JPH03250674A - Light emitting device - Google Patents

Light emitting device

Info

Publication number
JPH03250674A
JPH03250674A JP2045924A JP4592490A JPH03250674A JP H03250674 A JPH03250674 A JP H03250674A JP 2045924 A JP2045924 A JP 2045924A JP 4592490 A JP4592490 A JP 4592490A JP H03250674 A JPH03250674 A JP H03250674A
Authority
JP
Japan
Prior art keywords
light
light emitting
intensity
emitting element
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2045924A
Other languages
Japanese (ja)
Other versions
JP2861208B2 (en
Inventor
Hiroshi Takenaka
宏 竹中
Masashi Sakukai
朔晦 正志
Kaoru Umeki
梅木 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2045924A priority Critical patent/JP2861208B2/en
Publication of JPH03250674A publication Critical patent/JPH03250674A/en
Application granted granted Critical
Publication of JP2861208B2 publication Critical patent/JP2861208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To monitor intensity of a light signal to be coupled to an optical fiber and intensity of reflected light simultaneously and independently by detecting the intensity of the light signal to be coupled from a light emitting element to the optical fiber by a first light receiving element and detecting the intensity of the reflected light from a transmission path on the side of the optical fiber by a second light receiving element. CONSTITUTION:When there is reflected light which has been generated in the way of a transmission path on the optical fiber 14 side to be incident on a light emitting element 12, this reflected light enters one of light waveguide paths 16 in a light splitter 15 from the optical fiber 14 and a part of the light is coupled to the other light waveguide path 17. The reflected light coupled to the light waveguide path 17 is impinged on a light receiving element 19, from which current proportional to intensity of the reflected light is output. The reflected light is hardly incident on a light receiving element 18 due to a directionality of the light splitter 15. Therefore not only the intensity of a light signal output from the light emitting element 12 but also the intensity of the reflected light from the transmission path on the optical fiber 14 side can be monitored simultaneously. Thus a transmission state can be stabilized by using the information thereby permitting a device failure to be found in an early stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信に用いられる発光装置に係わり、特に発
光素子から光ファイバに結合される光信号の強度と、光
ファイバ側の伝送路からの反射光とを同時にモニタリン
グする機能を有する発光装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a light emitting device used for optical communication, and in particular, it relates to the intensity of an optical signal coupled from a light emitting element to an optical fiber, and the intensity of an optical signal coupled from a transmission line on the optical fiber side. The present invention relates to a light emitting device having a function of simultaneously monitoring reflected light and reflected light.

〔従来の技術〕[Conventional technology]

従来、この種の発光装置は、例えば第3図に示すように
構成されている。図中、1は筐体であり、この筐体1内
に発光素子2が配設されると共に、この発光素子2の前
方(図において上方〉に集光用のレンズ3が設けられ、
更にこのレンズ3の前方に他端部が外部に導出された光
ファイバ4の一端部が配置されている。発光素子2およ
び受光素子5はそれぞれワイヤ6およびフィードスルー
ビン7を介して筐体1の外部機器と接続されている。
Conventionally, this type of light emitting device has been configured as shown in FIG. 3, for example. In the figure, 1 is a housing, and a light emitting element 2 is disposed inside this housing 1, and a lens 3 for condensing light is provided in front of this light emitting element 2 (above in the figure).
Further, in front of this lens 3, one end portion of an optical fiber 4, the other end of which is led out, is arranged. The light emitting element 2 and the light receiving element 5 are connected to external equipment in the housing 1 via a wire 6 and a feed through bottle 7, respectively.

