JPH03249401A - Pneumatic driving device - Google Patents

Pneumatic driving device

Info

Publication number
JPH03249401A
JPH03249401A JP4486190A JP4486190A JPH03249401A JP H03249401 A JPH03249401 A JP H03249401A JP 4486190 A JP4486190 A JP 4486190A JP 4486190 A JP4486190 A JP 4486190A JP H03249401 A JPH03249401 A JP H03249401A
Authority
JP
Japan
Prior art keywords
section
disturbance
force
disturbance force
operating state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4486190A
Other languages
Japanese (ja)
Inventor
Sadahiro Matsuura
松浦 貞裕
Yoshio Umeda
善雄 梅田
Hiroshi Takaso
洋 高祖
Masaichiro Tachikawa
雅一郎 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4486190A priority Critical patent/JPH03249401A/en
Publication of JPH03249401A publication Critical patent/JPH03249401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Servomotors (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To achieve high speed and high accuracy at the time of positioning for a certain aimed position by using estimated or measured disturbance force to an operational part so as to perform disturbance compensation, and by integrating the deflection between the output of an ideal model part and that of an operational condition detection part so as to carry out disturbance compensation, at the same time. CONSTITUTION:A driving command value of control valve group that drives and controls a pneumatic actuator is output by an operational control part 10 as well as by a disturbance compensation part 11. Positional deflection between the operational part and an aimed position, speed of the operational part by a differentiator 12, the deflection between reference pressure of an air chamber of the actuator and the measured pressures P1, P2, are input by amplifiers 13a, 13b of the operational control part 10, and a feedback control system in the condition of a pneumatic driving system is formed thereby. The disturbance compensation part 11 is composed of a forward disturbance compensator 21, an ideal response generation part 23, a deflection integrating part 22, a weighting part 19, and of a disturbance compensation command value adder 20, while the outputs of the amplifiers 13a, 13b are corrected. The positioning for a certain aimed position can be thus be performed at a high speed and with high accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧縮空気源を駆動源として動作を行う空気圧駆
動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a pneumatic drive device that operates using a compressed air source as a drive source.

従来の技術 空気圧駆動装置は 動作部の出力重量比が高いため小型
軽量化が容易である。また 駆動源から動作部への伝達
も配管により容易にかつ自由にできるたべ 伝達機構も
不要となり、このことも小型軽量化に有利である。さら
に 空気圧駆動は安価で、環境を汚すこともなく、力を
保持したり圧力エネルギーとして保存できる等の長所を
生かして、近紙 産業分野等で広く利用されていもしか
し 前記のような長所を持つ反眠 空気の持つ圧縮性や
シリンダのシール部の摩擦等の要因で、空気圧駆動方式
での任意の位置での位置決め動作は困難であった その
た敢 オンオフ的な動作部 機械的なストッパーを用い
た1点あるいは数点のみの位置決めしか行われていない
のが現状であム ところ力支 弁部の開口面積を指令値
に応じて変化させる機能を有する制御弁が進歩したた数
 空気室内の圧力の制御が可能となり外部信号による中
間停止が可能となってきに 以下図面を参照しなが叙 上述した従来の空気圧駆動装
置の一例について説明する。
Conventional technology pneumatic drive devices have a high output-to-weight ratio of the operating parts, so they can be easily made smaller and lighter. In addition, there is no need for a rotary transmission mechanism, which can easily and freely transmit power from the drive source to the operating parts using piping, which is also advantageous in reducing size and weight. Furthermore, pneumatic drive is inexpensive, does not pollute the environment, and has the advantages of retaining force and storing it as pressure energy. Due to factors such as the compressibility of air and the friction of the cylinder seal, it was difficult to position the system at any position using the pneumatic drive system. At present, positioning is only performed at one or a few points.However, control valves that have the function of changing the opening area of the valve part according to the command value have been advanced. In the following, an example of the conventional pneumatic drive device mentioned above will be explained with reference to the drawings.

第4図は従来の空気圧駆動装置の一例を示す全体図であ
a 第4図において1は空気室を有する空気圧揺動型シリン
ダ、4は圧縮空気@、5a、5bは空気室に空気を流入
 流出させるために弁部の開口面積を指令値に応じて変
化させる機能を有する制御弁、 6a、 6bはそれぞ
れ空気室の内部圧力を検出する圧力センサ、 7は動作
部の位置を検出する位置センサ、 8は負?E  9a
、 9bはそれぞれ制御弁5a、 5bを駆動するコン
トローラ、 10は動作制御部 21は前向き外乱力補
償器である。
Figure 4 is an overall view showing an example of a conventional pneumatic drive device. In Figure 4, 1 is a pneumatic swing type cylinder having an air chamber, 4 is compressed air @, and 5a and 5b are air inflows into the air chambers. A control valve that has a function of changing the opening area of the valve portion according to a command value in order to allow outflow; 6a and 6b are pressure sensors that detect the internal pressure of the air chamber, and 7 is a position sensor that detects the position of the operating portion. , Is 8 negative? E 9a
, 9b are controllers that drive the control valves 5a and 5b, respectively; 10 is an operation control section; and 21 is a forward disturbance force compensator.

