further controlling an oscillation frequency of the semiconductor laser to one shifted a predetermined frequency from the central frequency of output light from the semiconductor laser. CONSTITUTION:A semiconductor laser 1 is current modulated by a modulation frequency fm sinusoidal wave, output light from which is emitted via a beam splitter 2 and is combined by a beam splitter 13 with output light from a semiconductor laser 11 emitted via a beam splitter 12. The light emanating from the beam splitter 13 enters an optical detector 14 and is detected as a beat signal. The output is removed through a low pass filter 161 of a control part 16 in its modulated frequency component, and thereafter is added to bias voltage VB in an adder circuit 162 and is fed back to the semiconductor laser 11 via a PI control circuit 163. Thus, oscillation frequency of the semiconductor laser 11 is controlled to a point shifted by a predetermined frequency from the absorption line with no modulation and is derived externally via the beam splitter 12.

Description

【発明の詳細な説明】 く:産業上の利用分野〉 本発明は、半導体レーザを用い73周波数安定化レーザ
光源の安定性の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improving the stability of a 73 frequency stabilized laser light source using a semiconductor laser.

〈従来の枝術〉 第4図は周波数安定化1.−ザ光源の一従来例を示すブ
ロック図て゛、半導体レーザを直接変調し、て。
<Conventional branch technique> Figure 4 shows frequency stabilization 1. - A block diagram showing a conventional example of a laser light source, in which a semiconductor laser is directly modulated.

その発振周波数を原子および分子の吸収線の中心に制m
づるものを示している。〒導体1.・−ザ1の出力光は
ビームスプリッタ2で2つの方向に分離し、一方の光は
標準物質が封入された吸収セル3に入射する。吸収セル
3を透過した光は光検出器4で検出されて電気信号に変
換され、ロックインアンプ等からなる同期検波回路5に
入力する。半導体レーザ1の発振周波数は発振器8の出
力で電流変調されており、同期検波回路5は発振器8の
出力を参照信号として同期検波を行う、PI制御回路6
は同期検波口15の出力が一定となるように半導体レー
ザ1の電流を制御する。PI制御回路61発振器8の発
振出力およびバイアス電流源9の出力は加算回路7で加
算されて半導体レーザ1に入力される。この結果、半導
体レーザ1の発振周波数は吸収セル3の標準物質の原子
または分子の吸収線の中心に制御され、ビームスプリッ
タ2の他方の出力光は原子または分子で決まる絶対値が
高精度の周波数となる。
The oscillation frequency is controlled to the center of the absorption line of atoms and molecules.
It shows what is being created. 〒Conductor 1. - The output light from the laser 1 is separated into two directions by a beam splitter 2, and one of the lights enters an absorption cell 3 in which a standard substance is sealed. The light transmitted through the absorption cell 3 is detected by a photodetector 4, converted into an electrical signal, and input to a synchronous detection circuit 5 comprising a lock-in amplifier or the like. The oscillation frequency of the semiconductor laser 1 is current-modulated by the output of the oscillator 8, and the synchronous detection circuit 5 performs synchronous detection using the output of the oscillator 8 as a reference signal.
controls the current of the semiconductor laser 1 so that the output of the synchronous detection port 15 is constant. The oscillation output of the PI control circuit 61 oscillator 8 and the output of the bias current source 9 are added by the adder circuit 7 and input to the semiconductor laser 1. As a result, the oscillation frequency of the semiconductor laser 1 is controlled to the center of the absorption line of the atoms or molecules of the standard material in the absorption cell 3, and the other output light of the beam splitter 2 has a frequency whose absolute value is determined by the atoms or molecules with high precision. becomes.

しかしながら、上記のような装置では、出力光が周波数
変調されているため、瞬時周波数の安定性がなく、干渉
計測等の応用には不適当となり、応用範囲が狭くなると
いう欠点を有する。
However, in the above-mentioned apparatus, since the output light is frequency-modulated, the instantaneous frequency is not stable, making it unsuitable for applications such as interferometric measurements, and has the drawback of narrowing the range of applications.

このような欠点を解決するために、半導体レーザ出力光
を音響光学変調器で外部変調し原子および分子の吸収線
に制御することにより、無変調出力を得るように構成し
たものがある。
In order to solve these drawbacks, there is a structure in which a non-modulated output is obtained by externally modulating the output light of a semiconductor laser using an acousto-optic modulator and controlling it to atomic and molecular absorption lines.

