JPH03249479A - Device for controlling running of working vehicle - Google Patents

Device for controlling running of working vehicle

Info

Publication number
JPH03249479A
JPH03249479A JP2049059A JP4905990A JPH03249479A JP H03249479 A JPH03249479 A JP H03249479A JP 2049059 A JP2049059 A JP 2049059A JP 4905990 A JP4905990 A JP 4905990A JP H03249479 A JPH03249479 A JP H03249479A
Authority
JP
Japan
Prior art keywords
speed
continuously variable
drive mechanism
operating
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2049059A
Other languages
Japanese (ja)
Other versions
JPH0813655B2 (en
Inventor
Hiroshi Kamimura
上村 弘
Takeshi Nakagawa
中川 毅志
Kenichi Takai
謙一 高井
Akio Matsui
昭男 松井
Norimi Nakamura
法身 中村
Tetsuo Yamaguchi
哲雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSUSHO HOKURIKUCHIHOU KENSETSUKYOKU
Kubota Corp
Original Assignee
KENSETSUSHO HOKURIKUCHIHOU KENSETSUKYOKU
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSUSHO HOKURIKUCHIHOU KENSETSUKYOKU, Kubota Corp filed Critical KENSETSUSHO HOKURIKUCHIHOU KENSETSUKYOKU
Priority to JP2049059A priority Critical patent/JPH0813655B2/en
Publication of JPH03249479A publication Critical patent/JPH03249479A/en
Publication of JPH0813655B2 publication Critical patent/JPH0813655B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

PURPOSE:To providing a safe working operation by providing a differential motion release control means for carrying out automatic speed governing control so as to change the running speed while preventing a vehicle body from obliquely moving due to a difference in drive speed between left and right running devices. CONSTITUTION:In order to change the running direction of a vehicle body, since a control change-over means 25 prevents a differential motion release control means 24 from operating, a difference in speed between first and second continuously variable transmissions can be obtained so that the vehicle body can be steered. In order to change the running speed of the vehicle body, the control change-over means 25 enables the differential motion release control means 24 to automatically adjust the manipulating speed of a manipulating section in accordance with data from a differential motion sensor S3 so that a difference in turning stroke between first and second manipulating sections does not produce, completely or subsantially completely. Accordingly, either during a desired period by which the running speed reaches a desired control speed or during progress of speed change, the first and second continuously variable transmissions change the speeds which can coincide with each other as far as possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、左右走行装置を各別に駆動する油圧式の第1
無段変速装置及び第2無段変速装置を設け、前記第1無
段変速装置の第1操作部と前記第2無段変速装置の第2
操作部とを各別に操作する第1駆動機構及び第2駆動機
構を設けると共に、前記第1無段変速装置及び前記第2
無段変速装置夫々による現出速度が変速操作手段による
設定速度に等しくまたはほぼ等しくなる状態に前記第1
駆動機構及び前記第2駆動機構を自動的に操作する変速
制御手段、前記第1無段変速装置による現出速度と、前
記第2無段変速装置による現出速度との差が操向操作手
段による設定速度差に等しくまたはほぼ等しくなる状態
に前記第1駆動機構及び前記第2駆動機構を自動的に操
作する操向制御手段を設けた作業車の走行制御装置に関
する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a hydraulic first drive system that drives left and right traveling devices separately.
A continuously variable transmission and a second continuously variable transmission are provided, and a first operating section of the first continuously variable transmission and a second continuously variable transmission of the second continuously variable transmission are provided.
A first drive mechanism and a second drive mechanism are provided that operate the operation section separately, and the first continuously variable transmission and the second drive mechanism are provided.
The first speed is brought into a state in which the speed exhibited by each of the continuously variable transmissions is equal to or approximately equal to the speed set by the speed change operation means.
A speed change control means for automatically operating a drive mechanism and the second drive mechanism, and a steering operation means in which the difference between the speed exhibited by the first continuously variable transmission and the speed developed by the second continuously variable transmission is controlled by a steering operation means. The present invention relates to a traveling control device for a work vehicle, which is provided with a steering control means for automatically operating the first drive mechanism and the second drive mechanism to a state where the speed difference is equal to or approximately equal to a set speed difference.

〔従来の技術〕[Conventional technology]

上記作業車は、変速操作手段による設定速度変速操作を
することにより、左右走行装置が同一の制御目標速度に
増減速するように第1及び第2駆動機構夫々による無段
変速装置操作が行なわれて機体走行速度が増速変化した
り減速変化し、そして、操向操作手段による設定速度差
変更操作をすることにより、一方の走行装置速度と他方
の走行装置速度とに差が生じるように、第1及び第2駆
動機構による無段変速装置操作が行なわれて機体走行方
向が変化するように構成されたものである。
In the work vehicle, the continuously variable transmission is operated by each of the first and second drive mechanisms so that the left and right traveling devices increase or decrease to the same control target speed by performing a set speed change operation using the speed change operation means. so that the traveling speed of the aircraft increases or decreases, and by changing the set speed difference using the steering operation means, a difference occurs between the speed of one traveling device and the speed of the other traveling device. The continuously variable transmission is operated by the first and second drive mechanisms to change the traveling direction of the aircraft.

この種作業車において、従来、左右走行装置を同一制御
目標速度に変速する増減速操作が実行されるに当たり、
第1無段変速装置側及び第2無段変速装置側のいずれに
おいても、変速操作前の速度から制御目標速度までの変
速作動が他方の無段変速装置側における変速作動とは関
連しない単独作動で行なわれるようになっていた。
Conventionally, in this type of work vehicle, when increasing and decelerating operations are performed to change the left and right traveling devices to the same control target speed,
On both the first continuously variable transmission side and the second continuously variable transmission side, the speed change operation from the speed before the speed change operation to the control target speed is an independent operation that is not related to the speed change operation on the other continuously variable transmission side. It was supposed to be held in