第2図は第4図における空気圧駆動揺動型シリンダの詳
細説明図である。 1は空気室を有する空気圧揺動型シ
リンタミ 2はシリンダ1内を気密性を保ちながら移動
できるベーン、3a、 3bはベーン2によって分割さ
れた空気室 4は圧縮空気#5a、 5bはそれぞれ空
気室3a、3bに空気を流人 流出させるために弁部の
開口面積を指令値に応じて変化させる機能を有する制御
弁、 6a、 6bはそれぞれ空気室3a、 3bの内
部圧力を検出する圧力センサである。
FIG. 2 is a detailed explanatory diagram of the pneumatically driven oscillating cylinder in FIG. 4. 1 is a pneumatic swing type cylinder cylinder having an air chamber; 2 is a vane that can move inside the cylinder 1 while maintaining airtightness; 3a and 3b are air chambers divided by the vane 2; 4 is compressed air #5a and 5b are air chambers, respectively. 3a and 3b are control valves that have a function of changing the opening area of the valve portion according to a command value in order to allow air to flow out. 6a and 6b are pressure sensors that detect the internal pressure of the air chambers 3a and 3b, respectively. be.

第5図は第4図における動作制御部10及び前向き外乱
力補償器21の詳細説明図である。
FIG. 5 is a detailed explanatory diagram of the motion control section 10 and forward disturbance force compensator 21 in FIG. 4.

第5図において12は微分器 13a、 13bは増幅
器 14は外乱力検出a 15は外乱補償力構成部であ
4 13a、  13bはそれぞれ動作部の目標位置に
対する位置側基 動作部の速度、空気室3a、 3bの
基準圧力からの圧力偏差のフィードバックゲイン成分で
あり、これらは 揺動形シリンダ1、ベーン2、負荷8
を含む空気圧駆動系の状態フィードバック制御系を構成
している。
In FIG. 5, 12 is a differentiator, 13a and 13b are amplifiers, 14 is a disturbance force detection a, and 15 is a disturbance compensation force component. This is the feedback gain component of the pressure deviation from the reference pressure of 3a and 3b, and these are the oscillating cylinder 1, vane 2, load 8
This constitutes a state feedback control system for the pneumatic drive system, including:

空気室3a、 3b内のそれぞれの圧力をpl、p2、
ベーン2と負荷全体の慣性モーメントをJ、粘性摩擦係
数をb、ベーンの受圧面積をA、ベーンの受圧部の外半
径と内半径との中心半径を1代ベーンの回転変位量をθ
、ベーンに作用する外乱力をdとすると、 Jθ十bり十d=A−rO−(pi−p2)・・・・・
・・・・(1) の関係が成り立1 ここで、 θはθの時間に関する2
同機分、θはθの時間に関する1同機分を表わす。圧力
pi(i=1. 2)と制御弁の開口面積5i(i=1
. 2)との関係は 制御弁の上流側圧力と下流側圧力
との差が十分あると仮定し 平衡点(基準圧力po)ま
わりで線形化を行うと、p1− kl・Sl・ps−に
2・po・θ・・・・・・・・・(2) p2=kl・S2・ps十に2・pO・θ・・・・・・
・・・(3) という関係が得られも ここで、psは供給圧力に1、
k2はベーンの形状や温度等に関係する定数であム こ
こで、空気圧駆動装置の制御人力Uを、空気の圧縮性等
の影響を補償するための状態フィードバック制御を行う
入力ufとベーンに作用する外乱力を補償する入力uh
とに分けて考えまず、空気の圧縮性等の影響を補償する
ための状態フィードバック制御系を構成するたぬ 外乱
のない次式のシステムを考える。
The respective pressures in the air chambers 3a and 3b are pl, p2,
The moment of inertia of the vane 2 and the entire load is J, the viscous friction coefficient is b, the pressure receiving area of the vane is A, the center radius between the outer radius and the inner radius of the pressure receiving part of the vane is the rotational displacement amount of the first vane is θ
, if the disturbance force acting on the vane is d, then Jθ+bri+d=A-rO-(pi-p2)...
...(1) The following relationship holds true1 Here, θ is 2 related to the time of θ
The same-aircraft portion, θ represents one same-aircraft portion with respect to the time of θ. Pressure pi (i=1.2) and control valve opening area 5i (i=1
.. The relationship with 2) is as follows: Assuming that there is a sufficient difference between the upstream pressure and downstream pressure of the control valve, and performing linearization around the equilibrium point (reference pressure po), p1-kl・Sl・ps- becomes 2.・po・θ・・・・・・・・・(2) p2=kl・S2・ps2・pO・θ・・・・・・
...(3) The following relationship can be obtained. Here, ps is 1 for the supply pressure,
k2 is a constant related to the vane shape, temperature, etc. Here, the control human power U of the pneumatic drive device is applied to the vane with the input uf that performs state feedback control to compensate for the influence of air compressibility, etc. Input uh to compensate for the disturbance force
First, let's consider a system with the following equation without any disturbances, which constitutes a state feedback control system to compensate for the effects of air compressibility, etc.