この発光装置において、発光素子2から出力された光信
号はレンズ3により集光された後、光ファイバ4に結合
され、この光ファイバ4により受光装置側へ伝送される
。発光素子2からの光信号の一部は発光素子2の後方に
も出力され、受光素子5に入射する。発光素子2および
受光素子5はそれぞれフィードスルーピン7を通じて筐
体1の外部と接続されているため、外部から発光素子2
の電流の制御を行うことができると共に、受光素子5を
通じて発光素子2の発光強度のモニタリングを行うこと
ができる。
In this light-emitting device, an optical signal output from a light-emitting element 2 is focused by a lens 3, then coupled to an optical fiber 4, and transmitted through the optical fiber 4 to a light-receiving device. A part of the optical signal from the light emitting element 2 is also output to the rear of the light emitting element 2 and enters the light receiving element 5. Since the light emitting element 2 and the light receiving element 5 are each connected to the outside of the housing 1 through the feedthrough pin 7, the light emitting element 2 can be connected from the outside.
It is possible to control the current, and also monitor the light emission intensity of the light emitting element 2 through the light receiving element 5.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来の発光装置では次のような
問題があった。まず、発光素子2の発光強度のモニタリ
ングを行う際に、光ファイバ4に実際に結合する光強度
の情報が得られない。すなわち、受光素子5の出力電流
として外部で観測される量は発光素子2の発光強度であ
って、通常は光ファイバ4に結合する光信号の強度に比
例した出力電流が得られる。しかしながら、温度変化や
経年変化により発光素子2と光ファイバ4との結合効率
が変化した結果、光ファイバ4へ結合する光信号の強度
に変化が生じた場合でも、発光素子2と受光素子5との
間の結合効率が一定であれば、光ファイバ4へ結合する
光信号の強度が変化したという情報は受光素子5の出力
電流には現われない。その結果従来の発光装置では、光
ファイツク4側に結合する光信号の発光装置自身に起因
する強度の変動を検出しにくいという問題があった。ま
た光ファイバ4側の伝送路上にコネクタ等が存在する場
合には、その接続が不完全であると、コネクタからの反
射光が増加する場合がある。反射光は光ファイバ4を逆
の方向に進み発光素子2に入射し、その動作を不安定に
する。しかし、従来の発光装置においては伝送路からの
反射光の強度をモニタリングすることができなかった。
However, the conventional light emitting device described above has the following problems. First, when monitoring the light emission intensity of the light emitting element 2, information on the light intensity actually coupled to the optical fiber 4 cannot be obtained. That is, the amount of output current observed externally from the light receiving element 5 is the emission intensity of the light emitting element 2, and normally an output current proportional to the intensity of the optical signal coupled to the optical fiber 4 is obtained. However, even if the intensity of the optical signal coupled to the optical fiber 4 changes as a result of changes in the coupling efficiency between the light emitting element 2 and the optical fiber 4 due to temperature changes or changes over time, the light emitting element 2 and the light receiving element 5 may If the coupling efficiency between them is constant, information that the intensity of the optical signal coupled to the optical fiber 4 has changed will not appear in the output current of the light receiving element 5. As a result, the conventional light emitting device has a problem in that it is difficult to detect variations in the intensity of the optical signal coupled to the optical fiber 4 due to the light emitting device itself. Further, when a connector or the like is present on the transmission path on the optical fiber 4 side, if the connection is incomplete, reflected light from the connector may increase. The reflected light travels through the optical fiber 4 in the opposite direction and enters the light emitting element 2, making its operation unstable. However, in conventional light emitting devices, it has not been possible to monitor the intensity of reflected light from the transmission path.

本発明はかかる問題点に鑑みてなされたもので、その目
的は、光ファイバへ結合される光信号の強度および光フ
ァイバ側の伝送路からの反射光の強度を同時に独立して
モニタリングすることができ、安定した光伝送が可能な
発光装置を提供することにある。
The present invention has been made in view of such problems, and its purpose is to simultaneously and independently monitor the intensity of an optical signal coupled to an optical fiber and the intensity of reflected light from a transmission line on the optical fiber side. The object of the present invention is to provide a light-emitting device that is capable of stable light transmission.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の発光装置は、発光素子と、この発光素子から出
力された光信号を外部へ導く光ファイバと、中間部が互
いに光学的に結合された一対の光導波路を有し、一方の
光導波路が光ファイバと発光素子とを光学的に結合して
なる光分岐器と、この光分岐器の他方の光導波路の一方
の端部に光学的に結合された発光素子の発光強度検出用
の第1の発光素子と、他方の光導波路の他方の端部に光
学的に結合された光ファイバ側からの反射光の強度検出
用の第2の発光素子とを備えている。また、本発明の発
光装置は、発光素子の近傍に発光素子の発光強度検出用
の第3の受光素子を更に備えている。
The light-emitting device of the present invention includes a light-emitting element, an optical fiber that guides an optical signal output from the light-emitting element to the outside, and a pair of optical waveguides whose intermediate portions are optically coupled to each other, one of which is optically coupled to the other optical waveguide. an optical splitter formed by optically coupling an optical fiber and a light emitting element, and a second optical branch for detecting the emission intensity of the light emitting element optically coupled to one end of the other optical waveguide of the optical splitter. A second light emitting element is provided for detecting the intensity of reflected light from the optical fiber side that is optically coupled to the other end of the other optical waveguide. Further, the light emitting device of the present invention further includes a third light receiving element for detecting the emission intensity of the light emitting element near the light emitting element.

