JPH03249514A - Flatness measuring instrument - Google Patents

Flatness measuring instrument

Info

Publication number
JPH03249514A
JPH03249514A JP4782490A JP4782490A JPH03249514A JP H03249514 A JPH03249514 A JP H03249514A JP 4782490 A JP4782490 A JP 4782490A JP 4782490 A JP4782490 A JP 4782490A JP H03249514 A JPH03249514 A JP H03249514A
Authority
JP
Japan
Prior art keywords
distance
strip
flatness
measuring device
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4782490A
Other languages
Japanese (ja)
Other versions
JP2605158B2 (en
Inventor
Takao Yamane
山根 孝夫
Takanari Kikuchi
菊地 隆也
Morio Saito
斉藤 森生
Riyouji Shimizu
清水 鐐司
Katsuya Ueki
勝也 植木
Masayuki Sugiyama
昌之 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
JFE Engineering Corp
Original Assignee
Mitsubishi Electric Corp
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, NKK Corp, Nippon Kokan Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2047824A priority Critical patent/JP2605158B2/en
Publication of JPH03249514A publication Critical patent/JPH03249514A/en
Application granted granted Critical
Publication of JP2605158B2 publication Critical patent/JP2605158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To eliminate the factor of the up-down vibration of a beltlike body and to improve the flatness measurement accuracy by measuring inclination values at respective measurement positions by using twin beam type distance measuring instruments, and calculating flatness such as an elongation percentage from the inclination values. CONSTITUTION:The twin beam type distance measuring instruments 12 are provided above the beltlike body, which moves in a longitudinal direction at a constant speed V, in a transverse direction of the beltlike body. The distance measuring instruments which have fine intervals in the moving direction of the beltlike body irradiate the measurement positions on the surface of the beltlike body with couples of mutually parallel measurement beams and receive their reflected beams to measure respective distances to respective irradiation positions having fine intervals. Their distance signals are inputted to an inclination value arithmetic part in an arithmetic unit 15 and the inclination values at the relevant measurement positions are calculated. The calculated inclination values are inputted to a succeeding elongation percentage arithmetic part 18 and totalized to calculate arc length and the elongation percentage at a specific distance while the influence of the up-down vibration component of the beltlike body 11 is removed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は長手方向に移動する帯状体上の幅方向の複数箇
所で帯状体表面の平坦度を測定する平坦度測定装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flatness measuring device that measures the flatness of the surface of a strip moving in the longitudinal direction at a plurality of locations in the width direction of the strip.

[従来の技術] 製鉄所における熱間圧延ラインにおいて、圧延体の幅方
向の中央部が伸びる中伸び状態1周辺部の形状が波打つ
耳波状態等の形状不良を検出するために、検査ラインに
は帯状の圧延体表面の平坦度を測定する平坦度測定装置
がオンライン設置されている。
[Prior Art] In a hot rolling line in a steel mill, an inspection line is used to detect shape defects such as a mid-elongation state in which the center part in the width direction of a rolled product is elongated, and an ear wave state in which the shape of the peripheral part is wavy. A flatness measuring device is installed online to measure the flatness of the surface of a strip-shaped rolled product.

この種の平坦度測定装置においては種々の手法で平坦度
を定量的に検出できる装置が開発されているが、そのよ
うな手法の一つとして、帯状体上の幅方向の複数箇所で
帯状体表面の平坦度を測定する平坦度測定装置が提唱さ
れている(特開昭61−178608号公報)。
This type of flatness measuring device has been developed to be able to quantitatively detect flatness using various methods. A flatness measuring device for measuring the flatness of a surface has been proposed (Japanese Unexamined Patent Publication No. 178608/1983).