〈発明が解決しようとする課題〉 しかしながら、そのような装置の場合には、音響光学変
調器が不安定なため、安定度が限定されるという問題が
ある。また音響光学変調器は消費電力が大きく、高価で
あり、ドライバが大型であるという問題もある。
<Problems to be Solved by the Invention> However, in the case of such a device, there is a problem in that the stability is limited because the acousto-optic modulator is unstable. Further, the acousto-optic modulator has problems in that it consumes a large amount of power, is expensive, and has a large driver.

本発明はこのような課題を解決するためになされたもの
で、発振周波数が高安定に制御された周波数安定化レー
ザ光源を音響光学変調器を用いずに実現することを目的
とする。
The present invention has been made to solve such problems, and an object of the present invention is to realize a frequency-stabilized laser light source whose oscillation frequency is highly stably controlled without using an acousto-optic modulator.

〈課題を解決するための手段〉 本発明に係る周波数安定化レーザ光源は第1の半導体レ
ーザと、この第1の半導体レーザの出力光を入力して特
定の周波数で吸収する物質を封入した吸収セルと、この
吸収セルを透過した光を検出する第1の光検出器と、前
記第1の半導体レーザの電流に変調を加える発振器と、
この発振器の出力またはその奇数倍周波数の信号を参照
信号として前記第1の光検出器の出力を入力する第1の
同期検波回路と、この第1の同期検波回路の出力に基づ
いて前記第1の半導体レーザの発振周波数を前記吸収セ
ルの吸収線に制御する第1の制御回路と、第2の半導体
レーザと、前記第1および第2の半導体レーザの出力光
を合波する光学手段と、この光学手段から出力される出
力光のビート信号を検出する第2の光検出器と、この第
2の光検出器から出力される信号の周波数を電圧に変換
する周波数/@圧変換回路と、この周波数/を正変換回
路の出力から変調周波数における交流電圧成分を除去す
るローパスフィルタと、このローパスフィルタの出力が
一定となるように前記第2の半導体レーザの発振周波数
を制御する第2のM#回路とを備え、第2の半導体レー
ザの出力が無変調となるように構成したことを特徴とす
る。
<Means for Solving the Problems> The frequency-stabilized laser light source according to the present invention includes a first semiconductor laser and an absorber encapsulating a substance that inputs the output light of the first semiconductor laser and absorbs it at a specific frequency. a cell, a first photodetector that detects light transmitted through the absorption cell, and an oscillator that modulates the current of the first semiconductor laser;
a first synchronous detection circuit that inputs the output of the first photodetector using the output of the oscillator or a signal of an odd multiple frequency thereof as a reference signal; a first control circuit that controls the oscillation frequency of the semiconductor laser to match the absorption line of the absorption cell; a second semiconductor laser; and an optical means that combines the output lights of the first and second semiconductor lasers; a second photodetector that detects the beat signal of the output light output from the optical means; a frequency/pressure conversion circuit that converts the frequency of the signal output from the second photodetector into voltage; a low-pass filter that removes the AC voltage component at the modulation frequency from the output of the positive conversion circuit; and a second M that controls the oscillation frequency of the second semiconductor laser so that the output of the low-pass filter is constant. # circuit, and is characterized in that it is configured such that the output of the second semiconductor laser is not modulated.

く作用〉 第1の半導体レーザは電流変調で高安定となり、第2の
半導体レーザの発振周波数は第1の半導体レーザの発振
の中心周波数からローパスフィルタ出力の設定値に対応
した周波数だけずれたところに制御され、無変調なので
、出力周波数が高安定となる。
The first semiconductor laser becomes highly stable due to current modulation, and the oscillation frequency of the second semiconductor laser is shifted from the center frequency of oscillation of the first semiconductor laser by a frequency corresponding to the setting value of the low-pass filter output. Since there is no modulation, the output frequency is highly stable.

〈実施例〉 以下本発明を図面を用いて詳しく説明する。<Example> The present invention will be explained in detail below using the drawings.