J’j+bM= A−r(1(pl−p2)・・・・・
・・・・(5) このとき、この空気圧駆動装置の状態方程式(よ妥−A
c−x +Bc−u f     ・・・・・・・・・
(6)x−[θ θ pi−po  p2−pO]Tと
なる。なkTは転置行列を意味する。現代制御理論に基
づき状態フィードバックを行なうと、指令値uflよ uf=−kc−e         ・・・・・・・・
・(7)e  −[θ −θ d   δ    pi
−pOp2−pO]Tとなる。ただし θdは動作部の
回転変位量θの目標軌道 kcは状態フィードバックゲ
イン行列13a、13bであム この状態フィードパ・
ンク制御により空気の圧縮性が位置決め動作に及ぼす影
響を抑制して動作部の任意の位置で位置決め動作を実現
できも 次に 外乱力dの影響を補償する方式について説明すも
 いま、外乱力dをなんらかの手段で推定あるいは測定
できたとする。 (例えば 外乱推定オブザーバ)この
とき、外乱力の推定値をdeとすると、外乱補償人力u
hは状態フィードパ・ンクゲイン行列kcから求められ
る外乱補償ゲインkhを用いて、 u h= −k h−d e         −−−
(8)となり、式(4)、 (7)、 (8)より、制
御人力U(よu=−kc−e−kh−de    ・・
・・・・・・・(9)となる。したがって、空気の圧縮
性の影響を圧力を含む状態量を状態フィードバック制御
を行うことにより補償し シール部の摩擦の影響(よ 
咳摩擦を外乱推定オブザーバ等により推定あるいは測定
した値より、摩擦を打ち消す入力を構成し、前向きに各
制御弁への制御弁駆動指令値に加えることで補償でき、
任意の点で高速に位置決めが可能となった (発明者ら
により特許出願中)発明が解決しようとする課題 しかしなか社 上記のような空気圧駆動装置でζ友 外
乱力を打ち消す入力を推定したあるいは測定した外乱力
を用いて構成し 前向きに各制御弁への指令値に加える
ことで、任意の点で高速に位置決めが行えるものへ 摩
擦の推定遅れや補償遅れ さらに(よ 制御弁のヒステ
リシスやばらつき等の影響で電気モータ並の高精度な位
置決めは困難であるという問題点があった 本発明は上記問題点に鑑へ 動作部に作用する外乱力を
推定あるいは測定し この推定あるいは測定した外乱力
を用いて外乱力補償を行うとともに 前記動作部に外乱
力が作用しない空気圧駆動装置の理想モデル部からの出
力値と動作状態検出部の出力値との偏差を積分して外乱
力補償を行うことを併用して、任意の目標位置に対する
位置決め等の動作を高速 高精度に実現する空気圧駆動
装置を提供するものであム 課題を解決するための手段 前記問題点を解決するため番−本発明の空気圧駆動装置
は 空気室と前記空気室内を気密性を保ちながら移動可
能な動作部とを有する空気圧アクチュエータと、前記動
作部により分割された空気室群のそれぞれに指令値に応
じた空気を流入あるいは流出させることができる制御弁
群と、前記空気室群の前記動作部に加わるそれぞれの流
体力を検出する流体力検出部と、前記動作部の動作状態
を検出する動作状態検出部と、前記動作部に加わる外乱
力を補償するた数 前記動作部に加わる前記外乱力を推
定あるいは測定する外乱力検出部と、前記外乱力検出部
の出力を用いて前記外乱力を打ち消す補償力を構成する
外乱補償力構成部とを有する前向き外乱力補償器と、前
記動作部に前記外乱力が作用しない空気圧駆動装置のモ
デルを持つ理想モデル部を有し 前記理想モデル部に前
記目標動作状態を入力して動作部の理想応答を生成する
理想応答生成部と、前記理想応答生成部の出力値と前記
動作状態検出部の出力値との偏差を時間積分するモデル
偏差積分器と、前記モデル偏差積分器の出力値に積分利
得を乗する積分利得乗算器とを有する偏差積分部と、前
記前向き外乱力補償器の出力値に負の数ではないm倍の
重みを乗し前記偏差積分部の出力値に負の数ではないn
倍の重みを乗する重み付け部と、前記重み付け部の2つ
の出力値を加算する外乱補償指令値加算器とを有してい
る外乱力補償部と、前記動作状態検出部と前記流体力検
出部の出力信号と目標動作状態と流体力基準値と前記外
乱力補償部の出力値を入力として前記動作部が前記目標
動作状態に従って移動するために必要な制御弁駆動指令
値を前記制御弁群に出力する動作制御部とを備えたもの
である。
J'j+bM=A-r(1(pl-p2)...
...(5) At this time, the state equation of this pneumatic drive device (Yo-A
c−x +Bc−u f ・・・・・・・・・
(6) x-[θ θ pi-po p2-pO]T. kT means a transposed matrix. When state feedback is performed based on modern control theory, the command value ufl becomes uf=-kc-e...
・(7) e −[θ −θ d δ pi
-pOp2-pO]T. However, θd is the target trajectory of the rotational displacement θ of the operating part, and kc is the state feedback gain matrix 13a, 13b.
It is possible to achieve positioning at any position of the moving part by suppressing the influence of air compressibility on the positioning operation through link control. Suppose that it is possible to estimate or measure by some means. (For example, a disturbance estimation observer) At this time, if the estimated value of the disturbance force is de, then the disturbance compensation human force u
For h, use the disturbance compensation gain kh obtained from the state feed pan-nk gain matrix kc, u h= −kh−d e −−−
(8), and from equations (4), (7), and (8), control human power U (y u = -kc-e-kh-de . .
......(9). Therefore, the influence of the compressibility of air can be compensated for by performing state feedback control of state quantities including pressure, and the influence of friction in the sealing part (such as
An input for canceling the friction is constructed from a value estimated or measured by a disturbance estimation observer, etc., and can be compensated by adding it to the control valve drive command value forward to each control valve.
It has become possible to position at any point at high speed (patent pending by the inventors) Problems to be solved by the invention (Patent pending by the inventors) By using the measured disturbance force and adding it forward to the command value to each control valve, it is possible to perform high-speed positioning at any point. Friction estimation delay and compensation delay In addition, control valve hysteresis and variation In view of the above problems, the present invention estimates or measures the disturbance force acting on the moving part, and estimates or measures the estimated or measured disturbance force. Compensating for the disturbance force using: and performing disturbance force compensation by integrating the deviation between the output value from the ideal model part of the pneumatic drive device in which no disturbance force acts on the operating part and the output value of the operating state detection part. This invention provides a pneumatic drive device that realizes operations such as positioning to arbitrary target positions at high speed and with high accuracy. The pneumatic drive device includes a pneumatic actuator that has an air chamber and an operating section that can move within the air chamber while maintaining airtightness, and a pneumatic actuator that inflows or injects air according to a command value into each of the air chamber groups divided by the operating section. a group of control valves capable of causing the air to flow out; a fluid force detection section that detects respective fluid forces applied to the operating section of the air chamber group; an operating state detection section that detects the operating state of the operating section; A disturbance force detection unit that estimates or measures the disturbance force applied to the operating unit, and a disturbance that constitutes a compensation force that cancels out the disturbance force using the output of the disturbance force detection unit. a forward disturbance force compensator having a compensation force component; and an ideal model section having a model of a pneumatic drive device in which the disturbance force does not act on the operating section; and inputting the target operating state to the ideal model section. an ideal response generation section that generates an ideal response of the operating section; a model deviation integrator that time-integrates the deviation between the output value of the ideal response generation section and the output value of the operating state detection section; and the model deviation integrator. a deviation integrating section having an integral gain multiplier that multiplies the output value by an integral gain; and a deviation integrating section having an integral gain multiplier that multiplies the output value by an integral gain, and multiplying the output value of the forward disturbance force compensator by a non-negative number m times the weight to give the output value of the deviation integrating section. n not a negative number
a disturbance force compensator having a weighting unit that multiplies a double weight, and a disturbance compensation command value adder that adds two output values of the weighting unit; the operating state detecting unit; and the fluid force detecting unit. A control valve drive command value necessary for the operating section to move according to the target operating state is given to the control valve group by inputting the output signal of the output signal, the target operating state, the fluid force reference value, and the output value of the disturbance force compensator. and an operation control section that outputs the output.