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、左右走行装置を同一制御目標速度に増速されたり
減速される際、左右走行装置が制御目標速度に達する過
程における左走行装置速度と右走行装置速度とに差が生
して機体が所望方向と異なる方向を向くところの斜行を
伴うことがあった。これは、変速装置操作部と駆動機構
との連動機構の作動具合いによって生じる変速操作抵抗
が第1無段変速装置側と第2無段変速装置側とで異なる
等に起因し、第8図に示すように、一方の無段変速装置
(T+)が変速前速度(■。)から制御目標速度(V)
に所要時間(t1)で変化するのに対し、他方の無段変
速装置(T2)が変速前速度(Vo)から制御目標速度
(V)に前記所要時間(t1)よりも犬なる所要時間(
T2)で変化するとか、また、第9図に示すように、い
ずれの無段変速装置(T1)、(T2 )も制御目標速
度(■)に同一の所要時間(1)で変化するも、一方の
無段変速装置(T1)の変速経過具合と他方の無段変速
装置(T2)の変速経過具合とが相違する場合があるか
らである。
Conventionally, when the left and right traveling gears are accelerated or decelerated to the same control target speed, there is a difference between the left traveling gear speed and the right traveling gear speed in the process of the left and right traveling gears reaching the control target speed, so that the aircraft does not reach the desired speed. Sometimes this was accompanied by skewing in a direction that was different from the one shown. This is due to the fact that the shift operation resistance caused by the operating condition of the interlocking mechanism between the transmission operation part and the drive mechanism differs between the first continuously variable transmission side and the second continuously variable transmission side, and as shown in Fig. 8. As shown, one of the continuously variable transmissions (T+) changes from the pre-shift speed (■.) to the control target speed (V).
On the other hand, the other continuously variable transmission (T2) changes from the pre-shift speed (Vo) to the control target speed (V) in a longer time (t1) than the required time (t1).
T2), or as shown in FIG. 9, both continuously variable transmissions (T1) and (T2) change to the control target speed (■) in the same required time (1). This is because the speed change progress of one continuously variable transmission (T1) may be different from the shift progress of the other continuously variable transmission (T2).

本発明の目的は、前記変速抵抗差があっても斜行が生じ
にくく、しかも、構造面で有利に得られる制御装置を提
供することにある。
An object of the present invention is to provide a control device that is less likely to cause skew even when there is the difference in speed change resistance and is advantageous in terms of structure.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による作業車の走行制御装置にあっては、目的達
成のために、冒頭に記した作業車において、前記第1操
作部の回動ストロークと前記第2操作部の回動ストロー
クの差の存否を検出する差動センサの本体を回動自在に
取付けると共に前記第1操作部に連動連結し、かつ、前
記差動センサの回転操作軸を前記第2操作部に連動連結
して、前記第1駆動機構によって操作される前記第1操
作部と前記第2駆動機構によって操作される前記第2操
作部との回動ストローク差が発生するに伴い、その操作
部作動のために前記本体と前記回転操作軸が相対回動し
て前記差動センサが操作状態になり、かつ、前記第1駆
動機構によって操作される前記第1操作部と前記第2駆
動機構によって操作される前記第2操作部との回動スト
ローク差が存在しない時には、前記本体と前記回転操作
軸が同一方向に同一回動角を回動して前記差動センサが
非操作状態になるように構成し、 前記差動センサが操作部差動無しの検出状態になる状態
に前記第1駆動機構による第1操作部操作速度と前記第
2駆動機構による第2操作部操作速度との差を自動的に
調節する差動解消制御手段を設け、 前記変速制御手段による前記第1駆動機構及び前記第2
駆動機構の操作が行われる状態においてのみ前記差動解
消制御手段による速度差調節制御を自動的に実行させる
制御切換え手段を設けてある。そして、その作用及び効
果は次のとおりである。
In order to achieve the purpose of the traveling control device for a working vehicle according to the present invention, in the working vehicle described at the beginning, the difference between the rotational stroke of the first operating section and the rotational stroke of the second operating section is provided. A main body of a differential sensor for detecting presence or absence is rotatably mounted and operatively connected to the first operating section, and a rotary operating shaft of the differential sensor is operatively connected to the second operating section. As a rotational stroke difference occurs between the first operating section operated by the first drive mechanism and the second operating section operated by the second drive mechanism, the main body and the The rotational operation shaft relatively rotates to put the differential sensor into an operating state, and the first operating section is operated by the first drive mechanism and the second operating section is operated by the second drive mechanism. When there is no rotational stroke difference between the main body and the rotational operation shaft, the main body and the rotational operation shaft rotate in the same direction and the same rotational angle, and the differential sensor is in a non-operational state, differential cancellation that automatically adjusts the difference between the first operation section operation speed by the first drive mechanism and the second operation section operation speed by the second drive mechanism to a state where the operation section is in a detection state with no operation section differential. A control means is provided, and the first drive mechanism and the second drive mechanism are controlled by the speed change control means.
Control switching means is provided for automatically executing speed difference adjustment control by the differential cancellation control means only when the drive mechanism is operated. The functions and effects thereof are as follows.

〔作 用〕[For production]

機体走行方向の変更操作をする際には、制御切換え手段
のために差動解消制御手段が作用せず、第1無段変速装
置と第2無段変速装置の速度差現出ができて機体操向が
可能になるのである。
When changing the running direction of the aircraft, the differential cancellation control means does not operate due to the control switching means, and the speed difference between the first continuously variable transmission and the second continuously variable transmission is realized and the machine is operated. This makes it possible to become more active in gymnastics.

そして、機体走行速度の変更操作をする際には、制御切
換え手段が差動解消制御手段の作用を可能にし、第1操
作部の回動ストロークと第2操作部の回動ストロークと
に差が全くあるいはあまり生じないように、差動解消制
御手段が差動センサからの情報に基いて操作部操作速度
を自動的に調節するために、制御目標速度に変化するま
での所要時間及び変速経過具合のいずれにおいても極力
合致する状態で第1及び第2無段変速装置が速度変化す
る。
When changing the aircraft running speed, the control switching means enables the differential cancellation control means to operate, and the difference between the rotational stroke of the first operation section and the rotational stroke of the second operation section is changed. The differential cancellation control means automatically adjusts the operating speed of the operating section based on information from the differential sensor so that the speed does not occur at all or very often. In either case, the speeds of the first and second continuously variable transmissions change in a state that matches as much as possible.