第6図は上述した手法で平坦度を測定する平坦度測定装
置の概略構成を示す模式図である。長手方向に一定速度
Vで移動する帯状体1の上方位置に帯状体1の幅方向に
複数の距離測定器2が配設されている。各距離測定器2
は、一定時間Δを毎に距Mal定器2から帯状体1の表
面までの距離Yを測定して、それぞれ距離信号を次のロ
ーパスフィルタ3を介して弧長演算器4へ送出する。弧
長演算器4は、第7図に示すように、時刻t、と一定時
間Δを経過後の時刻t1+、における距離Y+ 、Y+
++  および該当時間Δを内の移動距離ΔX+(−V
・Δt)から(1)式に基づいて該当距離ΔX、におけ
る帯状体1の表面の長さ、すなわち弧長ΔS、が算出さ
れる。
FIG. 6 is a schematic diagram showing a schematic configuration of a flatness measuring device that measures flatness using the method described above. A plurality of distance measuring devices 2 are disposed in the width direction of the strip 1 above the strip 1 that moves at a constant speed V in the longitudinal direction. Each distance measuring device 2
measures the distance Y from the distance Mal determiner 2 to the surface of the strip 1 at regular intervals Δ, and sends each distance signal to the arc length calculator 4 via the next low-pass filter 3. As shown in FIG. 7, the arc length calculator 4 calculates distances Y+ and Y+ at time t and time t1+ after a certain time Δ has elapsed.
++ and the moving distance ΔX+(-V
- From Δt), the length of the surface of the strip 1 at the corresponding distance ΔX, that is, the arc length ΔS, is calculated based on equation (1).

ΔS、−(ΔXI ) 2+ (ΔY+)・・・(1) 但し、ΔYl−Y、−YI+1 したがって、帯状体1が長手方向にa点からb点までの
距離りだけ移動した場合におけるその距離りに対応する
全体の弧長Sは、L−(n−1)ΔX1とすると、(2
)式で示される。
ΔS, -(ΔXI) 2+ (ΔY+)...(1) However, ΔYl-Y, -YI+1 Therefore, when the strip 1 moves by the distance from point a to point b in the longitudinal direction, the distance is The overall arc length S corresponding to is L-(n-1)ΔX1, then (2
) is shown by the formula.

よって、距離したけ移動した場合の伸び率βは(3)式
で定義され、各伸び率演算器5において算出される。
Therefore, the elongation rate β when moving by the distance is defined by equation (3), and is calculated by each elongation rate calculator 5.

β−(S−L)/L           ・ (3)
以上の手法を用いて幅方向の各位置における各伸び率β
1〜βゆが求まる。
β-(S-L)/L ・ (3)
Using the above method, each elongation rate β at each position in the width direction
1 to β distortion can be found.

なお、第6図においては、測定された伸び串から帯状体
1のおおきなうねりによる要因を排除するために、幅方
向の各位置で測定された弧長SS2.・・・、S、のう
ちの最小の弧長Sユ1oを用いて各幅方向位置の各伸び
率β1〜β、を算出している。
In addition, in FIG. 6, in order to eliminate the cause of large undulations of the strip 1 from the measured elongated skewer, the arc length SS2. . . , S, the elongation rates β1 to β at each width direction position are calculated using the minimum arc length Syu1o.

β、−(S、、−S、、、)  / S mln   
   −(4)また、前記ローパスフィルタ3は測定さ
れた距離信号に含まれる高周波の雑音成分を除去する機
能を有している。
β, −(S,, −S,,,) / S mln
-(4) Furthermore, the low-pass filter 3 has a function of removing high-frequency noise components contained in the measured distance signal.

[発明が解決しようとする課題] しかしながら上記のように構成された平坦度測定装置に
においてもまだ解消すべき次のような問題があった。
[Problems to be Solved by the Invention] However, even in the flatness measuring device configured as described above, there are still problems as described below that need to be solved.

すなわち、この平坦度測定装置を用いて、例えば、製鉄
所における熱間圧延ラインにおいて、例えばローラーコ
ンベア上を連続移動している圧延帯の平坦度を測定する
場合においては、測定対象となる帯状体は絶えず上下左
右に振動しながら移動するので、測定された平坦度にこ
の振動に起因する誤差が混入する。この搬送に伴って発
生する振動は、単純な上下動だけでなく、枝打や、揺れ
などの複合された複雑な現象であるため、この振動を完
全に防止することは困難であるので、平坦度の測定精度
を例えば上下振動の振幅以下に向上させることは不可能
である。さらに、通常は、上下振動の振幅の方が平坦度
不良による帯状体の高さ振動より大きいので、精度良く
平坦度を測定することは難しい。
That is, when using this flatness measuring device to measure the flatness of a rolling strip that is continuously moving on a roller conveyor in a hot rolling line in a steel mill, for example, the flatness of a strip to be measured is Since it constantly moves while vibrating vertically and horizontally, errors caused by this vibration are mixed into the measured flatness. The vibrations that occur with this transportation are not just simple vertical movements, but also complex phenomena such as pruning and shaking, so it is difficult to completely prevent these vibrations. For example, it is impossible to improve the accuracy of measurement of vibration below the amplitude of vertical vibration. Furthermore, since the amplitude of the vertical vibration is usually larger than the height vibration of the strip due to poor flatness, it is difficult to accurately measure the flatness.