作用 本発明は前記した構成によって、摩擦の推定遅れや補償
遅れ さらに(よ 制御弁のヒステリシスやばらつき等
の影響がある場合でL 推定あるいは測定した外乱力を
用いて外乱力補償を行うとともに 前記動作部に外乱力
が作用しない空気圧駆動装置のモデルからの出力値との
偏差を積分して外乱力補償を行うことを併用して、任意
の目標位置に対する位置決め等の動作を外部からの信号
により高速かつ高精度に実現することができる。
Operation The present invention uses the above-described configuration to compensate for the disturbance force using the estimated or measured disturbance force in the case where there is an influence of friction estimation delay, compensation delay, etc. By using external disturbance force compensation by integrating the deviation from the output value from a model of a pneumatic drive device in which no disturbance force is applied to the And it can be realized with high precision.

実施例 以下本発明の一実施例の空気圧駆動装置について、図面
を参照しながら説明する。
EXAMPLE Hereinafter, a pneumatic drive device according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例における空気圧駆動装置の構成
を示す全体図である。
FIG. 1 is an overall view showing the configuration of a pneumatic drive device in an embodiment of the present invention.

第1図において1は空気室を有する空気圧揺動型シリン
ダ、 4は圧縮空気i5a、5bは空気室に空気を流入
 流出させるために弁部の開口面積を指令値に応じて変
化させる機能を有する制御弁、 6a、 6bはそれぞ
れ空気室の内部圧力を検出する圧力センサ、 7は動作
部の位置を検出する位置センサ、 8は負i9a、 9
bはそれぞれ制御弁5a、 5bを駆動するコントロー
ラ、 10は動作制御部 11は外乱力補償器 19は
重み付け餓 20は外乱補償指令値加算器 21は前向
き外乱力補償器 22は偏差積分部 23は理想応答生
成部であム 第2図は第1図における空気圧駆動揺動型シリンダの詳
細説明図であム 空気圧揺動型シリンダは従来例と同じ
である。
In Fig. 1, 1 is a pneumatic swing type cylinder having an air chamber, 4 is compressed air i5a, and 5b has a function of changing the opening area of the valve part according to a command value in order to allow air to flow into and out of the air chamber. Control valves, 6a and 6b are pressure sensors that detect the internal pressure of the air chamber, 7 is a position sensor that detects the position of the operating part, 8 is a negative i9a, 9
b is a controller that drives the control valves 5a and 5b, respectively; 10 is an operation control section; 11 is a disturbance force compensator; 19 is a weighting star; 20 is a disturbance compensation command value adder; 21 is a forward disturbance force compensator; 22 is a deviation integration section; 23 is a FIG. 2 is a detailed explanatory diagram of the pneumatically driven oscillating cylinder shown in FIG. 1. The pneumatically oscillating cylinder is the same as the conventional example.