第1図は本発明に係る周波数安定化レーザ光源の第1の
実施例を示す構成ブロック図である。第4図と同じ部分
は同一の記号を付して説明を省略する。なお半導体レー
ザIに加わるバイアス電流は省略している。また第4図
の同期検波回路5とPI制御回路6からなる部分を第1
の制御部10として表している。11は第2の半導体レ
ーザ、12は半導体レーザ11の出力光を2方向に分離
するビームスプリッタ、13はビームスプリッタ12の
透過光とビームスプリッタ2の透過光を合波する光学手
段を構成するビームスプリッタ、14はビームスプリッ
タ13から出射された光を入射してビート信号を検出す
る第2の光検出器、15は光検出器14の出力を入力し
てその周波数を電圧に変換する電圧/周波数変換器、1
6は周波数/電圧変換器15の出力を入力し、対応する
制御出力が半導体レーザ11の電流を駆動する第2の制
御部である。第2図は第2の制御部16の構成を示し、
161は周波数/電圧変換器15の出力に含まれる変調
成分を除去するローパスフィルタ、162はローパスフ
ィルタ161の出力にバイアス電圧v8を加算するバイ
アス加算回路、163はバイアス加算回路162の出力
を入力するPI制御回路である。PI制御回路163の
制御出力は半導体レーザ11の電流を駆動する。吸収セ
ル3内の標準物質としては例えばアセチレン。
FIG. 1 is a block diagram showing a first embodiment of a frequency stabilized laser light source according to the present invention. The same parts as in FIG. 4 are given the same symbols and explanations are omitted. Note that the bias current applied to the semiconductor laser I is omitted. In addition, the part consisting of the synchronous detection circuit 5 and the PI control circuit 6 in FIG.
It is expressed as a control unit 10. 11 is a second semiconductor laser, 12 is a beam splitter that separates the output light of the semiconductor laser 11 into two directions, and 13 is a beam that constitutes an optical means that combines the transmitted light of the beam splitter 12 and the transmitted light of the beam splitter 2. splitter; 14 is a second photodetector that receives the light emitted from the beam splitter 13 and detects a beat signal; 15 is a voltage/frequency that inputs the output of the photodetector 14 and converts the frequency into a voltage; converter, 1
Reference numeral 6 denotes a second control unit which inputs the output of the frequency/voltage converter 15 and whose corresponding control output drives the current of the semiconductor laser 11. FIG. 2 shows the configuration of the second control section 16,
161 is a low-pass filter that removes the modulation component included in the output of the frequency/voltage converter 15; 162 is a bias addition circuit that adds bias voltage v8 to the output of the low-pass filter 161; 163 is an input to the output of the bias addition circuit 162; This is a PI control circuit. The control output of the PI control circuit 163 drives the current of the semiconductor laser 11. The standard substance in the absorption cell 3 is, for example, acetylene.

シアン化水素、ルビジウム、セシウム等が用いられる、 上記の構成の装置の動作を次に説明する。Hydrogen cyanide, rubidium, cesium, etc. are used. The operation of the apparatus having the above configuration will be explained next.

1i導体レーザ1の周波数は、従来例で説明したように
、電流変調により標準物質の吸収線に制御されている(
第3図(A)(B))、半導体レーザ1は変調周波数f
1の正弦波で電流変調されており、その出力e1は el =E1 s i n (2πf1t+ks i 
n2yrfIN  t+ψ1 )          
     ・・・(1)で表される。ここでElは振幅
、flは発振周波数、kは係数1ψは位相である。この
ような半導体レーザーの出力光はビームスプリッタ2を
介し°ζ出射され、ビームスプリッタ−2を介して出射
される半導体レーザー−1の出力光とビームスプリッタ
−3で合波される。ビームスブリツタ13から出射され
た光は光検出器14に入射し”ζビ4−ト信号が検出さ
れる。半導体レーザ2の出力は変調を受けていないので
、その発振周波数をf2.振幅をh2.位相をr2とす
ると、 e2=E2s i n (2yrf2 を十P2 )・
・・ (2) となる。したが−)て、これらが合波された光検出器1
4の出力電流iは、f 1+r 2の成分と直流分を除
くと、 1 ()C(e1+ e 2 ) = 2 E 1E 2 COS (2π(fl−f2)
t+ψ1−ψ2±ksin2rf、t)  =(3)と
なる、この出力を周波数/電圧変換器15に通ずと、(
3)式の周波数(fl−f2 )に対応する直流電圧と
、ks i n2πftに対応する1覆 弦波電圧が変調周波数成分として出力に現れる。
As explained in the conventional example, the frequency of the 1i conductor laser 1 is controlled to the absorption line of the standard material by current modulation (
3(A)(B)), the semiconductor laser 1 has a modulation frequency f
The current is modulated by a sine wave of 1, and its output e1 is el = E1 s i n (2πf1t+ks i
n2yrfIN t+ψ1)
...Represented by (1). Here, El is the amplitude, fl is the oscillation frequency, k is the coefficient 1ψ is the phase. The output light of such a semiconductor laser is emitted through the beam splitter 2, and is combined with the output light of the semiconductor laser 1, which is emitted through the beam splitter 2, at the beam splitter 3. The light emitted from the beam splitter 13 enters the photodetector 14 and a ζ beat signal is detected. Since the output of the semiconductor laser 2 is not modulated, its oscillation frequency is f2. h2.If the phase is r2, e2=E2s in (2yrf2 is 10P2)・
...(2) becomes. However, the photodetector 1 in which these are combined is
The output current i of No. 4, excluding the f 1 + r 2 component and the DC component, is 1 ()C (e1 + e 2 ) = 2 E 1E 2 COS (2π (fl - f2)
t+ψ1-ψ2±ksin2rf, t) = (3) When this output is passed through the frequency/voltage converter 15, (
A DC voltage corresponding to the frequency (fl-f2) in equation 3) and a sinusoidal voltage corresponding to ks in2πft appear in the output as modulation frequency components.