差動解消制御手段による調速制御を行なわせるに当たり
、第1及び第2操作部のストロークを各別に検出する一
対のストロークセンサを設け、一方のストロークセンサ
による検出結果と他方のストロークセンサによる検出結
果とを比較してその大小関係を判別することによってス
トローク差存否や修正制御方向を検出するよう構成する
場合には、第1変速装置側用と第2変速装置側用の一対
のセンサが必要になると共に、センサによる検出結果の
比較判別をする信号処理手段が必要になる。これに対し
、差動センサの本体を第1操作部に連動回動するように
連動連結し、差動センサの回転操作軸を第2操作部に連
動回動するように連動連結して、第1操作部と第2操作
部の回動ストローク差が発生することによって差動セン
サが操作されるように構成すれば、必要センサ数が半減
すると共に、差動センサが差動無し検出の信号出力をす
る状態に差動解消制御手段が自動作動するように信号処
理させるだけで済む。また、第1及び第2無段変速装置
を大変連中にわたって調速できるようにするために第1
及び第2操作部の操作する必要のある回動ストロークが
比較的大になっても、その全回動ストロークにわたって
差動センサの本体及び回転操作軸が連動回動して差動存
否の検出ができるようになる。
In order to perform speed governing control by the differential cancellation control means, a pair of stroke sensors are provided to separately detect the strokes of the first and second operation parts, and the detection result by one stroke sensor and the detection result by the other stroke sensor are separated. If the configuration is such that the presence or absence of a stroke difference and the direction of corrective control are detected by comparing the two and determining the magnitude relationship, a pair of sensors for the first transmission side and the second transmission side are required. At the same time, a signal processing means for comparing and determining the detection results by the sensor is required. On the other hand, the main body of the differential sensor is interlocked and connected to the first operation part so as to rotate in conjunction with the first operation part, and the rotational operation shaft of the differential sensor is interlocked and connected to the second operation part so as to rotate in conjunction with the second operation part. If the differential sensor is configured so that it is operated by the rotational stroke difference between the first operating section and the second operating section, the number of required sensors will be halved, and the differential sensor will output a signal to detect no differential. All that is required is to process a signal so that the differential cancellation control means automatically operates in a state where the differential resolution is achieved. In addition, in order to be able to control the speed of the first and second continuously variable transmissions over a long period of time, the first
Even if the rotational stroke required to operate the second operation section is relatively large, the main body of the differential sensor and the rotational operation shaft rotate in conjunction over the entire rotational stroke, making it possible to detect the presence or absence of a differential. become able to.

〔発明の効果〕〔Effect of the invention〕

差動解消制御手段による自動調速制御のために、左右走
行装置に駆動速度差が生して機体斜行が出るのを防止し
ながら走行変速をし、作業が安全にできるようになった
Because of the automatic speed regulating control by the differential cancellation control means, the traveling speed can be changed while preventing the aircraft from skewing due to the drive speed difference between the left and right traveling devices, making it possible to perform work safely.

しかも、差動検出構成の面から制御構造の簡略化が可能
になると共に変速可能中を比較的大にでき、経済面で有
利に得られると共に速度調節が大巾にできるようにでき
た。
Furthermore, the control structure can be simplified in terms of the differential detection configuration, and the range of possible speed changes can be made relatively large, which is economically advantageous, and speed adjustment can be made over a wide range.

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

第6図及び第7図に示すように、機体後部にエンジン(
B)を有したクローラ式走行機体の前部にリフトシリン
ダ(C)によって昇降操作されるリンク機構(1)を介
して昇降操作自在にフレールモア装置(2)を連結する
と共に、第4図の如きコントロール装置(3)からの操
作信号をアンテナ(4)により受信し、入力信号に基い
て走行及び作業用制御を自動的にする制御機構(図示せ
ず)を走行機体に備えさせて、ラジオコントロールが可
能な草刈り機を構成しである。
As shown in Figures 6 and 7, the engine (
A flail mower device (2) is connected to the front part of a crawler-type traveling body having a lift cylinder (C) so that it can be raised and lowered via a link mechanism (1) that is raised and lowered by a lift cylinder (C), and a The traveling aircraft is equipped with a control mechanism (not shown) that receives operation signals from the control device (3) through the antenna (4) and automatically performs travel and work control based on the input signals. This is a mower that is capable of

第5図に示すように、エンジン(E)に伝動機構(■)
を介して駆動力伝達されるように可変容量型の第1及び
第2油圧ポンプ(PI)、(P2)を連動させ、そして
、第1油圧ポンプ(P1)に給油停止用バルブ(5)を
有した駆動回路(6a)を介して接続した第1油圧モー
タ(M1)を左右のクローラ式走行装置(7)、 (7
)の一方のクローラ駆動輪(7a)に連動させると共に
、第2油圧ポンプ(P2)に給油停止用バルブ(5)を
有した駆動回路(6b)を介して接続した第2油圧モー
タ(M2)を他方の走行装置(7)のクローラ駆動輪(
7a)に連動させることにより、機体走行を可能にしで
ある。
As shown in Figure 5, the engine (E) is connected to the transmission mechanism (■).
The variable displacement type first and second hydraulic pumps (PI) and (P2) are interlocked so that the driving force is transmitted through The first hydraulic motor (M1) connected via the drive circuit (6a) with the left and right crawler type traveling devices (7), (7
), and is connected to a second hydraulic pump (P2) via a drive circuit (6b) having a refueling stop valve (5). the crawler drive wheels (
By interlocking with 7a), the aircraft can run.

すなわち、エンジン(E)の回転出力を第1油圧ポンプ
(P2)と第1油圧モータ(M1)とにより伝達して一
方の走行装置(7)を駆動するように、かつ、第1図に
示す如く第1油圧ポンプ(P1)の斜板操作軸(8a)
に揺動部材を一体回動可能に取付けて形成した第1操作
部(9a)の回動操作による斜板角変更操作により、中
立を挾んで前進側と後進側とに切換わるように油圧式の
第1無段変速装置(T1)を構成しである。そして、エ
ンジン(E)の回転出力を第2油圧ポンプ(P2)と第
2油圧モータ(M2)とにより伝達して他方の走行装置
(7)を駆動するように、かつ、第り図に示す如く第2
油圧ポンプ(P2)の斜板操作軸(8b)に揺動部材を
一体回動可能に取付けて形成した第2操作部(9b)の
回動操作による斜板角変更操作により、中立を挾んで前
進側と後進側に切換ゎるように油圧式の第2無段変速装
置(T2)を構成しである。
That is, the rotational output of the engine (E) is transmitted by the first hydraulic pump (P2) and the first hydraulic motor (M1) to drive one of the traveling devices (7), and as shown in FIG. Swash plate operation shaft (8a) of the first hydraulic pump (P1)
The swash plate angle is changed by rotating the first operation part (9a), which is formed by attaching a swinging member so as to be integrally rotatable with the hydraulic type. This constitutes the first continuously variable transmission (T1). The rotational output of the engine (E) is transmitted by the second hydraulic pump (P2) and the second hydraulic motor (M2) to drive the other traveling device (7), and as shown in FIG. Gotoku Part 2
The swash plate angle can be changed by rotating the second operation part (9b), which is formed by integrally rotatably attaching a swinging member to the swash plate operation shaft (8b) of the hydraulic pump (P2), and the swash plate angle can be changed between the neutral position and the swash plate angle. A hydraulic second continuously variable transmission (T2) is configured to switch between the forward and reverse sides.