このような構成により、請求項1記載の発光装置におい
ては、発光素子から出力された光信号は光分岐器の一方
の光導波路に結合される。光導波路に結合した光信号の
大半は光ファイバを通じて外部へ伝送されるが、一部は
他方の光導波路側に結合されて第1の受光素子へ入力さ
れ、第1の受光素子はこの入力信号に応じた電流を出力
する。
With such a configuration, in the light emitting device according to the first aspect, the optical signal output from the light emitting element is coupled to one optical waveguide of the optical splitter. Most of the optical signal coupled to the optical waveguide is transmitted to the outside through the optical fiber, but a portion is coupled to the other optical waveguide and input to the first light receiving element, and the first light receiving element receives this input signal. Outputs current according to the current.

一方、光ファイバ側の伝送路の途中で発生して発光素子
に向かって入射する反射光は、光ファイ/NJから光分
岐器の一方の光導波路に入り、その一部が他方の光導波
路に結合した後第2の受光素子へ入射され、第2の受光
素子は反射光の強度に比例した電流を出力する。したが
ってこの発光装置では、光ファイバへ結合される光信号
の強度をモニタリングできると同時に、光グアイノ1′
側から入射してくる反射光の強度をモニタリングするこ
とができる。また、請求項2記載の発光装置においては
、発光素子から出力された光信号は第3の受光素子にも
直接に人力されるため、光ファイノくへの入射光の強度
の変動が発光素子に起因するものか、あるいはレンズ等
の結合系に起因するものかの判別が可能となる。
On the other hand, the reflected light that is generated in the middle of the transmission line on the optical fiber side and enters the light emitting element enters one optical waveguide of the optical splitter from the optical fiber/NJ, and a part of it enters the other optical waveguide. After being coupled, the light is incident on the second light receiving element, and the second light receiving element outputs a current proportional to the intensity of the reflected light. Therefore, with this light emitting device, it is possible to monitor the intensity of the optical signal coupled to the optical fiber, and at the same time, to monitor the intensity of the optical signal coupled to the optical fiber.
The intensity of reflected light entering from the side can be monitored. Further, in the light emitting device according to claim 2, since the optical signal output from the light emitting element is also directly inputted to the third light receiving element, fluctuations in the intensity of the light incident on the optical fiber will affect the light emitting element. It becomes possible to determine whether the problem is caused by the problem or the problem is caused by the coupling system such as a lens.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例に係わる発光装置の内部を示
すものである。図中、11は筐体であり、この筐体11
内に発光素子12が配設されている。
FIG. 1 shows the inside of a light emitting device according to an embodiment of the present invention. In the figure, 11 is a housing, and this housing 11
A light emitting element 12 is disposed inside.

この発光素子12の前方には集光用のレンズ13が配設
され、更にこのレンズ13の前方には2人力×2出力型
の光分岐器15が配設されている。
A lens 13 for condensing light is arranged in front of the light emitting element 12, and further in front of this lens 13, a 2-manpower x 2-output type optical splitter 15 is arranged.

光分岐器15は一対の光導波路16.17を有し、これ
らの光導波路16.17は中央部で互いに光学的に結合
している。光分岐器15の前方には出力端が外部に導出
された光ファイバ14の入力端が配置されている。光フ
ァイバ14の入力端と発光素子12の前方出力端12a
とは、光分岐器15の一方の光導波路16により光学的
に結合されている。他方の光導波路17の両出力端の近
傍にはそれぞれ受光素子18.19が配設されている。
The optical splitter 15 has a pair of optical waveguides 16.17, and these optical waveguides 16.17 are optically coupled to each other at the center. An input end of an optical fiber 14 whose output end is led out is arranged in front of the optical splitter 15. Input end of optical fiber 14 and front output end 12a of light emitting element 12
and are optically coupled by one optical waveguide 16 of the optical splitter 15. Light receiving elements 18 and 19 are arranged near both output ends of the other optical waveguide 17, respectively.