なお、距離測定器2から出力される距離信号に含まれる
前記振動に起因する振動成分を例えばローパスフィルタ
等で除去することが考えられるが、上下振動の周期と測
定時間間隔Δtとか近似するとこの手法を採用できない
ので、帯状体1の移動速度を低下しなければならない問
題がある。
Note that it is conceivable to remove the vibration component caused by the vibration contained in the distance signal output from the distance measuring device 2 using, for example, a low-pass filter, but this method can be solved by approximating the period of vertical vibration and the measurement time interval Δt. Therefore, there is a problem in that the moving speed of the strip 1 must be reduced.

本発明はこのような事情に鑑みてなされたものであり、
ツインビーム型の距離測定器を用いて各測定位置におけ
る傾斜値をifj定することによって、被測定体として
の帯状体の上下振動の要因を確実に排除でき、平坦度の
測定精度を大幅に向上できる平坦度測定装置を提供する
ことを目的とする。
The present invention was made in view of these circumstances, and
By determining the inclination value at each measurement position using a twin beam distance measuring device, it is possible to reliably eliminate the cause of vertical vibration of the strip as the object to be measured, greatly improving flatness measurement accuracy. The purpose is to provide a flatness measurement device that can

[課題を解決するための手段] 上記課題を解消するために、本発明は、長手方向に移動
する帯状体の幅方向にこの帯状体表面までの距離を測定
する複数の距離計測定器および帯状体の移動速度を検出
する速度検出器を設け、各距離測定器および速度検出器
から得られる各距離信号および速度信号に基づいて帯状
体の表面長さを示す各弧長を算出し、この各弧長から帯
状体の平坦度を得る平坦度測定装置において、前記各距
M 11PJ定機を、微小間隔を有した互いに平行な一
対の測定用ビーム光を帯状体表面の測定位置に照射して
、この帯状体面上の測定位置における微小間隔を有した
各照射位置までの距離を同時に測定するツインビーム型
の距離測定器で構成し、この距離n]定器で測定された
各照射位置までの距離から該当測定位置における傾斜値
を算出し、帯状体の各移動方向位置に対応する各傾斜値
から弧長を算出するようにしている。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a plurality of distance meter measuring devices that measure the distance to the surface of a strip moving in the longitudinal direction in the width direction of the strip. A speed detector is provided to detect the moving speed of the body, and each arc length indicating the surface length of the strip is calculated based on each distance signal and speed signal obtained from each distance measuring device and speed detector. In a flatness measuring device that obtains the flatness of a strip from the arc length, each of the distance M 11PJ fixed machines is irradiated with a pair of mutually parallel measurement beams having a minute interval to a measurement position on the surface of the strip. , consists of a twin beam type distance measuring device that simultaneously measures the distance to each irradiation position with minute intervals at the measurement position on the surface of the strip, and this distance n] to each irradiation position measured by the meter is used. The slope value at the corresponding measurement position is calculated from the distance, and the arc length is calculated from each slope value corresponding to each position in the moving direction of the band-shaped body.

[作用] まず、帯状体上の任意の測定位置における傾斜値を測定
することによって、測定された平坦度から振動要因を排
除できる理由を説明する。
[Operation] First, the reason why vibration factors can be eliminated from the measured flatness by measuring the slope value at an arbitrary measurement position on the strip will be explained.