第り図に示すように、第1操作部(9a)をリンク式連
動機構(IQ)、第1直流電動モータ(m1)の回動力
を押し引き力に変換する機構(11)を介して前記第1
電動モータ(m2)により操作すると共に、第2操作部
(9b)をリンク式連動機構(10)、第2直流電動モ
ータ(m2)の回動力を押し引き力に交換する機構(1
1)を介して前記第2電動モータ(m2)により操作す
るように構成しである。そして、第4図に示すように、
第1電動モータ(m1)の制御用の第1駆動回路(DI
)、第2電動モータ(m2)の制御用の第2駆動回路(
D2)夫々に変速制御手段(12)及び操向制御手段(
13)を連係させると共に、これら制御手段(12)及
び(13)に、第1無段変速装置(T1)が現出する駆
動方向及び速度を検出する第1速度センサ(S1)、第
2無段変速装置(T2)が現出する駆動方向及び速度を
検出する第2速度センサ(S2)、並びに、受信装置(
14)を連係させることにより、コントロール装置(3
)によるラジオコントロールを可能にしである。
As shown in FIG. 1st
In addition to being operated by an electric motor (m2), the second operation part (9b) is connected to a link type interlocking mechanism (10), and a mechanism (1) that exchanges the rotational force of the second DC electric motor (m2) with push/pull force.
1) and is configured to be operated by the second electric motor (m2) via the second electric motor (m2). And, as shown in Figure 4,
The first drive circuit (DI) for controlling the first electric motor (m1)
), a second drive circuit for controlling the second electric motor (m2) (
D2) A speed change control means (12) and a steering control means (
13), and these control means (12) and (13) include a first speed sensor (S1) that detects the driving direction and speed of the first continuously variable transmission (T1), and a second continuously variable transmission (T1). A second speed sensor (S2) that detects the driving direction and speed of the gear transmission (T2), and a receiving device (
By linking the control device (3)
) enables radio control.

すなわち、コントロール装置(3)の前後進スティック
(15)を中立位置(N)から前進側(F)または後進
側(R)に揺動操作すると、このスティック操作に伴っ
て自動的に、コントロール装置(3)が第1及び第2無
段変速装置(TI)、(T2)の駆動すべき方向及び速
度を設定すると共にこの設定駆動方向及び設定速度を指
示する走行信号を出力するように構成しである。この速
度設定は前後進スティック(15)の中立位置(N)か
らの揺動ストロークが大であるほど設定速度を高速にす
る状態でされるように構成しである。そして、コントロ
ール装置(3)からの走行信号を受信装置(14)が受
信するに伴い自動的に、変速制御手段(12)がコント
ロール装置(3)による設定駆動方向及び設定速度を受
信装置(14)を介して入力すると共に、第1速度セン
サ(S1)及び第2速度センサ(S2)夫々による検出
方向及び検出速度がコントロール装置(3)による設定
方向及び設定速度に等しくまたはほぼ等しくなる状態に
無段変速装置(T1)または(T2)を制御させるべき
信号を第1及び第2駆動回路(DI)、(D2)に出力
することにより、第1及び第2無段変速装置(TI)、
(T2)による駆動方向及び現出速度がコントロール装
置(3)による設定方向及び設定速度に等しくまたはほ
ぼ等しくなる状態に第1及び第2電動モータ(+r++
 )、 (m2)を自動的に操作するように構成しであ
る。つまり、前後進ステイ・ツク(15)が中立位置(
N)から操作されるに伴い自動的に、スティック揺動方
向によって決まる前進側または後進側にスティック揺動
ストロークによって決まる速度で機体直進するように、
変速制御手段(12)が第1及び第2無段変速装置(T
I)、(T2>を同一の駆動方向及び現出速度に駆動操
作するようにしである。
That is, when the forward/reverse stick (15) of the control device (3) is operated to swing from the neutral position (N) to the forward side (F) or reverse side (R), the control device automatically moves along with this stick operation. (3) is configured to set the driving direction and speed of the first and second continuously variable transmissions (TI) and (T2), and output a running signal instructing the set driving direction and set speed. It is. This speed setting is configured such that the larger the swing stroke of the forward/reverse stick (15) from the neutral position (N), the higher the set speed. Then, as the receiving device (14) receives the driving signal from the control device (3), the speed change control means (12) automatically transfers the set drive direction and set speed by the control device (3) to the receiving device (14). ), and the detected direction and detected speed by the first speed sensor (S1) and the second speed sensor (S2) are equal or almost equal to the direction and speed set by the control device (3). By outputting a signal to control the continuously variable transmission (T1) or (T2) to the first and second drive circuits (DI) and (D2), the first and second continuously variable transmissions (TI),
The first and second electric motors (+r++
), (m2) are configured to operate automatically. In other words, the forward/reverse stay (15) is at the neutral position (
When operated from N), the aircraft will automatically move straight forward or backward as determined by the stick rocking direction at a speed determined by the stick rocking stroke.
The speed change control means (12) controls the first and second continuously variable transmissions (T
I), (T2>) are driven in the same driving direction and appearance speed.

そして、コントロール装置(3)の操向スティック(1
6)を中立位置(N)から左操向側(L)又は右操向側
(R)に揺動操作すると、このスティック操作に伴って
自動的に、コントロール装置(3)が第1無段変速装置
(T1)と第2無段変速装置(T2)の間に現出するべ
き速度差、並びに、第1及び第2無段変速装置(TI)
、(T2)のいずれを高速側にすべきかを設定すると共
にこの設定速度差及び設定高速側を指示する操向信号を
出力するように構成しである。この速度関係設定は操向
スティック(16)の中立位置(N)からの操作ストロ
ークが大であるほど速度差が大になって旋回半径が小に
なる状態でされるように構成しである。そして、コント
ロール装置(3)からの操向信号を受信装置(14)が
受信するに伴い自動的に、操向制御手段(13)がコン
トロール装置(3)による設定速度差及び設定高速側を
受信装置(14)を介して入力すると共に、第1速度セ
ンサ(S1)による検出速度と第2速度センサ(S2)
による検出速度との比較判別によって得られる結果がコ
ントロール装置(3)による設定速度及び設定高速側に
等しくまたはほぼ等しくなる状態に第1及び第2無段変
速装置(TI)、 (T2)を制御させるべき信号を第
1及び第2駆動回路(DI)、(D2)に出力すること
により、第1無段変速装置(T1)による現出速度と第
2無段変速装置(T2)による現出速度との差がコント
ロール装置(3)による設定速度差に等しくまたはほぼ
等しくなる状態に第1及び第2電動モータ(m2)、(
m2)を自動的に操作するように構成しである。つまり
、操向スティック(15)が中立位置(N)から操作さ
れるに伴い自動的に、スティック揺動方向によって決ま
る左向き側または右向き側にスティック揺動ストローク
によって決まる旋回半径で機体旋回するように、操向制
御手段(13)が第1及び第2無段変速装置(TI)、
(T2>を駆動速度差の出る状態に操作するようにしで
ある。
Then, the steering stick (1) of the control device (3)
6) from the neutral position (N) to the left steering side (L) or the right steering side (R), the control device (3) automatically moves to the first stepless position along with this stick operation. Speed difference that should appear between the transmission (T1) and the second continuously variable transmission (T2), and the first and second continuously variable transmission (TI)
, (T2) to be set to the high speed side, and outputs a steering signal instructing the set speed difference and the set high speed side. This speed relationship setting is configured such that the larger the operating stroke of the steering stick (16) from the neutral position (N), the larger the speed difference and the smaller the turning radius. Then, as the receiving device (14) receives the steering signal from the control device (3), the steering control means (13) automatically receives the set speed difference and the set high speed side by the control device (3). Input via the device (14) as well as the detected speed by the first speed sensor (S1) and the second speed sensor (S2)
The first and second continuously variable transmissions (TI) and (T2) are controlled so that the result obtained by comparing and determining the speed detected by the control device (3) is equal to or almost equal to the set speed and the set high speed side by the control device (3). By outputting signals to the first and second drive circuits (DI) and (D2), the output speed of the first continuously variable transmission (T1) and the output speed of the second continuously variable transmission (T2) are adjusted. The first and second electric motors (m2), (
m2) is configured to operate automatically. In other words, as the steering stick (15) is operated from the neutral position (N), the aircraft automatically turns to the left or right side determined by the stick rocking direction with a turning radius determined by the stick rocking stroke. , the steering control means (13) comprises first and second continuously variable transmissions (TI);
(T2> is operated to create a drive speed difference.

第1速度センサ(S1)及び第2速度センサ(S2)は
、第1図ないし第3図に示すように、回転式ポテンショ
メータで成り、取付は板(17a)または(17b)を
介して斜板操作軸(8a)または(8b)により支持さ
れるように構成すると共に、取付は板(17a)と(1
7b)を斜板操作軸(8a)または(8b)に対して回
動しないように連結する連結部材(18)の作用によっ
て動かないように固定しである。そして、速度センサ(
S1)及び(S2)の回転操作軸(19a)または(1
9b)に一体回動可能に取付けたギア(20a)または
(20b)を、操作部(9a)または(9b)のボス部
に一体回動可能に付設した扇形ギア(21a)または(
21b)に咬合させることにより、第1速度センサ(S
1)を第1無段変速装置(T1)の所定の検出ができる
ように第1操作部(9a)に連動させ、第2速度センサ
(S2)を第2無段変速装置(T2)の所定の検出がで
きるように第2操作部(9b)に連動させである。
The first speed sensor (S1) and the second speed sensor (S2) are composed of rotary potentiometers, as shown in FIGS. 1 to 3, and are attached to the swash plate via a plate (17a) or (17b) It is configured to be supported by the operating shaft (8a) or (8b), and is mounted on the plate (17a) and (1
7b) is fixed so as not to move by the action of a connecting member (18) which connects the swash plate operating shaft (8a) or (8b) so as not to rotate. And the speed sensor (
S1) and (S2) rotation operation shaft (19a) or (1
The gear (20a) or (20b) attached to the boss part of the operation part (9a) or (9b) so as to be able to rotate together with the fan-shaped gear (21a) or (20b) attached to the boss part of the operating part (9a) or (9b)
21b), the first speed sensor (S
1) is linked to the first operation part (9a) so as to enable predetermined detection of the first continuously variable transmission (T1), and the second speed sensor (S2) is linked to the predetermined detection of the second continuously variable transmission (T2). It is linked to the second operation part (9b) so that the detection of

第2図に示すように、回転式ポテンショメータで成る差
動センサ(S3)の本体(26)を連結ボルト(27)
、第1ギア部材(28)、第2ギア部材(29)及び支
持部材(30)を介して前記取付は板(17a)及び(
17b)に連結することにより、斜板操作軸(8a)及
び(8b)に前記部材(17a)、 (17b)、 (
30)等を介して支持されるように取付けである。そし
て、第1ギア部材(28)と第2ギア部材(29)が、
かつ、第2ギア部材(29)と支持部材(30)が夫々
、それらの間の嵌合構造のために差動センサ(S3)の
回転操作軸(31)の軸芯(X)周りで相対回動するよ
うに構成すると共に、連結ボルト(27)の作用によっ
て本体(26)と一体に回動する第1ギア部材(28)
を前記扇形ギア(21a)に咬合させることにより、差
動センサ(S3)の本体(26)を斜板操作軸(8a)
及び(8b)による支持にかかわらず第1操作部(9a
)の回動に連動して前記軸芯(X)の周りで回動するよ
うに第1操作部(9a)に連動連結しである。そして、
差動センサ(S2)の回転操作軸(31)と第2ギア部
材(29)を連動部材(32)の作用によって一体に回
動するように構成すると共に、第2ギア部材(29)を
第2操作部(9b)の方の前記扇形ギア(21b)に咬
合させることにより、回転操作軸(31)を第2操作部
(9b)に連動連結し、もって、第1操作部(9a)と
第2操作部(9b)の回動ストローク差の存否、並びに
、回動ストローク差が存在する場合におけるストローク
差の大きさ及び回動ストロークの大きい方の操作部判別
の夫々が差動センサ(S3)によってできるように構成
しである。
As shown in Figure 2, the main body (26) of the differential sensor (S3) consisting of a rotary potentiometer is connected to the connecting bolt (27).
, the first gear member (28), the second gear member (29), and the support member (30).
17b), the members (17a), (17b), (
30) and so on. The first gear member (28) and the second gear member (29) are
In addition, the second gear member (29) and the support member (30) are relative to each other around the axis (X) of the rotation operation shaft (31) of the differential sensor (S3) due to the fitting structure between them. The first gear member (28) is configured to rotate and rotates together with the main body (26) by the action of the connecting bolt (27).
By engaging the sector gear (21a), the main body (26) of the differential sensor (S3) is connected to the swash plate operation shaft (8a).
and (8b), the first operation part (9a
) is interlocked and connected to the first operating section (9a) so as to rotate around the axis (X) in conjunction with the rotation of the first operating section (9a). and,
The rotation operation shaft (31) of the differential sensor (S2) and the second gear member (29) are configured to rotate together by the action of the interlocking member (32), and the second gear member (29) is configured to rotate together with the second gear member (29). By engaging the sector gear (21b) of the second operating section (9b), the rotary operating shaft (31) is interlocked and connected to the second operating section (9b), thereby connecting it to the first operating section (9a). The differential sensor (S3 ).

すなわち、斜板操作軸(8a)及び(8b)、操作部(
9a)及び(9b)、扇形ギア(21a)及び(21b
)等の回動方向、連動比等の設定に起因し、第1無段変
速装置(T1)と第2無段変速装置(T2)が前後進側
及び増減速側のいずれにおいても同一側に切換わる際に
は差動センサ(S3)の本体(26)と回転操作軸(3
1)とが同一方向に回動し、第1無段変速装置(T1)
の速度変化巾と第2無段変速装置(T2)の速度変化巾
とが同一である際の本体(26)の回動角と回転操作軸
(31)の回動角とが同一になるのである。このために
、第1操作部(9a)と第2操作部(9b)の間に回動
ストローク差が発生するに伴い、そのストローク差と電
動モータ(m1)及び(m2)の操作力による操作部作
動とのために本体(26)と回転操作軸(31)とが相
対回動して差動センサ(S3)が操作された状態になる
のであり、この時に差動センサ(S3)が現出する抵抗
値と、予め設定しである基準抵抗値との比較判別の結果
により、無段変速装置(T1)と(T2)の速度差、及
び、いずれの無段変速装置(T1)または(T2)が高
速側であるかを判別するのである。そして、第1操作部
(9a)と第2操作部(9b)の間に回動ストローク差
が存在しない時には、差動センサ(S3)の本体(26
)と回転操作軸(31)が同一方向に同一回動角を回動
して差動センサ(S3)が非操作状態になるのであり、
差動センサ(S3)の現出する抵抗値が基準抵抗値であ
ることを知って無段変速装置(TI)と(T2)に速度
差がないと判断するのである。
That is, the swash plate operation shafts (8a) and (8b), the operation section (
9a) and (9b), fan-shaped gears (21a) and (21b)
), etc., the first continuously variable transmission (T1) and the second continuously variable transmission (T2) may be on the same side both in the forward and reverse directions and in the acceleration/deceleration side. When switching, the main body (26) of the differential sensor (S3) and the rotary operation shaft (3
1) rotates in the same direction, and the first continuously variable transmission (T1)
When the speed change width of the second continuously variable transmission (T2) is the same, the rotation angle of the main body (26) and the rotation angle of the rotary operation shaft (31) are the same. be. For this reason, as a rotational stroke difference occurs between the first operating part (9a) and the second operating part (9b), the operation is performed based on the stroke difference and the operating force of the electric motors (m1) and (m2). Due to the partial operation, the main body (26) and the rotary operation shaft (31) rotate relative to each other, and the differential sensor (S3) becomes operated, and at this time, the differential sensor (S3) is activated. Based on the result of comparing and determining the resistance value to be output with a preset reference resistance value, the speed difference between the continuously variable transmissions (T1) and (T2), and which continuously variable transmissions (T1) or ( It is determined whether T2) is on the high speed side. When there is no rotational stroke difference between the first operating section (9a) and the second operating section (9b), the main body (26) of the differential sensor (S3)
) and the rotary operation shaft (31) rotate in the same direction and through the same rotation angle, and the differential sensor (S3) becomes non-operational.
Knowing that the resistance value appearing from the differential sensor (S3) is the reference resistance value, it is determined that there is no speed difference between the continuously variable transmission (TI) and (T2).

そして、第4図に示すように、差動センサ(S3)を差
動解消制御手段(24)を介して第1駆動回路(D1)
に連係すると共に、差動解消手段(24)に制御切換え
手段(25)を連係させて、変速制御手段(12)によ
る増速及び減速制御が行われる際の斜行防止を図っであ
る。
As shown in FIG. 4, the differential sensor (S3) is connected to the first drive circuit (D1) via the differential cancellation control means (24).
In addition, the differential canceling means (24) is linked with the control switching means (25) to prevent skewing when the speed change control means (12) performs speed increase and deceleration control.

すなわち、変速制御手段(12)による増減速制御が行
われる時には、制御切換え手段(25)が変速制御手段
(12)からの情報に基いて差動解消制御手段(24)
を作動状態に自動的に切換え操作するように構成しであ
る。そして、差動解消制御手段(24)が作動状態にな
ると自動的に、差動センサ(S3)による検出結果に基
いて第1電動モータ(m1)の回動速度を増速あるいは
減速させたり、現状に維持させるべき信号を第1駆動回
路(D1)に出力することにより、差動センサ(S3)
が操作部差動なしの検出状態になる状態に第1電動モー
タ(m1)による第1操作部操作速度と第2電動モータ
(m2)による第2操作部操作速度との差を自動的に調
節して第1無段変速装置(T1)による現出速度と第2
無段変速装置(T2)による現出速度との差を解消する
ところの速度差調節制御を実行するように構成しである
。そして、変速制御手段(12)による増減速制御が行
われない時には、制御切換え手段(25)が変速制御手
段(12)からの情報に基いて差動解消制御手段(24
)を非作用状態に自動的に切換え操作し、操向制御手段
(13)による速度差現出制御が可能になるようにしで
ある。
That is, when the speed change control means (12) performs the increase/deceleration control, the control switching means (25) changes the differential cancellation control means (24) based on information from the speed change control means (12).
The device is configured to automatically switch to the operating state. When the differential cancellation control means (24) is activated, it automatically increases or decreases the rotational speed of the first electric motor (m1) based on the detection result by the differential sensor (S3). By outputting a signal to be maintained at the current state to the first drive circuit (D1), the differential sensor (S3)
automatically adjusts the difference between the first operation part operation speed by the first electric motor (m1) and the second operation part operation speed by the second electric motor (m2) so that the operation part is in a detection state with no operation part differential. The output speed by the first continuously variable transmission (T1) and the second continuously variable transmission are
It is configured to perform speed difference adjustment control to eliminate the difference between the speed and the speed exhibited by the continuously variable transmission (T2). When the speed change control means (12) does not perform the increase/deceleration control, the control switching means (25) controls the differential cancellation control means (24) based on the information from the speed change control means (12).
) is automatically switched to a non-operating state so that the steering control means (13) can perform speed difference appearance control.

尚、第5図に示す油圧モータ(M3)はフレールモア装
置(2)を駆動するためのものである。
The hydraulic motor (M3) shown in FIG. 5 is for driving the flail mower device (2).

〔別実施例〕[Another example]

クローラ走行装置(7)に替え、複数個の車輪が機体前
後方向に並らぶ多輪式走行装置を採用4 して実施してもよいのであり、これらを単に走行装置(
7)と称する。
Instead of the crawler traveling device (7), a multi-wheel traveling device in which a plurality of wheels are arranged in the longitudinal direction of the aircraft may be used.
7).

第1及び第2電動モータ(m2)、(m2)に替え、油
圧シリンダ等の各種アクチュエータを採用して実施して
もよいのであり、これらを第1駆動機構(m1)または
第2駆動機構(m2)と称する。
Instead of the first and second electric motors (m2) and (m2), various actuators such as hydraulic cylinders may be adopted and implemented, and these can be replaced with the first drive mechanism (m1) or the second drive mechanism ( m2).

ラジオコントロール型の他、乗用型や歩行型の作業車に
も本発明は適用できる。したがって前後進スティック(
15)を変速操作手段(15)と称し、操向スティック
(16)を操向制御手段(16)と称する。
In addition to the radio-controlled type, the present invention can also be applied to riding-type and walking-type work vehicles. Therefore, the forward and backward stick (
15) is referred to as a speed change operation means (15), and the steering stick (16) is referred to as a steering control means (16).

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない
Note that although reference numerals are written in the claims section for convenience of comparison with the drawings, the present invention is not limited to the structure of the attached drawings by such entry.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る作業車の走行制御装置の実施例を示
し、第1図は変速操作構造の一部切欠き側面図、第2図
は差動センサ配設部の一部切欠き平面図、第3図は第1
図の■−■線断面矢視図、第4図は走行制御系のブロッ
ク図、第5図は油圧回路図、第6図は草刈り機全体の側
面図、第7図は草刈り機全体の平面図である。 第8図及び第9図は従来装置における不具合の説明図で
ある。 7)・・・・・・走行装置、(9a)−−第1操作部、
(9b・・・・・・第2操作部、(I2)・川・・変速
制御手段、(13・・・・・・操向制御手段、(15)
・川・・変速操作手段、(16・・・・・・操向操作手
段、(18)・川・・操作部材、(24・・・・・・差
動解消制御手段、(25)・山・・制御切換え手段、(
26)・・・・・・本体、(31)・・川・回転操作軸
、(T2)・・・・・・第1無段変速装置、(I2)町
、、第2無段変速装置、(m2)・・・・・・第1駆動
機構、(m2)・川・・第2駆動機構、(S2)・山・
・差動センサ。
The drawings show an embodiment of the traveling control device for a working vehicle according to the present invention, in which FIG. 1 is a partially cutaway side view of the gear shift operation structure, and FIG. 2 is a partially cutaway plan view of the differential sensor installation section. , Figure 3 is the first
Figure 4 is a block diagram of the traveling control system, Figure 5 is a hydraulic circuit diagram, Figure 6 is a side view of the entire mower, and Figure 7 is a plan view of the entire mower. be. FIGS. 8 and 9 are explanatory diagrams of problems in the conventional device. 7)...Traveling device, (9a)--first operation section,
(9b...Second operating section, (I2)...Shift control means, (13...Steering control means, (15)
- Speed change operation means, (16... Steering operation means, (18) - River - Operation member, (24... Differential cancellation control means, (25) - Mountain ...control switching means, (
26)...Main body, (31)...River/rotation operation shaft, (T2)...First continuously variable transmission, (I2) Town, Second continuously variable transmission, (m2)...First drive mechanism, (m2)・River...Second drive mechanism, (S2)・Mountain・
・Differential sensor.

Claims (1)

【特許請求の範囲】 左右走行装置(7)、(7)を各別に駆動する油圧式の
第1無段変速装置(T_1)及び第2無段変速装置(T
_2)を設け、前記第1無段変速装置(T_1)の第1
操作部(9a)と前記第2無段変速装置(T_2)の第
2操作部(9b)とを各別に操作する第1駆動機構(m
_1)及び第2駆動機構(m_2)を設けると共に、前
記第1無段変速装置(T_1)及び前記第2無段変速装
置(T_2)夫々による現出速度が変速操作手段(15
)による設定速度に等しくまたはほぼ等しくなる状態に
前記第1駆動機構(m_1)及び前記第2駆動機構(m
_2)を自動的に操作する変速制御手段(12)、前記
第1無段変速装置(T_1)による現出速度と、前記第
2無段変速装置(T_2)による現出速度との差が操向
操作手段(16)による設定速度差に等しくまたはほぼ
等しくなる状態に前記第1駆動機構(m_1)及び前記
第2駆動機構(m_2)を自動的に操作する操向制御手
段(13)を設けた作業車の走行制御装置であって、 前記第1操作部(9a)の回動ストロークと前記第2操
作部(9b)の回動ストロークの差の存否を検出する差
動センサ(S_3)の本体(26)を回動自在に取付け
ると共に前記第1操作部(9a)に連動連結し、かつ、
前記差動センサ(S_3)の回転操作軸(31)を前記
第2操作部(9b)に連動連結して、前記第1駆動機構
(m_1)によって操作される前記第1操作部(9a)
と前記第2駆動機構(m_2)によって操作される前記
第2操作部(9b)との回動ストローク差が発生するに
伴い、その操作部作動のために前記本体(26)と前記
回転操作軸(31)が相対回動して前記差動センサ(S
_3)が操作状態になり、かつ、前記第1駆動機構(m
_1)によって操作される前記第1操作部(9a)と前
記第2駆動機構(m_2)によって操作される前記第2
操作部(9b)との回動ストローク差が存在しない時に
は、前記本体(26)と前記回転操作軸(31)が同一
方向に同一回動角を回動して前記差動センサ(S_3)
が非操作状態になるように構成し、 前記差動センサ(S_3)が操作部差動無しの検出状態
になる状態に前記第1駆動機構(m_1)による第1操
作部操作速度と前記第2駆動機構(m_2)による第2
操作部操作速度との差を自動的に調節する差動解消制御
手段(24)を設け、 前記変速制御手段(12)による前記第1駆動機構(m
_1)及び前記第2駆動機構(m_2)の操作が行われ
る状態においてのみ前記差動解消制御手段(24)によ
る速度差調節制御を自動的に実行させる制御切換え手段
(25)を設けてある作業車の走行制御装置。
[Claims] A hydraulic first continuously variable transmission (T_1) and a second continuously variable transmission (T_1) that drive the left and right traveling devices (7), (7) separately.
_2) is provided, and the first continuously variable transmission (T_1) is provided with a
a first drive mechanism (m) that separately operates the operating section (9a) and the second operating section (9b) of the second continuously variable transmission (T_2);
_1) and a second drive mechanism (m_2), and the speeds appearing by the first continuously variable transmission (T_1) and the second continuously variable transmission (T_2) are controlled by the speed change operation means (15).
) The first drive mechanism (m_1) and the second drive mechanism (m_1)
_2), the speed change control means (12) automatically operates the speed change control means (12), which controls the difference between the speed exhibited by the first continuously variable transmission (T_1) and the speed developed by the second continuously variable transmission (T_2). A steering control means (13) is provided for automatically operating the first drive mechanism (m_1) and the second drive mechanism (m_2) to a state where the speed difference is equal to or approximately equal to a speed difference set by the direction operation means (16). A travel control device for a working vehicle, comprising a differential sensor (S_3) that detects the presence or absence of a difference between the rotation stroke of the first operation part (9a) and the rotation stroke of the second operation part (9b). The main body (26) is rotatably attached and operatively connected to the first operating portion (9a), and
The rotational operation shaft (31) of the differential sensor (S_3) is interlocked with the second operation part (9b), and the first operation part (9a) is operated by the first drive mechanism (m_1).
As a rotational stroke difference occurs between the main body (26) and the second operating portion (9b) operated by the second drive mechanism (m_2), the main body (26) and the rotational operating shaft are operated in order to operate the operating portion. (31) rotates relative to the differential sensor (S
_3) is in the operating state, and the first drive mechanism (m
_1) and the second operating part (9a) operated by the second drive mechanism (m_2).
When there is no rotational stroke difference with the operating portion (9b), the main body (26) and the rotational operation shaft (31) rotate in the same direction and at the same rotational angle, and the differential sensor (S_3)
is configured such that the differential sensor (S_3) is in a non-operating state, and the operating speed of the first operating part by the first drive mechanism (m_1) and the second The second drive mechanism (m_2)
A differential cancellation control means (24) is provided to automatically adjust the difference between the speed of operation of the operating section and
_1) and a work in which a control switching means (25) is provided that automatically executes the speed difference adjustment control by the differential cancellation control means (24) only in a state where the second drive mechanism (m_2) is operated. Car travel control device.
JP2049059A 1990-02-27 1990-02-27 Work vehicle travel control device Expired - Lifetime JPH0813655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2049059A JPH0813655B2 (en) 1990-02-27 1990-02-27 Work vehicle travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049059A JPH0813655B2 (en) 1990-02-27 1990-02-27 Work vehicle travel control device

Publications (2)

Publication Number Publication Date
JPH03249479A true JPH03249479A (en) 1991-11-07
JPH0813655B2 JPH0813655B2 (en) 1996-02-14

Family

ID=12820514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049059A Expired - Lifetime JPH0813655B2 (en) 1990-02-27 1990-02-27 Work vehicle travel control device

Country Status (1)

Country Link
JP (1) JPH0813655B2 (en)

Also Published As

Publication number Publication date
JPH0813655B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
JP2000175547A (en) Movable agricultural machine
JPH03249479A (en) Device for controlling running of working vehicle
JP4390960B2 (en) Crawler car
JPH03176284A (en) Control device for running of working vehicle
JP2000177619A (en) Movable agricultural machinery
JPH08156823A (en) Steering device for working vehicle
JP4422254B2 (en) Crawler car
JP2001030943A (en) Movable agricultural machine
JP2001138943A (en) Crawler traveling vehicle
JP2002308140A (en) Working vehicle
RU2186702C2 (en) Two-track vehicle course-keeping motion control system (versions)
JPH1081152A (en) Differential gear for crawler type travel device
JP4456213B2 (en) Tracked tractor
JP3552275B2 (en) Steering control device such as combine
JP3749358B2 (en) Mobile farm machine
JP4116389B2 (en) HST transmission structure of traveling vehicle
JP3141134B2 (en) Moving agricultural machine
JP3691703B2 (en) Mobile farm machine
JP2001055159A (en) Moving agricultural machine
JP3208542B2 (en) Moving agricultural machine
JP3190986B2 (en) Moving agricultural machine
JP3883484B2 (en) Work vehicle turning control device
JP2023007766A (en) work machine
JP3174950B2 (en) Moving agricultural machine
JP3429252B2 (en) Combine