この出力は第2の制御部16のローパスフィルタ161
で変調周波数成分が除去された後、加算回路162でバ
イアス電圧Veと加算され、PI制御回路163を介し
、半導体レーザー1に帰還される。この結果、ローパス
フィルタ161の出力が VB =g (f、−f2)       ・・・(4
)すなわち 1 f2−fl−g (VB)     ・・・(5)とな
るように半導体レーザ11の周波数が制御される(第3
図(C))、ここでg(f)は周波数/電圧変換回路の
変換特性を示す関数、g”1(V)はその逆関数である
。このようにし、て半導体レーザ11の発振周波数が吸
収線から一定の周波数シフトした点に無変調で制御され
、ビームスプリッタ12から外部へ取出される。
This output is passed through the low-pass filter 161 of the second control section 16.
After the modulation frequency component is removed in , it is added to the bias voltage Ve in an adder circuit 162 and fed back to the semiconductor laser 1 via a PI control circuit 163 . As a result, the output of the low-pass filter 161 is VB = g (f, -f2) (4
), that is, 1 f2-fl-g (VB)...(5) The frequency of the semiconductor laser 11 is controlled so that (the third
(C)), where g(f) is a function indicating the conversion characteristics of the frequency/voltage conversion circuit, and g"1(V) is its inverse function. In this way, the oscillation frequency of the semiconductor laser 11 is The light is controlled without modulation at a point shifted by a certain frequency from the absorption line, and is extracted from the beam splitter 12 to the outside.

このような構成の周波数安定化l/−ザ光源によれば、
半導体し・−ザ1の発振の中心周波数11を電流変調で
吸収線周波数に高確度、周波数高安定状態で制御し、半
導体レーザ11の発振周波数で2を半導体レーザ1の出
力光の中心周波数から一定周波数シフトした周波数とな
るように制御することにより、無変調、周波数高安定度
の光出力を得ることができる。したがってコヒーレント
光計測器や干渉測長器等の光源として最適である。
According to the frequency stabilized l/-the light source with such a configuration,
The center frequency 11 of the oscillation of the semiconductor laser 1 is controlled by current modulation to the absorption line frequency with high accuracy and in a highly stable frequency state, and the oscillation frequency of the semiconductor laser 11 is adjusted from the center frequency of the output light of the semiconductor laser 1. By controlling the frequency to a constant frequency shift, it is possible to obtain a non-modulated optical output with high frequency stability. Therefore, it is optimal as a light source for coherent optical measuring instruments, interferometric length measuring instruments, etc.

また音響光学変調器を用いずに、電流変調で吸収線に制
御しているので、音響、光学変調器における光路変化等
が起きず、周波数安定度が優れている。また小型で安価
、低消費電力とすることができる。
Furthermore, since the absorption line is controlled by current modulation without using an acousto-optic modulator, there is no change in the optical path in the acoustic or optical modulator, and the frequency stability is excellent. Furthermore, it can be made small, inexpensive, and consumes low power.

なお上記の実施例において、半導体レーザ1゜11の発
振スペクトル幅が広< S/N比が悪いとき、あるいは
両発振周波数の間隔を広くするときは周波数/$庄突変
換器前に入力高周波を低周波に変換する分周器からなる
ブリスゲーラを挿入すればよい。
In the above embodiment, if the oscillation spectrum width of the semiconductor laser 1゜11 is wide < poor S/N ratio, or when the interval between both oscillation frequencies is widened, the input high frequency is It is sufficient to insert a brisger, which is a frequency divider that converts to a lower frequency.