幅方向に配列された各距離測定器にて測定された帯状体
表面までの距離Yは、第2図に示すように、基本的に帯
状体の移動位置Xの関数F (X)であるが、上下方向
の時間tによる振動成分B(1)の関数でもある。よっ
て、距離Yは(5)式に示すように両者の和の関数とし
て表現できる。
As shown in Fig. 2, the distance Y to the surface of the strip measured by each distance measuring device arranged in the width direction is basically a function F (X) of the moving position X of the strip. , is also a function of the vibration component B(1) depending on the time t in the vertical direction. Therefore, the distance Y can be expressed as a function of the sum of the two, as shown in equation (5).

Y (X、t)−F (X)+B (t)   ・・・
(5)ここで、(5)式の両辺を位置Xて微分すれば、
dY (X、t)/dX=dF (X)/dX(6) すなわち、(6)式の右辺(dF (X)/dX)は帯
状体表面の該当測定位置Xにおける傾斜値を示す。よっ
て、各距離測定器でもって該当測定位置における傾斜値
を測定し、各測定位置における傾斜値を集計することに
よって、振動成分B (t)の影響を除去した所定距離
における弧長か得られる。したがって、この弧長から平
坦度が得られる。
Y (X, t) - F (X) + B (t) ...
(5) Here, if we differentiate both sides of equation (5) with respect to the position X, we get
dY (X, t)/dX=dF (X)/dX (6) That is, the right side (dF (X)/dX) of equation (6) indicates the slope value at the corresponding measurement position X on the surface of the strip. Therefore, by measuring the slope value at the corresponding measurement position with each distance measuring device and summing up the slope values at each measurement position, the arc length at a predetermined distance with the influence of the vibration component B (t) removed can be obtained. Therefore, flatness is obtained from this arc length.

なお、距離測定装置で各測定位置における傾斜値を得る
手段として、測定位置に微小間隔を有した平行する測定
用ビーム光線を照射し、微小間隔を有した各照射位置ま
での距離を同時に測定して、各距離から該当測定位置に
おける傾斜度を得るようにしている。
In addition, as a means of obtaining inclination values at each measurement position with a distance measuring device, parallel measuring beams with minute intervals are irradiated onto the measurement positions, and the distances to each irradiation position with minute intervals are simultaneously measured. The degree of inclination at the corresponding measurement position is obtained from each distance.

[実施例] 以下本発明の一実施例を図面を用いて説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は実施例の平坦度測定装置の概略構成を示す模式
図である。長手方向に一定速度Vで移動する帯状体1の
上方位置で、かつ帯状体11の幅方向に複数のツインビ
ーム型の距離測定器12が配設されている。
FIG. 1 is a schematic diagram showing a schematic configuration of a flatness measuring device according to an embodiment. A plurality of twin-beam distance measuring devices 12 are disposed above the strip 1 that moves at a constant speed V in the longitudinal direction and in the width direction of the strip 11.

このツインビーム型の各距離測定器12は、第2図に示
すように、帯状体1の移動方向に微小間隔dXを有した
平行な例えば高周波変調されたレーザ光線からなる測定
用ビーム12a、12bを帯状体]の測定位置に照射し
、該当照射位置に形成される各照射位置から反射された
各反射光を受光器で受光して、この距離測定器2から各
照射位置までの各距離Y、、、Y、2を測定する。
As shown in FIG. 2, each twin-beam type distance measuring device 12 has measuring beams 12a and 12b composed of parallel, for example, high-frequency modulated laser beams having a minute interval dX in the moving direction of the strip body 1. is irradiated onto the measuring position of the belt-shaped body, and each reflected light reflected from each irradiation position formed at the corresponding irradiation position is received by a light receiver, and each distance Y from this distance measuring device 2 to each irradiation position is determined. , ,Y,2 is measured.

各距離測定器12で測定されたそれぞれ一対の各距離Y
 II+ Y 、2を示す各距離信号は電気/光変換器
13で光信号に変換されて、光ファイバ14を介して演
算装置15内の光/電気変換器16で元の距離信号に戻
される。各距離信号は次の各傾斜値演算部17へ入力さ
れる。この各傾斜値演算部17は、人力された各距離信
号から該当測定位置における傾斜値を算出する。すなわ
ち、各距離測定器12における測定用ビーム光12a。
Each pair of distances Y measured by each distance measuring device 12
Each distance signal indicating II+Y, 2 is converted into an optical signal by an electric/optical converter 13, and then returned to the original distance signal by an optical/electrical converter 16 in the arithmetic unit 15 via an optical fiber 14. Each distance signal is input to each of the following slope value calculation sections 17. Each slope value calculation unit 17 calculates a slope value at a corresponding measurement position from each manually inputted distance signal. That is, the measuring beam light 12a in each distance measuring device 12.