第3図は本発明の実施例における空気圧駆動装置の第1
図における動作制御部10及び外乱力補償部11の詳細
説明図であも 第3図において12は微分器 13a、13bは増幅器
 14は久乱力検出皿 15は外乱補償力構成部 16
は理想モデル訊 17は積分器18は増幅器 】9は重
み付け訊 20は外乱補償指令値加算器 21は前向き
外乱力補償器 22は偏差積分部 23は理想応答生成
部である。
FIG. 3 shows the first pneumatic drive device according to the embodiment of the present invention.
In FIG. 3, 12 is a differentiator, 13a and 13b are amplifiers, 14 is a disturbance force detection plate, and 15 is a disturbance compensation force component 16.
17 is an integrator 18 is an amplifier; 9 is a weighting unit; 20 is a disturbance compensation command value adder; 21 is a forward disturbance force compensator; 22 is a deviation integrator; and 23 is an ideal response generator.

13a、 13bはそれぞれ動作部の目標位置に対する
位置偏差 動作部の速度、空気室3a、 3bの基準圧
力からの圧力偏差のフィードバックゲイン成分であり、
これら(上 空気圧揺動型シリンダ1、ベーン2、負荷
8を含む空気圧駆動系の状態フィードバック制御系を構
成している。前向き外乱力補償器21(よ 外乱力検出
部14と外乱補償力構成部15で構成され 理想応答生
成部23(よ外乱力が作用しない理想モデル部16を有
し これに目標位置を入力することで動作部の理想応答
を生成する。偏差積分部22ζよ この理想モデル部1
6の出力である理想応答と動作部の応答との位置偏差を
時間積分する積分器17と、積分器17の出力に積分利
得を乗じる増幅器18とから構成される。さら級 重み
付け部19は前向き外乱力補償器21の出力値に負の数
ではないm倍の重みを乗し 偏差積分部22の出力値に
負の数ではないn倍の重みを乗じ、 外乱補償指令値加
算器20により、この重み付け部の2つの出力値を加算
される。理想モデル部16は 式(6)の外乱力が作用
しない空気圧駆動装置の状態方程式に式(7)の入力を
加えた xm=Ac−xm+Bc−(−kc−e)= (Ac−
Bc−kc)  −xm 十Bc−kp・θd     ・・・・・・・・・(1
0)k  c−[k  P    k  v    k
  prl    k  pr2コTで表わされる。こ
こで、xmは理想モデルの状態量であム 積分器17に
より理想モデルの状態量xmの位置に関する状態量θm
と空気圧駆動装置の位置に関する状態量θとの偏差を時
間積分し 積分利得に1を乗じて、増幅器18からの出
力uil;Lui=ki−f  (θm−θ)  dt
    −−−−−−−−−(i i)となム すると、重み付け部19 !i  式(11)で表わさ
れる増幅器18の出力uiに重みmを乗し 式(8)で
表わされる高速に外乱力を補償できる外乱補償力構成部
15の出力uhに重みnを乗じる。そして、外乱補償指
令値加算器20は重み付け部19により重みを乗じられ
た値を加算し 動作制御部に出力し動作部に作用する外
乱力を補償し 位置決め制御を行う。ここで(山 −例
として、両方の重みとも1とした場合について説明する
。この時、制御弁駆動指令値u i、t、  式(7)
、  (8)、  (11)を用いて、 u=−kc−e−kh−de +ki−f (θm−θ) dt   −−−−・・・
−(12)となる。
13a and 13b are feedback gain components of the positional deviation of the operating part with respect to the target position, the speed of the operating part, and the pressure deviation of the air chambers 3a and 3b from the reference pressure, respectively;
These components constitute a state feedback control system for the pneumatic drive system including the pneumatic swing cylinder 1, vane 2, and load 8. The forward disturbance force compensator 21 (disturbance force detection unit 14 and disturbance compensation force configuration unit) 15, it has an ideal response generation section 23 (and an ideal model section 16 on which no disturbance force acts) and generates an ideal response of the operating section by inputting the target position to this ideal model section. 1
6, and an amplifier 18 that multiplies the output of the integrator 17 by an integral gain. The weighting section 19 multiplies the output value of the forward disturbance force compensator 21 by a non-negative weight of m times, multiplies the output value of the deviation integration section 22 by a non-negative weight of n times, and performs disturbance compensation. A command value adder 20 adds the two output values of this weighting section. The ideal model section 16 adds the input of equation (7) to the equation of state of the pneumatic drive device in which no disturbance force acts in equation (6), xm=Ac-xm+Bc-(-kc-e)=(Ac-
Bc-kc) -xm 10 Bc-kp・θd ・・・・・・・・・(1
0) k c-[k P k v k
It is expressed as prl k pr2koT. Here, xm is the state quantity of the ideal model.The state quantity θm related to the position of the state quantity xm of the ideal model is
The deviation between the state quantity θ regarding the position of the pneumatic drive device is integrated over time, the integral gain is multiplied by 1, and the output from the amplifier 18 is obtained as follows: Lui=ki−f (θm−θ) dt
---------------(i i) Then, the weighting section 19 ! i The output ui of the amplifier 18 expressed by Equation (11) is multiplied by a weight m, and the output uh of the disturbance compensation force configuration unit 15, which can quickly compensate for disturbance force expressed by Equation (8), is multiplied by a weight n. Then, the disturbance compensation command value adder 20 adds the values multiplied by the weights by the weighting section 19, and outputs the sum to the motion control section to compensate for the disturbance force acting on the motion section and perform positioning control. Here, as an example, we will explain the case where both weights are set to 1. At this time, the control valve drive command value u i, t, Equation (7)
, (8) and (11), u=-kc-e-kh-de +ki-f (θm-θ) dt ------...
−(12).