また周波数/電圧変換器の出力にバイアス電圧を加える
のではなく、周波数/@庄突変換器前でバイアス周波数
をミキサで差引いてもよい。
Also, instead of adding a bias voltage to the output of the frequency/voltage converter, the bias frequency may be subtracted by a mixer before the frequency/voltage converter.

またバイアス電圧を変えることにより、出力光周波数を
可変にすることができる。
Furthermore, by changing the bias voltage, the output optical frequency can be made variable.

また同期検波の参照周波数はfLllを用いて1次微分
信号の0クロスポイントに制御していたが、3flを参
照周波数として3次微分信号の0クロスポイントに制御
することもできる。一般にflの奇数倍の参照周波数を
用いて奇数次の微分信号のOクロスポイントに制御する
ことができる。
Further, the reference frequency for synchronous detection is controlled to the 0 cross point of the first differential signal using fLll, but it can also be controlled to the 0 cross point of the third differential signal using 3fl as the reference frequency. Generally, using a reference frequency that is an odd multiple of fl, it is possible to control the O cross point of an odd-order differential signal.

また上記の各実施例において半導体レーザ1の出射光の
一部をポンプ光として吸収セル3に入射し、他の一部を
反対の方向から細い光束でプローブ光として吸収セル3
に入射して飽和吸収信号を得る飽和吸収法(堀、角田、
龍野、薮崎、小川:飽和吸収分光を用いた半導体レーザ
の周波数安定化、信学技報0QE82−1.1.6)を
用いれば、より安定な周波数安定化レーザ光源を実現す
ることができる。
Furthermore, in each of the above embodiments, a part of the light emitted from the semiconductor laser 1 enters the absorption cell 3 as a pump light, and the other part enters the absorption cell 3 as a thin beam from the opposite direction as a probe light.
Saturation absorption method (Hori, Tsunoda,
Tatsuno, Yabusaki, Ogawa: Frequency stabilization of semiconductor laser using saturation absorption spectroscopy, IEICE Technical Report 0QE82-1.1.6), it is possible to realize a more stable frequency-stabilized laser light source.

〈発明の効果〉 以上述べたように本発明によれば、発振周波数が高安定
に制御された周波数安定化レーザ光源を音響光学変詞器
を用いずに実現することができる。
<Effects of the Invention> As described above, according to the present invention, a frequency-stabilized laser light source in which the oscillation frequency is highly stably controlled can be realized without using an acousto-optic transducer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る周波数安定化レーザ光源の一実施
例を示す構成ブロック図、第2図はその第2の制御部1
6を示す部分構成ブロック図、第3図は第1図装置の動
作を示す説明図、第4図は周波数安定化レーザ光源の従
来例を示す構成ブロック図である。 1・・・第1の半導体レーザ、3・・・吸収セル、4・
・・第1の光検出器、5・・・第1の同期検波回路、6
・・・第1の制御回路、8・・・発振器、11・・・第
2の半導体レーザ、13・・・光学手段、14・・・第
2の光検出器、15・・・周波数/電圧変換器、161
・・・ローパスフィルタ、163・・・第2の制御回路
、fl・・・第1の半導体レーザの発振周波数、f2・
・・第2の半→
FIG. 1 is a configuration block diagram showing an embodiment of a frequency-stabilized laser light source according to the present invention, and FIG. 2 is a second control section 1 thereof.
FIG. 3 is an explanatory diagram showing the operation of the device shown in FIG. 1, and FIG. 4 is a construction block diagram showing a conventional example of a frequency-stabilized laser light source. DESCRIPTION OF SYMBOLS 1... First semiconductor laser, 3... Absorption cell, 4...
...first photodetector, 5...first synchronous detection circuit, 6
... first control circuit, 8 ... oscillator, 11 ... second semiconductor laser, 13 ... optical means, 14 ... second photodetector, 15 ... frequency/voltage converter, 161
...Low pass filter, 163...Second control circuit, fl...Oscillation frequency of first semiconductor laser, f2.
...Second half→

Claims (1)

【特許請求の範囲】[Claims] 第1の半導体レーザと、この第1の半導体レーザの出力
光を入力して特定の周波数で吸収する物質を封入した吸
収セルと、この吸収セルを透過した光を検出する第1の
光検出器と、前記第1の半導体レーザの電流に変調を加
える発振器と、この発振器の出力またはその奇数倍周波
数の信号を参照信号として前記第1の光検出器の出力を
入力する第1の同期検波回路と、この第1の同期検波回
路の出力に基づいて前記第1の半導体レーザの発振周波
数を前記吸収セルの吸収線に制御する第1の制御回路と
、第2の半導体レーザと、前記第1および第2の半導体
レーザの出力光を合波する光学手段と、この光学手段か
ら出力される出力光のビート信号を検出する第2の光検
出器と、この第2の光検出器から出力される信号の周波
数を電圧に変換する周波数/電圧変換回路と、この周波
数/電圧変換回路の出力から変調周波数における交流電
圧成分を除去するローパスフィルタと、このローパスフ
ィルタの出力が一定となるように前記第2の半導体レー
ザの発振周波数を制御する第2の制御回路とを備え、第
2の半導体レーザの出力が無変調となるように構成した
ことを特徴とする周波数安定化レーザ光源。
a first semiconductor laser, an absorption cell filled with a substance that absorbs the output light of the first semiconductor laser at a specific frequency, and a first photodetector that detects the light transmitted through the absorption cell. an oscillator that modulates the current of the first semiconductor laser; and a first synchronous detection circuit that inputs the output of the first photodetector using the output of the oscillator or a signal of an odd multiple frequency thereof as a reference signal. a first control circuit that controls the oscillation frequency of the first semiconductor laser to the absorption line of the absorption cell based on the output of the first synchronous detection circuit; a second semiconductor laser; and an optical means for combining the output light of the second semiconductor laser, a second photodetector for detecting the beat signal of the output light output from the optical means, and a second photodetector for detecting the beat signal of the output light output from the second photodetector. a frequency/voltage conversion circuit that converts the frequency of a signal into a voltage; a low-pass filter that removes an alternating current voltage component at a modulation frequency from the output of the frequency/voltage conversion circuit; 1. A frequency-stabilized laser light source, comprising: a second control circuit for controlling the oscillation frequency of the second semiconductor laser, and configured such that the output of the second semiconductor laser is unmodulated.
JP4740890A 1990-02-28 1990-02-28 Frequency stabilized laser light source Pending JPH03250682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4740890A JPH03250682A (en) 1990-02-28 1990-02-28 Frequency stabilized laser light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4740890A JPH03250682A (en) 1990-02-28 1990-02-28 Frequency stabilized laser light source

Publications (1)

Publication Number Publication Date
JPH03250682A true JPH03250682A (en) 1991-11-08

Family

ID=12774302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4740890A Pending JPH03250682A (en) 1990-02-28 1990-02-28 Frequency stabilized laser light source

Country Status (1)

Country Link
JP (1) JPH03250682A (en)

Similar Documents

Publication Publication Date Title
US6570698B2 (en) Apparatus and method for modulating optical intensity with amplitude noise suppressed by using linear optical modulator
US6141138A (en) Apparatus and method for measuring characteristics of light
JPH03250682A (en) Frequency stabilized laser light source
US5153888A (en) Optical laser frequency stabilizer
Jackson A prototype digital phase tracker for the fibre interferometer
JPH0595153A (en) Optical fsk frequency deviation stabilizer
JP3500582B2 (en) Optical frequency reference light source generator
JPH05275788A (en) Frequency-stabilized semiconductor laser
JP2578271Y2 (en) Frequency stabilized laser light source
JPH03250680A (en) Frequency stabilized laser light source
JP2997557B2 (en) Frequency stabilized light source with narrow linewidth oscillation frequency spectrum
JPH05508222A (en) Single-stage demodulator using reference signal phase fluctuation method
JPS6377180A (en) Semiconductor laser wavelength stabilizer
JP3018615B2 (en) Frequency stabilized laser light source
JPH04158591A (en) Frequency stabilized light source
JPH0453114B2 (en)
JP2595523B2 (en) Measurement device for transfer characteristics of phase-locked oscillator
JP2612919B2 (en) Laser oscillation frequency stabilizer
JPH01102978A (en) Variable wavelength light source
JP2638243B2 (en) Laser device
JPS62252984A (en) Wavelength stabilizing apparatus for semiconductor laser
SU429498A1 (en) DEVICE OF RESTORATION CARRIAGE FREQUENCY OF MODULATED SIGNALS
SU1522376A1 (en) Device for restoring carrier frequency of single-band modulated signal
JPH0212884A (en) Oscillation frequency stabilizer for variable wavelength laser
JP2876498B2 (en) High-precision near-infrared reference light frequency generation method