12bの微小間隔dXは既知であるので、各照射位置ま
での距離の差(Y、、−Y、□)をdYとすると、該当
測定位置における傾斜度は(dY/dX)となる。
Since the minute interval dX of the beam 12b is known, if the difference in distance (Y, -Y, □) to each irradiation position is dY, then the degree of inclination at the corresponding measurement position is (dY/dX).

各傾斜値演算部17にて算出された各幅方向位置におけ
る各傾斜度(dY/dX)は次の伸び率演算部18へ入
力される。この伸び率演算部18にはカウンタ19か接
続されている。二〇カウンタ19には、帯状体1をほぼ
一定速度■で移動させるための搬送ローラ20の回転速
度を検出する検出器21から搬送速度に応じたパルス信
号か人力される。カウンタ19はそのパルス数をカウン
トして、カウント値が一定値に達すると伸び率演算部1
8ヘトリガ信号を送出する。実施例においては、帯状体
11が移動方向に前記測定用ビーム12a、12bの微
小間隔dXだけ移動するとトリガ信号を出力する。よっ
て、検出器21およびカウンタ19は帯状体1の速度を
検出する速度検出器を構成する。
Each slope (dY/dX) at each width direction position calculated by each slope value calculation section 17 is inputted to the next elongation rate calculation section 18. A counter 19 is also connected to this elongation rate calculating section 18 . 20 The counter 19 receives a pulse signal corresponding to the conveyance speed from a detector 21 that detects the rotational speed of the conveyance roller 20 for moving the strip 1 at a substantially constant speed. The counter 19 counts the number of pulses, and when the count value reaches a certain value, the elongation rate calculation unit 1
8. Sends a trigger signal. In the embodiment, a trigger signal is output when the strip 11 moves in the movement direction by a minute distance dX between the measurement beams 12a and 12b. Therefore, the detector 21 and the counter 19 constitute a speed detector that detects the speed of the strip 1.

そして、伸び率演算部18は次に示す演算を行って、第
2図に示すように、位置aから位置すまでの距離りに対
応する弧長Sおよび伸び率βを算出する。
Then, the elongation rate calculation unit 18 performs the following calculation to calculate the arc length S and the elongation rate β corresponding to the distance from the position a to the position as shown in FIG.

すなわち、第2図に示したように、微小距離dXに対応
する微小弧長をdSとすると、微小弧長をdSは dS−(dX) 2→−(dY)2 そして、距離りに対応する弧長Sは ・・・(力 また伸び率はβ−(S−L)/Lで定義されるので、こ
の式に(7)式を代入すると、 ・・・(8) なお、 (8) 式を実際に計算する場合には、 カラ ンタ19からトリガ信号が入力する毎に、傾斜値演算部
17から出力される傾斜値(dY/dX)の2乗値を位
置aから位置すまて順次加算していけばよい。
That is, as shown in Figure 2, if the minute arc length corresponding to the minute distance dX is dS, then the minute arc length dS is dS - (dX) 2 → - (dY) 2 and corresponds to the distance. The arc length S is...(Force and elongation rate are defined as β-(S-L)/L, so substituting equation (7) into this equation gives...(8) When actually calculating the formula, every time a trigger signal is input from the calanta 19, the square value of the slope value (dY/dX) output from the slope value calculation unit 17 is sequentially added starting from position a. Just keep doing it.

以上の手法を用いて帯状体11の幅方向の各位置におけ
る各伸び率β1〜β□が求まる。
Using the above method, each elongation rate β1 to β□ at each position in the width direction of the strip 11 is determined.

また、実際には連続測定しているので、距離りは一定で
あるが、位置a、bが順次移動していく。
Furthermore, since the measurement is actually carried out continuously, the distance is constant, but the positions a and b sequentially move.