一方の受光素子18は発光素子12から光ファイバ14
へ結合される光信号の強度を検出するものである。他方
の受光素子19は光ファイバ14側の伝送路からの反射
光の強度を検出するものである。発光素子12および受
光素子18.19はそれぞれワイヤ21を介してフィー
ドスルーピン20と接続され、これによって外部から発
光素子12への電流の制御を行うと共に、受光素子18
.19からの出力電流の検出を行うようになっている。
One light receiving element 18 is connected to the optical fiber 14 from the light emitting element 12.
It detects the intensity of the optical signal coupled to the The other light receiving element 19 detects the intensity of the reflected light from the transmission line on the optical fiber 14 side. The light-emitting element 12 and the light-receiving element 18 , 19 are each connected to a feed-through pin 20 via a wire 21 , thereby controlling the current from the outside to the light-emitting element 12 .
.. The output current from 19 is detected.

このような構成において、本実施例の発光装置では、発
光素子12の前方出力Fii 12 aから出力された
光信号はレンズ13を通過して、光分岐器15の一方の
光導波路16に結合される。光導波路16に結合した光
信号はその中を進み、大半は光導波路16の出力端に接
続された光ファイバ14を通じて外部へ伝送されるが、
一部は光導波路17の側に結合される。光導波路17に
結合された光信号は受光素子18に入射し、受光素子1
8はこの入射光に応じた電流を出力する。このとき光分
岐器15の方向性のため、受光素子18の反対側に配設
された受光素子19には発光素子12からの光信号はほ
とんど入射しない。ここで、受光素子18へ入射する光
信号の強度は、発光素子12〜レンズ13間と、レンズ
13〜光分岐器15間での光軸ずれによる光強度の変動
にも追従する。したがって光ファイバ14に結合される
光信号の強度は受光素子18から出力された電流をフィ
ードスルーピン5を介して外部機器で検出することによ
り正確にモニタリングすることができる。
In such a configuration, in the light emitting device of this embodiment, the optical signal output from the front output Fii 12 a of the light emitting element 12 passes through the lens 13 and is coupled to one optical waveguide 16 of the optical splitter 15. Ru. The optical signal coupled to the optical waveguide 16 travels therein, and most of it is transmitted to the outside through the optical fiber 14 connected to the output end of the optical waveguide 16.
A portion is coupled to the optical waveguide 17 side. The optical signal coupled to the optical waveguide 17 enters the light receiving element 18, and the light receiving element 1
8 outputs a current according to this incident light. At this time, due to the directionality of the optical splitter 15, almost no optical signal from the light emitting element 12 enters the light receiving element 19 disposed on the opposite side of the light receiving element 18. Here, the intensity of the optical signal incident on the light-receiving element 18 also follows variations in light intensity due to optical axis misalignment between the light emitting element 12 and the lens 13 and between the lens 13 and the optical splitter 15. Therefore, the intensity of the optical signal coupled to the optical fiber 14 can be accurately monitored by detecting the current output from the light receiving element 18 via the feed-through pin 5 with an external device.

次に、光ファイバ14側の伝送路の途中で発生t2て発
光素子12に向かって入射する反射光がある場合には、
この反射光は光ファイバ14から光分岐器15内の一方
の光導波路16に入り、その一部が他方の光導波路17
に結合される。光導波路17に結合された反射光は受光
素子19へ入射され、この受光素子19から反射光の強
度に比例した電流が出力される。なお、この場合も、光
分岐器15の方向性により反射光は受光素子18にはほ
とんど入射しない。したがって、本実施例の発光装置で
は、発光素子12から出力される光信号の強度と共に光
ファイバ1411Jの伝送路からの反射光の強度をも同
時にモニタリグすることができる。よってこれらの情報
を用いてより伝送状態を安定化でき、また装置の異常を
早期に発見することかできる。
Next, when there is reflected light that is generated in the middle of the transmission path on the optical fiber 14 side and enters toward the light emitting element 12,
This reflected light enters one optical waveguide 16 in the optical splitter 15 from the optical fiber 14, and a part of it enters the other optical waveguide 17.
is combined with The reflected light coupled to the optical waveguide 17 is incident on the light receiving element 19, and a current proportional to the intensity of the reflected light is output from the light receiving element 19. In this case as well, the reflected light hardly enters the light receiving element 18 due to the directionality of the optical splitter 15. Therefore, in the light emitting device of this embodiment, it is possible to simultaneously monitor the intensity of the optical signal output from the light emitting element 12 and the intensity of the reflected light from the transmission line of the optical fiber 1411J. Therefore, by using this information, it is possible to further stabilize the transmission state, and it is also possible to detect abnormalities in the device at an early stage.