以上のように本実施例によれば 推定あるいは測定した
外乱力を用いて高速に外乱力を補償することで、高速な
位置決めを行(\ 外乱力の作用しない理想モデル部1
6の理想応答と動作部の応答との位置偏差を積分L 摩
擦の推定遅れや補償遅れ さらには 制御弁のヒステリ
シスやばらつき等の影響をも補償し 高精度な位置決め
制御を実現することができる。したかって、任意の外乱
力が動作部に作用してL 外部信号により、任意の目標
位置に対する位置決め等の動作を高速 高精度かつ容易
に実現することができる。
As described above, according to this embodiment, high-speed positioning is performed by quickly compensating for the disturbance force using the estimated or measured disturbance force (Ideal model part 1 where no disturbance force acts)
Integrating the positional deviation between the ideal response in step 6 and the response of the operating part L, friction estimation delay, compensation delay, and even the effects of control valve hysteresis and variation can be compensated for, achieving highly accurate positioning control. Therefore, when an arbitrary disturbance force acts on the operating portion, an operation such as positioning to an arbitrary target position can be easily realized at high speed and with high accuracy by using the external signal.

な籾 本実施例において1自由度のシステムを扱った力
(多自由度のシステムでもよ賊 その時、外乱dは動作
部の摩擦に加えて、他の動作部からの干渉力 そして、
コレオリ九 遠心九 さらには慣性変動やモデル誤差に
よって生ずるものも含まれる。
In this example, the force that deals with a system with one degree of freedom (a system with multiple degrees of freedom is also a threat). At that time, the disturbance d is not only the friction of the moving part, but also the interference force from other moving parts, and,
Coreoli 9 Centrifugal 9 It also includes those caused by inertial fluctuations and model errors.

そして、本実施例において揺動型シリンダを用いた力(
直動型シリンダでも同様に実現できも発明の効果 以上のように本発明の空気圧駆動装置LL、  空気室
と前記空気室内を気密性を保ちながら移動可能な動作部
とを有する空気圧アクチュエータと、前記動作部により
分割された空気室群のそれぞれに指令値に応じた空気を
流入あるいは流出させることができる制御弁群と、前記
空気室群の前記動作部に加わるそれぞれの流体力を検出
する流体力検出部と、前記動作部の動作状態を検出する
動作状態検出部と、前記動作部に加わる外乱力を補償す
るた敢 前記動作部に加わる前記外乱力を推定あるいは
測定する外乱力検出部と、前記外乱力検出部の出力を用
いて前記外乱力を打ち消す補償力を構成する外乱補償力
構成部とを有する前向き外乱力補償器と、前記動作部に
前記外乱力が作用しない空気圧駆動装置のモデルを持つ
理想モデル部を有し 前記理想モデル部に前記目標動作
状態を入力して動作部の理想応答を生成する理想応答生
成部と、前記理想応答生成部の出力値と前記動作状態検
出部の出力値との偏差を時間積分するモデル偏差積分器
と、前記モデル偏差積分器の出力値に積分利得を乗する
積分利得乗算器とを有する偏差積分部と、前記前向き外
乱力補償器の出力値に負の数ではないm倍の重みを乗は
 前記偏差積分部の出力値に負の数ではないn倍の重み
を乗する重み付け部と、前記重み付け部の2つの出力値
を加算する外乱補償指令値加算器上を有している外乱力
補償部と、前記動作状態検出部と前記流体力検出部の出
力信号と目標動作状態と流体力基準値と前記外乱力補償
部の出力値を入力として前記動作部が前記目標動作状態
に従って移動するために必要な制御弁駆動指令値を前記
制御弁群に出力する動作制御部とを備え 前記動作部に
加わる外乱力を打ち消す入力を前記外乱力検出部の出力
を用いて構成して補償するとともに 外乱力の作用しな
い理想モデル部の理想応答と動作部の応答との位置偏差
を積分して外乱力を補償することを併用して、摩擦の推
定遅れや補償遅れ さらには 制御弁のヒステリシスや
ばらつき等の影響をも補償り空気圧駆動装置の任意の動
作を高速かつ高精度な位置決め制御を実現できるという
効果を有すa
In this example, the force (
The pneumatic drive device LL of the present invention can be similarly realized with a direct-acting cylinder, but the effects of the invention are greater than the effects of the invention. a group of control valves that can cause air to flow in or out according to a command value into each of the air chamber groups divided by the operating section; and a fluid force that detects the respective fluid force applied to the operating section of the air chamber group. a detection unit; an operation state detection unit that detects the operation state of the operation unit; a disturbance force detection unit that estimates or measures the disturbance force applied to the operation unit; and a disturbance force detection unit that estimates or measures the disturbance force applied to the operation unit. A model of a forward-facing disturbance force compensator having a disturbance compensating force component that configures a compensating force for canceling the disturbance force using the output of the disturbance force detecting section, and a pneumatic drive device in which the disturbance force does not act on the operating section. an ideal response generation section that inputs the target operating state into the ideal model section and generates an ideal response of the operating section; a deviation integrator including a model deviation integrator that time-integrates a deviation from an output value; and an integral gain multiplier that multiplies the output value of the model deviation integrator by an integral gain; and an output value of the forward disturbance force compensator. is multiplied by an m-fold weight that is not a negative number. A weighting unit that multiplies the output value of the deviation integration unit by a non-negative weight that is n-fold, and a disturbance compensation that adds the two output values of the weighting unit. A disturbance force compensator having a command value adder, output signals of the operating state detecting section and the fluid force detecting section, a target operating state, a fluid force reference value, and an output value of the disturbance force compensating section are input. an operation control section that outputs a control valve drive command value necessary for the operation section to move according to the target operation state to the control valve group; Friction is estimated by compensating for the disturbance force by integrating the positional deviation between the ideal response of the ideal model section on which no disturbance force acts and the response of the operating section. It has the effect of compensating for delays and compensation delays, as well as the effects of control valve hysteresis and variations, making it possible to realize high-speed and highly accurate positioning control of any operation of the pneumatic drive device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における空気圧駆動装置の全体
@ 第2図は同実施例または従来例の空気圧駆動装置に
おける空気圧駆動揺動型シリンダの詳細図 第3図は同
空気圧駆動装置における動作制御部及び外乱力補償部の
詳細図 第4図は従来例の空気圧駆動装置の全体皿 第
5図は同空気圧駆動装置における動作制御部及び前向き
外乱力補償器の詳細図である。
Fig. 1 is the entire pneumatic drive device according to the embodiment of the present invention @ Fig. 2 is a detailed view of the pneumatically driven oscillating cylinder in the pneumatic drive device of the same embodiment or a conventional example Fig. 3 is the operation of the pneumatic drive device Detailed view of the control unit and disturbance force compensator. Fig. 4 is a detailed view of the entire plate of the conventional pneumatic drive device. Fig. 5 is a detailed view of the operation control unit and the forward disturbance force compensator in the pneumatic drive device.

Claims (7)

【特許請求の範囲】[Claims] (1)空気室と、前記空気室内を気密性を保ちながら移
動可能な動作部とを有する空気圧アクチュエータと、前
記動作部により分割された空気室群のそれぞれに指令値
に応じた空気を流入あるいは流出させることができる制
御弁群と、前記空気室群の前記動作部に加わるそれぞれ
の流体力を検出する流体力検出部と、前記動作部の動作
状態を検出する動作状態検出部と、前記動作部に加わる
外乱力を補償する外乱力補償部と、前記動作状態検出部
と前記流体力検出部の出力信号と目標動作状態と流体力
基準値と前記外乱力補償部の出力値を入力として前記動
作部が前記目標動作状態に従って移動するために必要な
制御弁駆動指令値を前記制御弁群に出力する動作制御部
とを備え、前記動作部が前記動作部に作用する前記流体
力の合力によって駆動される空気圧駆動装置であって、
前記外乱力補償部が、前記動作部に加わる前記外乱力を
推定あるいは測定する外乱力検出部と、前記外乱力検出
部の出力を用いて前記外乱力を打ち消す補償力を構成す
る外乱補償力構成部とを有する前向き外乱力補償器と、
前記動作部に前記外乱力が作用しない空気圧駆動装置の
モデルを持つ理想モデル部を有し、前記理想モデル部に
前記目標動作状態を入力して動作部の理想応答を生成す
る理想応答生成部と、前記理想応答生成部の出力値と前
記動作状態検出部の出力値との偏差を時間積分するモデ
ル偏差積分器と、前記モデル偏差積分器の出力値に積分
利得を乗する積分利得乗算器とを有する偏差積分部と、
前記前向き外乱力補償器の出力値に負の数ではないm倍
の重みを乗じ、前記偏差積分部の出力値に負の数ではな
いn倍の重みを乗ずる重み付け部と、前記重み付け部の
2つの出力値を加算する外乱補償指令値加算器とを具備
していることを特徴とする空気圧駆動装置。
(1) A pneumatic actuator having an air chamber and an operating section that can move within the air chamber while maintaining airtightness; and a pneumatic actuator that allows air to flow in or out according to a command value into each of the air chamber groups divided by the operating section. a group of control valves capable of causing the air to flow out; a fluid force detection section that detects respective fluid forces applied to the operating section of the air chamber group; an operating state detection section that detects the operating state of the operating section; a disturbance force compensator that compensates for the disturbance force applied to the section; and the output signal of the operating state detector and the fluid force detector, the target operating state, the fluid force reference value, and the output value of the disturbance force compensator as inputs. an operation control section that outputs a control valve drive command value necessary for the operation section to move according to the target operation state to the control valve group, and the operation section is controlled by the resultant force of the fluid force acting on the operation section. A pneumatic drive device driven by:
A disturbance compensation force configuration in which the disturbance force compensation unit includes a disturbance force detection unit that estimates or measures the disturbance force applied to the operating unit, and a compensation force that uses an output of the disturbance force detection unit to cancel the disturbance force. a forward disturbance force compensator having a section;
an ideal model section having a model of a pneumatic drive device in which the disturbance force does not act on the operating section, and an ideal response generation section that inputs the target operating state to the ideal model section to generate an ideal response of the operating section; , a model deviation integrator that time-integrates the deviation between the output value of the ideal response generation unit and the output value of the operating state detection unit; and an integral gain multiplier that multiplies the output value of the model deviation integrator by an integral gain. a deviation integral part having
a weighting unit that multiplies the output value of the forward disturbance force compensator by a non-negative weight of m times, and multiplies the output value of the deviation integration unit by a non-negative weight of n times; 1. A pneumatic drive device comprising: a disturbance compensation command value adder that adds two output values.
(2)重み付け部が、動作部の動作状態に応じて前向き
外乱力補償器の重みと偏差積分部の出力値の重みを変化
させることを特徴とする請求項1記載の空気圧駆動装置
(2) The pneumatic drive device according to claim 1, wherein the weighting section changes the weight of the forward disturbance force compensator and the weight of the output value of the deviation integration section according to the operating state of the operating section.
(3)重み付け部が目標動作状態と動作部の動作状態と
の位置偏差の大きさが小さくなるにつれて、前向き外乱
力補償器の重みmを小さくし、偏差積分部の重みnを大
きくすることを特徴とする請求項2記載の空気圧駆動装
置。
(3) The weighting section decreases the weight m of the forward disturbance force compensator and increases the weight n of the deviation integration section as the magnitude of the positional deviation between the target operating state and the operating state of the operating section becomes smaller. The pneumatic drive device according to claim 2, characterized in that:
(4)重み付け部が目標動作状態と動作部の動作状態と
の位置偏差の大きさを、前記目標動作状態の初期状態と
前記動作部の動作状態の初期状態との位置偏差の大きさ
で除した数を前向き外乱力補償器の重みmとし、偏差積
分部の重みnは前向き外乱力補償器の重みmを用いて1
−mとすることを特徴とする請求項2記載の空気圧駆動
装置。
(4) The weighting section divides the magnitude of the positional deviation between the target operating state and the operating state of the operating section by the magnitude of the positional deviation between the initial state of the target operating state and the initial state of the operating state of the operating section. The calculated number is the weight m of the forward disturbance force compensator, and the weight n of the deviation integral part is 1 using the weight m of the forward disturbance force compensator.
3. The pneumatic drive device according to claim 2, wherein -m.
(5)動作制御部が外乱力補償部の出力値を用いて、流
体力基準値を変化させることにより外乱力を補償するこ
とを特徴とする請求項1記載の空気圧駆動装置。
(5) The pneumatic drive device according to claim 1, wherein the operation control section compensates for the disturbance force by changing the fluid force reference value using the output value of the disturbance force compensation section.
(6)流体力検出部が空気室群のそれぞれの圧力を検出
する圧力検出装置群によって構成されており、動作制御
部が動作状態検出部と流体力検出部の出力信号と目標動
作状態と基準圧力と外乱力補償部の出力値を入力として
前記目標動作状態に従って移動するために必要な制御弁
駆動指令値を制御弁群に出力することを特徴とする請求
項1記載の空気圧駆動装置。
(6) The fluid force detection section is composed of a pressure detection device group that detects the pressure of each of the air chamber groups, and the operation control section is composed of an operation state detection section, an output signal of the fluid force detection section, a target operating state, and a reference. 2. The pneumatic drive device according to claim 1, wherein a control valve drive command value necessary for movement according to the target operating state is output to the control valve group by inputting pressure and an output value of the disturbance force compensator.
(7)動作状態検出部が位置、速度、加速度を検出する
手段のいずれか、あるいはその組合せにより構成されて
いる請求項1記載の空気圧駆動装置。
(7) The pneumatic drive device according to claim 1, wherein the operating state detection section is constituted by any one of means for detecting position, velocity, and acceleration, or a combination thereof.
JP4486190A 1990-02-26 1990-02-26 Pneumatic driving device Pending JPH03249401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4486190A JPH03249401A (en) 1990-02-26 1990-02-26 Pneumatic driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4486190A JPH03249401A (en) 1990-02-26 1990-02-26 Pneumatic driving device

Publications (1)

Publication Number Publication Date
JPH03249401A true JPH03249401A (en) 1991-11-07

Family

ID=12703270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4486190A Pending JPH03249401A (en) 1990-02-26 1990-02-26 Pneumatic driving device

Country Status (1)

Country Link
JP (1) JPH03249401A (en)

Similar Documents

Publication Publication Date Title
US8146481B2 (en) Actuator, actuator control method, and actuator control program
CN109407551B (en) Method for carrying out semi-physical simulation test on joint control section of carrier rocket
US10724598B2 (en) Active vibration isolator
US8253367B2 (en) Control apparatus, control method, and control program for elastic actuator drive mechanism
Zhu et al. Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles
Le et al. Sliding mode control of a pneumatic haptic teleoperation system with on/off solenoid valves
Krichel et al. Tracking control of a pneumatic muscle actuator using one servovalve
US9853585B2 (en) Motor control apparatus, motor control method and motor control program
JP6981894B2 (en) Thruster control device and thruster control method
KR970001772B1 (en) Missile control fin actuator system
JPH03249401A (en) Pneumatic driving device
Shen et al. Independent stiffness and force control of pneumatic actuators for contact stability during robot manipulation
JPH03249402A (en) Pneumatic driving device
JPH04151083A (en) Control circuit for poppet valve
JPH02304202A (en) Pneumatic driving device
JPH02229902A (en) Pneumatic driving unit
JPH04145201A (en) Pneumatic drive unit
JPH04326403A (en) Pneumatic driving device
JPH044301A (en) Air pressure driving device
JPH044302A (en) Air pressure driving device
Hoffmann et al. Comparison of Cascaded and Flatness-Based Control of a Pneumatically-Driven Rotary Joint
JPH02300501A (en) Pneumatic driving device
Aschemann et al. Nonlinear trajectory control of a high-speed linear axis driven by pneumatic muscle actuators
Kanchetti et al. Robust integrated autopilot design for an aircraft
Shao et al. Modelling and control for position-controlled modular robot manipulators