その結果、伸び率βは連続的に出力される。As a result, the elongation rate β is continuously output.

得られた各伸び率β1〜β、は出力制御部22を介して
外部のホストコンピュータ23.ダスク制御装置24、
記録計25、CRT表示装置26等へ出力される。
The obtained elongation rates β1 to β are transmitted via the output control unit 22 to an external host computer 23. Dusk control device 24,
It is output to the recorder 25, CRT display device 26, etc.

次に、このように構成され平坦度測定装置を用いて、幅
方向にチャンネル1 (CHI)からチャンネル5 (
CH3)までの5個の距離測定器12を配設した場合に
おける各伸び率β1〜β5の変化を第3図および第4図
に示す。第3図は幅方向の各測定位置における各伸び率
β、〜β5の経時変化を記録計25を用いて出力した波
形図であり、第4図(、a )は第3図における右側の
中伸び状態が生じている瞬間における各軸方向位置(各
チャンネル)における伸び率β、〜β、の値をCRT表
示装置26を用いてリアルタイムで表示した図であり、
第4図(b)は第3図における中央の耳波状態が生じて
いる瞬間における各軸方向位置(各チャンネル)におけ
る伸び率β1〜β5の値をリアルタイムで表示した図で
ある。
Next, using the flatness measuring device configured as described above, the widthwise direction is measured from channel 1 (CHI) to channel 5 (
FIG. 3 and FIG. 4 show changes in each of the elongation rates β1 to β5 when five distance measuring devices 12 are disposed up to CH3). Figure 3 is a waveform chart output using the recorder 25 to show the temporal changes in elongation rates β and ~β5 at each measurement position in the width direction, and Figure 4 (, a) is a waveform chart in the right side of Figure 3. It is a diagram showing the values of the elongation rate β, ~β, at each axial position (each channel) at the moment when the elongation state is occurring, displayed in real time using a CRT display device 26,
FIG. 4(b) is a diagram showing in real time the values of the elongation rates β1 to β5 at each axial position (each channel) at the moment when the central ear wave state in FIG. 3 is occurring.

さらに、第5図は、実+111された各伸び率βと熟練
作業員が目視で伸び率を評価した場合の5段階評価点と
の相関を示した図である。図示するように、測定結果は
熟練者の目視評価と良い相関関係にあることが確認され
た。
Further, FIG. 5 is a diagram showing the correlation between each elongation rate β obtained by increasing the actual value by +111 and the five-level evaluation score when the elongation rate is visually evaluated by a skilled worker. As shown in the figure, it was confirmed that the measurement results had a good correlation with the visual evaluation by an expert.

このように、記録計25に記録し、CRT表示装置26
に表示することによって、帯状体11の平坦度を的確に
把握できる。
In this way, the data is recorded on the recorder 25 and the CRT display device 26
By displaying the flatness of the strip 11, the flatness of the strip 11 can be accurately grasped.

また、各距離測定器12をツインビーム型の距離測定器
を用いて、高速で移動している帯状体11の表面の測定
位置における傾斜値を算出することにより、最終的に算
出される伸び率βから帯状体11が振動することに起因
する誤差成分を完全に除去できる。その結果、伸び率β
で示される平坦度の測定精度を振動成分以下に抑制する
ことが可能になるので、たとえ被測定対象である帯状体
11の搬送時における振動が従来装置と同し程度であっ
たとしても、従来装置に比較して測定精度を大幅に向上
できる。
In addition, by using a twin beam type distance measuring device as each distance measuring device 12 to calculate the slope value at the measurement position of the surface of the strip 11 that is moving at high speed, the elongation rate is finally calculated. The error component caused by the vibration of the band-shaped body 11 can be completely removed from β. As a result, the elongation rate β
Since it is possible to suppress the measurement accuracy of the flatness represented by the vibration component to below the vibration component, even if the vibration during conveyance of the strip 11 to be measured is about the same as that of the conventional device, Measurement accuracy can be significantly improved compared to other devices.