第2図は本発明の他の実施例を示すものである。FIG. 2 shows another embodiment of the invention.

本実施例では、発光素子12の後方出力端12bの近傍
にも受光素子22を配設し、この受光素子22をフィー
ドスルーピン20に接続したものである。受光素子22
から出力される光信号は後方出力端12bからも出力さ
れて受光素子22にも人力される。すなわぢ受光素子2
2から出力される電流の値は、発光素子12自身の発光
強度に比例する。よって受光素子18の出力電流の値と
受光素子22の出力電流の値とを比較することにより、
光ファイバ14−入射される光信号の強度の変動が、発
光素子12に起因するものか、あるいはレンズ13の近
傍の結合系に起因するものかの判別が可能であり、より
正確な発光装置についての情報を得ることができる。
In this embodiment, a light receiving element 22 is also provided near the rear output end 12b of the light emitting element 12, and this light receiving element 22 is connected to the feedthrough pin 20. Light receiving element 22
The optical signal outputted from the rear output end 12b is also outputted to the light receiving element 22. In other words, light receiving element 2
The value of the current output from the light emitting element 12 is proportional to the light emission intensity of the light emitting element 12 itself. Therefore, by comparing the value of the output current of the light receiving element 18 and the value of the output current of the light receiving element 22,
Optical fiber 14 - It is possible to determine whether the fluctuation in the intensity of the incident optical signal is caused by the light emitting element 12 or the coupling system near the lens 13, making it possible to create a more accurate light emitting device. information can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように請求項1記載の発明によれば、発光
素子と光ファイバとの間に、一対の光導波路を有する光
分岐器を配設し、一方の光導波路により発光素子と光フ
ァイバとを結合すると共に。
As explained above, according to the invention described in claim 1, an optical splitter having a pair of optical waveguides is disposed between the light emitting element and the optical fiber, and one optical waveguide connects the light emitting element and the optical fiber. along with combining.

他方の光導波路の両出力端部に第1の受光素子および第
2の受光素子をそれぞれ配設し、第1の受光素子により
発光素子から光ファイバへ結合される光信号の強度を検
出し、第2の受光素子により光ファイバ側の伝送路から
の反射光の強度を検出するようにしたので、光ファイバ
へ結合される光信号の強度および反射光の強度を同時に
独立してモニリタリングすることができ、安定した光伝
送が可能な発光装置を実現できる。
A first light receiving element and a second light receiving element are respectively disposed at both output ends of the other optical waveguide, and the first light receiving element detects the intensity of the optical signal coupled from the light emitting element to the optical fiber; Since the second light receiving element detects the intensity of the reflected light from the transmission line on the optical fiber side, it is possible to simultaneously and independently monitor the intensity of the optical signal coupled to the optical fiber and the intensity of the reflected light. Thus, a light emitting device capable of stable optical transmission can be realized.

また、請求項2記載の発明によれば、発光素子から出力
された光信号を第3の受光素子にも直接に人力させるよ
うにしたので、光ファイバへ結合される光信号の強度の
変動が発光素子に起因するものか、あるいはレンズ等の
結合系に起因するものかの判別が可能となる。
Further, according to the invention as claimed in claim 2, since the optical signal output from the light emitting element is directly inputted to the third light receiving element, fluctuations in the intensity of the optical signal coupled to the optical fiber are prevented. It becomes possible to determine whether the problem is caused by the light emitting element or the coupling system such as a lens.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係わる発光装置の内部構成
を示す断面図、第2図は本発明の他の実施例に係わる発
光装置の内部構成を示す断面図、第3図は従来の発光装
置の内部構成を示す断面図である。 11・・・・・・筐体、13・・・・・・レンズ、14
・・・・・・光ファイバ、15・・・・・・光分岐器、
16.17・・・・・・光導波路、 18.19.22・・・・・・受光素子。
FIG. 1 is a cross-sectional view showing the internal structure of a light-emitting device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the internal structure of a light-emitting device according to another embodiment of the present invention, and FIG. 3 is a conventional FIG. 2 is a cross-sectional view showing the internal configuration of the light emitting device. 11... Housing, 13... Lens, 14
......optical fiber, 15...optical splitter,
16.17... Optical waveguide, 18.19.22... Light receiving element.

Claims (1)

【特許請求の範囲】 1、発光素子と、 この発光素子から出力された光信号を外部へ導く光ファ
イバと、 中間部が互いに光学的に結合された一対の光導波路を有
し、一方の光導波路が前記光ファイバと前記発光素子と
を光学的に結合してなる光分岐器と、 この光分岐器の他方の光導波路の一方の端部に光学的に
結合された前記発光素子の発光強度検出用の第1の発光
素子と、 前記他方の光導波路の他方の端部に光学的に結合された
前記光ファイバ側からの反射光の強度検出用の第2の発
光素子 とを具備することを特徴とする発光装置。 2、前記発光素子の近傍に前記発光素子の発光強度検出
用の第3の受光素子を更に備えてなる請求項1記載の発
光装置。
[Claims] 1. A light-emitting element, an optical fiber that guides an optical signal output from the light-emitting element to the outside, and a pair of optical waveguides whose intermediate portions are optically coupled to each other, one of which is optically coupled to the other. an optical splitter in which a wave path optically couples the optical fiber and the light emitting element; and a light emitting intensity of the light emitting element optically coupled to one end of the other optical waveguide of the optical splitter. A first light emitting element for detection; and a second light emitting element for detecting the intensity of reflected light from the optical fiber side optically coupled to the other end of the other optical waveguide. A light emitting device characterized by: 2. The light emitting device according to claim 1, further comprising a third light receiving element for detecting the intensity of light emitted from the light emitting element near the light emitting element.
JP2045924A 1990-02-28 1990-02-28 Light emitting device Expired - Lifetime JP2861208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2045924A JP2861208B2 (en) 1990-02-28 1990-02-28 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2045924A JP2861208B2 (en) 1990-02-28 1990-02-28 Light emitting device

Publications (2)

Publication Number Publication Date
JPH03250674A true JPH03250674A (en) 1991-11-08
JP2861208B2 JP2861208B2 (en) 1999-02-24

Family

ID=12732811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2045924A Expired - Lifetime JP2861208B2 (en) 1990-02-28 1990-02-28 Light emitting device

Country Status (1)

Country Link
JP (1) JP2861208B2 (en)

Also Published As

Publication number Publication date
JP2861208B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US4356396A (en) Fiber optical measuring device with compensating properties
US4475789A (en) Optical fiber power tap
EP0144897A2 (en) Fiber optics system with self test capability
US5471301A (en) Optical fiber gyro
US6792177B2 (en) Optical switch with internal monitoring
JPH11330939A (en) Optical device, photoelectric switch, fiber type photoelectric switch, and color discrimination sensor
CA2139203C (en) Two-way line monitor
US20230008989A1 (en) Optical structure, optical coupling method, and photonic integrated circuit chip
JP2861208B2 (en) Light emitting device
US4789778A (en) Two terminal light barrier system
JP2004221420A (en) Optical monitor, optical monitor array, optical system using optical monitor and photodiode
JP2964343B2 (en) Optical switch for fault detection
JPH05297233A (en) Monitor structure of light waveguide module
JP2002243989A (en) Optical semiconductor module
JPS6148748A (en) Optical measuring device
JPH03249502A (en) Optical sensor
JP3583841B2 (en) Optical device for monitoring
JPS61202105A (en) Photosensor
JP2798339B2 (en) 2-wavelength optical multiway switch
JPH0990140A (en) Two input fiber and two input fiber-type light-receiving device
JPS6147514A (en) Reflective type optical fiber sensor
JP2907037B2 (en) Bidirectional line monitor
JPS61228304A (en) Optical strain measuring device
JP2000223747A (en) Light emitting device
JPH055322B2 (en)