ちなみに、実施例装置においては、伸び率βの測定範囲
は0〜5%と大きく、かつその測定範囲内において測定
精度を±0.2%に制御することができた。また、応答
特性も一つの伸び率βの測定に要する時間を約100n
sまで短縮できた。
Incidentally, in the example device, the measurement range of the elongation rate β was as large as 0 to 5%, and the measurement accuracy could be controlled within the measurement range to ±0.2%. In addition, the response characteristic is that the time required to measure one elongation rate β is approximately 100n.
I was able to shorten it to s.

また、この実施例においては、各距離測定器12から出
力される一対の測定用ビーム光12a。
Furthermore, in this embodiment, a pair of measuring beams 12a are output from each distance measuring device 12.

12bは高周波変調されたレーザ光を使用しているので
、帯状体11がたとえ高温の熱鋼板で形成されていたと
しても、この帯状体11から出力される輻射雑音を除去
できる。
Since the laser beam 12b uses a high frequency modulated laser beam, the radiation noise output from the strip 11 can be removed even if the strip 11 is made of a hot steel plate.

[発明の効果] 以上説明したように本発明の平坦度測定装置によれば、
ツインビーム型の距離測定器を用いて各測定位置におけ
る傾斜値を測定し、この傾斜値から伸び率等の平坦度を
算出するようにしている。
[Effects of the Invention] As explained above, according to the flatness measuring device of the present invention,
The slope value at each measurement position is measured using a twin beam type distance measuring device, and the flatness such as elongation rate is calculated from this slope value.

したがって、算出された平坦度から被測定対象としての
帯状体の上下振動の要因を確実に排除でき、平坦度の測
定精度を大幅に向上できる。
Therefore, it is possible to reliably eliminate the cause of vertical vibration of the strip-like object to be measured from the calculated flatness, and it is possible to significantly improve the flatness measurement accuracy.

【図面の簡単な説明】 第1図乃至第5図は本発明の一実施例に係わる平坦度測
定装置を示すものであり、第1図は概略構成を示す模式
図、第2図は測定原理を説明するための図、第3図およ
び第4図は測定された平坦度を示す特性図、第5図は実
測値と目視による評価との相関を示す相関特性図であり
、第6図は従来の平坦度測定装置を示すブロック図、第
7図は同従来装置における測定原理を説明するための図
である。 11・・・帯状体、12・・・距離測定器、17・・・
傾斜値演算部、18・・・伸び率演算部、19・・・カ
ウンタ、25・・・記録計、26・・・CRT表示装置
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1 to 5 show a flatness measuring device according to an embodiment of the present invention. FIG. 1 is a schematic diagram showing the general configuration, and FIG. 2 is a measurement principle. Figures 3 and 4 are characteristic diagrams showing the measured flatness, Figure 5 is a correlation characteristic diagram showing the correlation between actual measured values and visual evaluation, and Figure 6 is a characteristic diagram showing the correlation between measured values and visual evaluation. FIG. 7 is a block diagram showing a conventional flatness measuring device, and is a diagram for explaining the measurement principle in the conventional device. 11... Band-shaped body, 12... Distance measuring device, 17...
Inclination value calculation unit, 18... Elongation rate calculation unit, 19... Counter, 25... Recorder, 26... CRT display device.

Claims (1)

【特許請求の範囲】 長手方向に移動する帯状体の幅方向にこの帯状体表面ま
での距離を測定する複数の距離計測定器および前記帯状
体の移動速度を検出する速度検出器を設け、前記各距離
測定器および速度検出器から得られる各距離信号および
速度信号に基づいて前記帯状体の表面長さを示す各弧長
を算出し、この各弧長から前記帯状体の平坦度を得る平
坦度測定装置において、 前記各距離測定機は、微小間隔を有した互いに平行な一
対の測定用ビーム光を前記帯状体表面の測定位置に照射
して、この帯状体面上の測定位置における微小間隔を有
した各照射位置までの距離を同時に測定するツインビー
ム型の距離測定器で構成され、この距離測定器で測定さ
れた各照射位置までの距離から該当測定位置における傾
斜値を算出し、前記帯状体の各移動方向位置に対応する
各傾斜値から前記弧長を算出することを特徴とする平坦
度測定装置。
[Scope of Claims] A plurality of distance meter measuring devices for measuring the distance to the surface of the strip-shaped body moving in the longitudinal direction in the width direction of the strip-shaped body and a speed detector for detecting the moving speed of the strip-shaped body are provided, Each arc length indicating the surface length of the strip is calculated based on each distance signal and speed signal obtained from each distance measuring device and speed detector, and the flatness of the strip is obtained from each arc length. In the distance measuring device, each of the distance measuring devices irradiates a measurement position on the surface of the strip with a pair of parallel measurement beams having a minute interval to measure the minute distance at the measurement position on the surface of the strip. It is composed of a twin beam type distance measuring device that simultaneously measures the distance to each irradiation position, and calculates the slope value at the corresponding measurement position from the distance to each irradiation position measured by this distance measuring device. A flatness measuring device, characterized in that the arc length is calculated from each inclination value corresponding to each position in the moving direction of the body.
JP2047824A 1990-02-28 1990-02-28 Flatness measuring device Expired - Fee Related JP2605158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2047824A JP2605158B2 (en) 1990-02-28 1990-02-28 Flatness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2047824A JP2605158B2 (en) 1990-02-28 1990-02-28 Flatness measuring device

Publications (2)

Publication Number Publication Date
JPH03249514A true JPH03249514A (en) 1991-11-07
JP2605158B2 JP2605158B2 (en) 1997-04-30

Family

ID=12786100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2047824A Expired - Fee Related JP2605158B2 (en) 1990-02-28 1990-02-28 Flatness measuring device

Country Status (1)

Country Link
JP (1) JP2605158B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024861A (en) * 2018-08-08 2020-02-13 大野ロール株式会社 Electrode plate elongation measurement apparatus and method using laser displacement meter
CN114111649A (en) * 2021-11-24 2022-03-01 中电科信息产业有限公司 Flatness measuring method, flatness measuring device, electronic apparatus, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178608A (en) * 1985-02-05 1986-08-11 Mitsubishi Electric Corp Flatness detector
JPS62156504A (en) * 1985-12-27 1987-07-11 Mitsubishi Electric Corp Displacement measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178608A (en) * 1985-02-05 1986-08-11 Mitsubishi Electric Corp Flatness detector
JPS62156504A (en) * 1985-12-27 1987-07-11 Mitsubishi Electric Corp Displacement measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024861A (en) * 2018-08-08 2020-02-13 大野ロール株式会社 Electrode plate elongation measurement apparatus and method using laser displacement meter
CN114111649A (en) * 2021-11-24 2022-03-01 中电科信息产业有限公司 Flatness measuring method, flatness measuring device, electronic apparatus, and storage medium

Also Published As

Publication number Publication date
JP2605158B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US11193751B2 (en) Method and apparatus for motion compensation in interferometric sensing systems
JPH0433365B2 (en)
EP1813912B1 (en) Method and device for measuring width direction end position of stripe body, and method and device for measuring width direction central position of stripe body
JPH03249514A (en) Flatness measuring instrument
US4545249A (en) Acoustical position gage
US4353256A (en) Non-contact measurement of physical properties of continuously moving metal strip
EP0028540B1 (en) Method and apparatus for non-contact acoustic measurement of physical properties of continuously moving metal strip
JPS61178608A (en) Flatness detector
JP2536668B2 (en) Steel plate flatness measuring device
JP2763459B2 (en) Flatness measuring device
CN102120256A (en) Method for determining deflection displacement-time change relationship in mold vibration
RU2151705C1 (en) Rail straightness checking device
JPH0317283B2 (en)
JPH051912A (en) Flatness measuring-device
JPH08159728A (en) Shape measuring instrument
JPH09210664A (en) Method and apparatus for measuring selvage wave of coil
JPH0953904A (en) Instrument for measuring position of end section of steel strip
JPH0727535A (en) Shape measuring method for rolled strip and device thereof
JP2577456B2 (en) Thickness measuring device
RU1805293C (en) Method of and device for measuring geometric dimensions of object
KR100299445B1 (en) Apparatus and method for measuring transformation amount of high temperature hot-rolled steel plate
SU1548752A1 (en) Device for determining strength of concrete
JPH04125407A (en) Measuring apparatus of roll profile
US20030114997A1 (en) Detection of roller damage and/or misalignment in continuous casting of metals
JPH01165910A (en) Method for measuring flatness of strip like material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees