JPH044301A - Air pressure driving device - Google Patents

Air pressure driving device

Info

Publication number
JPH044301A
JPH044301A JP10193990A JP10193990A JPH044301A JP H044301 A JPH044301 A JP H044301A JP 10193990 A JP10193990 A JP 10193990A JP 10193990 A JP10193990 A JP 10193990A JP H044301 A JPH044301 A JP H044301A
Authority
JP
Japan
Prior art keywords
opening amount
control valves
control
valve
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10193990A
Other languages
Japanese (ja)
Inventor
Yoshio Umeda
善雄 梅田
Sadahiro Matsuura
松浦 貞裕
Hiroshi Takaso
洋 高祖
Masaichiro Tachikawa
雅一郎 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10193990A priority Critical patent/JPH044301A/en
Publication of JPH044301A publication Critical patent/JPH044301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)

Abstract

PURPOSE:To carry out an operation such as positioning in a high speed and a high accuracy by making a time constant in which driving forces vary with driving signals smaller than a time constant in which opening quantities vary with changes in driving forces applied to first and second control valves. CONSTITUTION:Valve control units 10a, 11a operate opening degree errors from opening degrees of control valves 3a, 3b detected by opening degree sensors 12a, 12b and opening degree commanding signals for the control valves 3a, 3b coming from a control unit 9, use only the maximum value of the driving forces in positive and negative directions even if there are hysteresises on characters of driving forces applied to the control valves 3a, 3b, and suppress influences thereof. Next, driving forces are detected by driving signal correcting units 10b, 11b, driving signals are operated and output on using differences between the driving forces and outputs of the valve control units 10a, 11a and differential values of the differences, and a time constant in which driving forces vary due to driving signals to the control valves 3a, 3b is made smaller than a time constant in which the opening degrees vary due to driving force changes. It is possible thereby that opening degrees of control valves coincide with commanded values in high speed without chattering, and positioning or the like is performed in high speed and with high accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧縮空気源を駆動源として動作を行なう空気圧
駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a pneumatic drive device that operates using a compressed air source as a drive source.

従来の技術 近年空気圧駆動装置ζよ 動作部の出力/重量比が高い
ため動作部を小型・軽量化でき4 安価であ泡 駆動源
から動作部へ配管により容易に動力を伝達できシステム
構築の際の自由度が大きい等の長所を生かして広〈産業
分野等で利用されている。産業界においては主に生産・
組立システムにおける部品等の移転 組み付けに用いら
れている力丈 これまでは機械的な位置規制手段(例え
ば位置決めピン等)による位置決め方式が用いられてお
り、固定された2点間の位置決めしか実現できず生産・
組立のフレキシブル化への対応が困難であっ氾 そこで機械的な位置規制手段を用いずに空気室の圧力を
制御することにより任意の位置において高速かつ高精度
な位置決めを実現する空気圧駆動装置が本発明者によっ
て提案されている(例えば特願平1−50322号参照
)。
Conventional technology In recent years, the pneumatic drive device ζ has a high output/weight ratio of the operating part, which allows the operating part to be made smaller and lighter.4 It is inexpensive and affordable.Power can be easily transmitted from the drive source to the operating part through piping, which is useful when constructing a system. It is widely used in industrial fields, taking advantage of its advantages such as a high degree of freedom. In industry, mainly production and
Transfer of parts, etc. in an assembly system Length of force used for assembly Until now, positioning methods using mechanical position regulating means (for example, positioning pins, etc.) have been used, and positioning can only be achieved between two fixed points. Production/
It is difficult to adapt to flexible assembly, so we developed a pneumatic drive device that realizes high-speed and high-precision positioning at any position by controlling the pressure in the air chamber without using mechanical position regulating means. This method has been proposed by the inventor (for example, see Japanese Patent Application No. 1-50322).

以下図面を参照しながら上述した空気圧駆動装置の一例
について説明する。
An example of the above-mentioned pneumatic drive device will be described below with reference to the drawings.

第3図はこの空気圧駆動装置の一例を示すものである。FIG. 3 shows an example of this pneumatic drive device.

第3図において1は空気室を有するシリンダ 2はシリ
ンダ1内を気密性を保ちながら移動できるピストン、 
la、lbはピストン2によって分割された空気室 4
は圧縮空気爪 5はピストン2と負荷6を接続するロッ
ドミ 3a、 3bはそれぞれ空気室1a、 1bに空
気を流入 流出させるために弁部の開口面積を指令値に
応じて変化させる機能を有する制御弁、7は負荷6の位
置を検出する位置センサ、 8a、 8bはそれぞれ空
気室1a、lbの内部圧力を検出する圧力センサ、9は
位置センサ7、圧力センサ8a、8bの信号と目標位置
信号を取り込へ 制御弁3a、 3bの開口量指令信号
を出力する制’a訊12 a、  12bは制御弁3a
、 3bの開口量を検出する開口量センサ、 13、1
4は制御部からの制御弁3 a。
In Fig. 3, 1 is a cylinder having an air chamber, 2 is a piston that can move inside the cylinder 1 while maintaining airtightness;
la and lb are air chambers divided by piston 2 4
5 is a compressed air claw; 5 is a rod connecting the piston 2 and the load 6; 3a and 3b are controls that have the function of changing the opening area of the valve portion in accordance with a command value in order to allow air to flow into and out of the air chambers 1a and 1b, respectively; 7 is a position sensor that detects the position of the load 6; 8a and 8b are pressure sensors that detect the internal pressure of the air chambers 1a and 1b, respectively; 9 is a signal from the position sensor 7, pressure sensors 8a and 8b, and a target position signal The control valves 12a and 12b output the opening amount command signal for the control valves 3a and 3b.
, an opening amount sensor that detects the opening amount of 3b, 13, 1
4 is a control valve 3a from the control section.

3bの開口量指令信号と開口量センサ12a、 12b
の開口量信号を入力し制御弁3a、3bへの駆動信号を
出力する弁制御駆動部である。
3b opening amount command signal and opening amount sensors 12a, 12b
This is a valve control drive unit that inputs an opening amount signal and outputs a drive signal to the control valves 3a and 3b.

以上のように構成された空気圧駆動装置について以下第
3@ 第4図を用いてその動作を説明する。
The operation of the pneumatic drive device configured as described above will be explained below using FIG. 3@FIG. 4.

第4図は第3図における制御部9の内部構成を示す詳細
説明図である。第4図において9aは位置制御部であり
入力した目標位置信号xdと位置センサ7によって検出
したピストン位置X1  圧力センサ8a、8bによっ
て検出した空気室1a11b内の圧力p1、p2を用い
て制御弁3a、 3bへの開口量指令信号sal、sb
lを次式によって求め5al=   (kl(xcl−
x)−に2・ x)/2−に3(pi−po)    
  (1)ここでに1、k2.に3はシリンダ1、 ピ
ストン2、ロッド5、負荷6、制御弁3a、3bを含む
空気圧駆動系の動特性方程式に基づいて決定された状態
フィードバックゲインであり、pOは平衡圧力である。
FIG. 4 is a detailed explanatory diagram showing the internal configuration of the control section 9 in FIG. 3. In FIG. 4, 9a is a position control unit which controls the control valve 3a using the input target position signal xd, the piston position X1 detected by the position sensor 7, and the pressures p1 and p2 in the air chamber 1a11b detected by the pressure sensors 8a and 8b. , opening amount command signals sal, sb to 3b
Find l using the following formula, 5al= (kl(xcl-
x)-to 2・x)/2-to 3(pi-po)
(1) Here 1, k2. 3 is a state feedback gain determined based on the dynamic characteristic equation of the pneumatic drive system including the cylinder 1, piston 2, rod 5, load 6, and control valves 3a and 3b, and pO is the equilibrium pressure.

 (1)式に基づくフィードバック制御は空気圧駆動系
の状態フィードバック制御系を構成しており、これによ
り空気の圧縮性が位置決め動作に及ぼす影響を抑制して
動作部の任意の位置での位置決め動作を実現している。
Feedback control based on equation (1) constitutes a state feedback control system for the pneumatic drive system, which suppresses the influence of air compressibility on positioning operation and enables positioning operation at any position of the operating part. It has been realized.

次に第4図における外乱力補償部9bについて説明する
。外乱力補償部9bはまず検出した空気室1a、 1b
の圧力差を入力とし 圧力差から負荷6の位置までのピ
ストン2の運動に関する動特性モデルと、ピストン2に
加わる摩擦力を一定であると仮定した摩擦力の動特性モ
デルを用いた外乱推定オブザーバによって、位置センサ
7の出力と推定したピストン2の位置の差を外乱推定オ
ブザーバ内でフィードバックすることにより摩擦力を高
速に推定する。次に推定した摩擦力の値を用いて実際に
ピストン2に加わっている摩擦力を打ち消すために必要
な制御弁3a、 3bへの開口量指令信号sad、sb
2を出力するものであり、これによりピストン2に加わ
る摩擦力を高速に補償することができる。
Next, the disturbance force compensator 9b in FIG. 4 will be explained. The disturbance force compensator 9b first detects the detected air chambers 1a and 1b.
A disturbance estimation observer using a dynamic characteristic model regarding the motion of the piston 2 from the pressure difference to the position of the load 6 and a dynamic characteristic model of the frictional force that assumes that the frictional force applied to the piston 2 is constant. By feeding back the difference between the output of the position sensor 7 and the estimated position of the piston 2 within the disturbance estimation observer, the frictional force is estimated at high speed. Next, the estimated frictional force value is used to send opening amount command signals sad and sb to the control valves 3a and 3b necessary to cancel the frictional force actually applied to the piston 2.
2, thereby making it possible to compensate for the frictional force applied to the piston 2 at high speed.

また第4図において90は駆動信号加算部であり、位置
制御部9aと外乱力補償部9bからの制御弁3a、 3
bへの開口量指令信号を人力し 制御弁3a13bへの
駆動信号sar、sbrをs ar= s a1+ s
 a2           (2)s br= s 
bl+s b2 により求へ 制御弁3a、3bへの開口量指令信号とし
て出力するものである。
Further, in FIG. 4, reference numeral 90 is a drive signal addition section, which includes control valves 3a, 3 from the position control section 9a and the disturbance force compensation section 9b.
Manually input the opening amount command signal to the control valve 3a13b and set the drive signals sar and sbr to the control valve 3a13b as follows: s ar= s a1+ s
a2 (2) s br= s
It is determined by bl+s b2 and is output as an opening amount command signal to the control valves 3a and 3b.

次に第3図における弁制御駆動部13、14は制御部9
からの制御弁3a、 3bへの開口量指令信号と実際の
開口量信号を入力し この差と、差の積分4L  開口
量信号の微分値を用いた線形フィードバックに基づいて
制御弁3a、 3bへの駆動信号を出力するものでこれ
により制御弁3a、 3bの開口量を所望の値に制御す
ることができる。
Next, the valve control drive units 13 and 14 in FIG.
The opening amount command signal and the actual opening amount signal are input to the control valves 3a and 3b from the control valves 3a and 3b, and the difference and the integral 4L of the difference are input to the control valves 3a and 3b based on linear feedback using the differential value of the opening amount signal. The opening amount of the control valves 3a and 3b can be controlled to a desired value.

これらの動作によってピストン2に加わる摩擦を高速に
補償しながら、状態フィードバック制御によって空気圧
駆動装置の位置決め動作に及ぼす空気の圧縮性の影響を
抑制するような制御系を構成しており空気圧駆動装置に
おける動作部の任意の位置での高速・高精度位置決め動
作を実現している。
These operations constitute a control system that quickly compensates for the friction applied to the piston 2 while suppressing the influence of air compressibility on the positioning operation of the pneumatic drive device through state feedback control. Achieves high-speed, high-precision positioning at any position of the operating part.

発明が解決しようとする課題 しかしながら上記のような構成では次のような問題点が
生じる。すなわ板 空気の圧縮性や外乱力である摩擦力
の補償を実際に行なう制御弁に不感帯やヒステリシスな
どの非線形性がある場合、開口量指令値に実際の開口量
が一致しな℃\ あるいは一致するのに少なからず時間
を要するために圧縮性や摩擦力が完全には補償されな(
\ あるいは補償されるまでに時間がかかるなどで、位
置決め速度、位置決め精度が低下するという問題点が生
ずる。
Problems to be Solved by the Invention However, the above configuration causes the following problems. In other words, if the control valve that actually compensates for air compressibility and frictional force, which is a disturbance force, has nonlinearity such as a dead zone or hysteresis, the actual opening amount may not match the opening amount command value. Compressibility and frictional forces are not completely compensated because it takes a considerable amount of time to match (
Otherwise, it takes time for compensation to be made, resulting in a problem that the positioning speed and positioning accuracy are reduced.

本発明は上記問題点に鑑へ 任意の目標位置に対する位
置決め等の動作を高速・高精度に実現する空気圧駆動装
置を提供するものである。
In view of the above-mentioned problems, the present invention provides a pneumatic drive device that realizes operations such as positioning to an arbitrary target position at high speed and with high precision.

課題を解決するための手段 上記問題点を解決するために本発明の空気圧駆動装置ζ
戴 空気が流入あるいは流出し 圧力が変化する第1、
第2の空気室と、前記第1及び第2の空気室の境界をな
し 気密性を保ちながら前記第1の空気室と第2の空気
室の圧力差で駆動され移動可能な動作部とを有する空気
圧アクチュエータと、前記第1、第2の空気室のそれぞ
れの流体力を検出する第1、第2の流体力検出部と、前
記動作部の動作状態を検出する動作状態検出部と、前記
第1、第2の空気室のそれぞれに入力信号に応じて開口
量が変化することにより空気を流入あるいは流出させる
ことのできる第1、第2の制御弁と、前記第1、第2の
制御弁のそれぞれの前記開口量を検出する第1、第2の
開口量検出部と、Q− 1〇− 前記動作状態検出部の出力信号と前記第1、第2の流体
力検出部の出力信号と目標動作状態信号を入力し前記動
作部が前記目標状態信号に従って移動するために必要な
制御量である前記第1、第2の制御弁の開口量を演算し
前記第1、第2の制御弁を駆動させる前記開口量指令信
号を出力する動作制御部と、前記第1、第2の制御弁へ
の開口量指令信号と前記第1、第2の開口量検出部の出
力信号をそれぞれ人力し 前記第1、第2の開口量検出
部の出力信号がそれぞれ前記第1、第2の制御弁への開
口量指令信号に一致するために必要な駆動信号を演算し
 それぞれ前記第1、第2の制御弁に出力する第1、第
2の弁制御駆動部とを有し 前記第1、第2の弁制御駆
動部は人力した前記第1、第2の制御弁への開口量指令
信号と前記第1、第2の開口量検出部の出力信号のそれ
ぞれの差とそのn階微分値(n:  正の整数)までの
それぞれの線形結合和を求へ それぞれの前記線形結合
和の符号に応じて前記開口量を増加させる方向の一定の
駆動信号と前記開口量を減少させる方向の一定の駆動信
号とを切り換えて出力する弁制御部を備えたものであっ
て、前記第1、第2の制御弁の弁体に加わる駆動力の変
化によって開口量が変化する時定数より叡 出力した駆
動信号によって前記第1、第2の制御弁の弁体に加わる
駆動力が変化する時定数が小さくなるように前記駆動信
号を補正して前記第1、第2の制御弁へ出力する駆動信
号補正部とを備えたものである。
Means for Solving the Problems In order to solve the above problems, a pneumatic drive device ζ of the present invention is provided.
First, the pressure changes as air flows in or out.
a second air chamber, and a movable operating section that forms a boundary between the first and second air chambers and is driven by the pressure difference between the first and second air chambers while maintaining airtightness. a pneumatic actuator having a pneumatic actuator, first and second fluid force detection sections that detect the fluid forces of the first and second air chambers, an operating state detection section that detects the operating state of the operating section, and the first and second control valves that can allow air to flow in or out of the first and second air chambers by changing their opening amounts in accordance with input signals; and the first and second control valves. first and second opening amount detectors that detect the opening amount of each of the valves, and Q-10- an output signal of the operating state detector and an output signal of the first and second fluid force detectors; and a target operating state signal, and calculate opening amounts of the first and second control valves, which are control amounts necessary for the operating section to move according to the target state signal, and perform the first and second control. An operation control section that outputs the opening amount command signal that drives the valve, an opening amount command signal to the first and second control valves, and output signals of the first and second opening amount detection sections are manually controlled. and calculating drive signals necessary for the output signals of the first and second opening amount detection sections to match opening amount command signals to the first and second control valves, respectively; and first and second valve control drive units that output an output to the second control valve, and the first and second valve control drive units output an opening amount command signal to the first and second control valves manually. and the respective differences between the output signals of the first and second aperture amount detection sections, and the respective linear combination sums thereof up to the nth-order differential value (n: a positive integer). The sign of each of the linear combination sums. a valve control section that switches and outputs a constant drive signal in the direction of increasing the opening amount and a constant driving signal in the direction of decreasing the opening amount in accordance with the first and second opening amounts. The time constant at which the opening amount changes due to a change in the driving force applied to the valve element of the second control valve is determined by the time constant at which the driving force applied to the valve element of the first and second control valves changes due to the output drive signal. and a drive signal correction section that corrects the drive signal so that it becomes smaller and outputs it to the first and second control valves.

作用 本発明は上記した構成によって制御弁を開口量を増力l
 減少させる方向の一定の駆動力を高速に切り換えて駆
動することにより、制御弁の不感帯、ヒステリシス等の
非線形性の影響を受けずに開口量を高速かつ高精度に制
御することができ、従って任意の目標位置に対する位置
決め等の動作を高速・高精度に実現することができる。
Operation The present invention increases the opening amount of the control valve with the above-described configuration.
By switching a constant driving force in the decreasing direction at high speed, the opening amount can be controlled at high speed and with high precision without being affected by nonlinearity such as the dead zone and hysteresis of the control valve. It is possible to perform operations such as positioning to a target position at high speed and with high precision.

実施例 以下本発明の一実施例の空気圧駆動装置について、図面
を参照しながら説明する。
EXAMPLE Hereinafter, a pneumatic drive device according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における空気圧駆動装置の構
成を示す全体図である。  第1図において1は空気室
を有するシリンダ 2はシリンダ1内を気密性を保ちな
がら移動できるピストン、 ■a、lbはピストン2に
よって分割された空気室4は圧縮空気a 5はピストン
2と負荷6を接続するロッド、 3a、 3bはそれぞ
れ空気室1a、lbに空気を流入 流出させるために弁
部の開口面積を指令値に応じて変化させる機能を有する
制御弁、 7は負荷6の位置を検出する位置センサ、8
a、8bはそれぞれ空気室1a、lbの内部圧力を検出
する圧力センサ、9は位置センサ7、圧力センサ8a、
 8bの信号と目標位置信号を取り込へ 制御弁3a、
 3bの開口量指令信号を出力する制御能 12a、 
 12bは制御弁3a、3bの開口量を検出する開口量
センサ、 10、11は制御部からの制御弁3a、3b
への開口量指令信号と開口量センサ12a、12bの開
口量信号を人力し制御弁3a、 3bへの駆動信号を出
力する第1、第2の弁制御駆動部である。
FIG. 1 is an overall view showing the configuration of a pneumatic drive device in an embodiment of the present invention. In Fig. 1, 1 is a cylinder with an air chamber; 2 is a piston that can move inside the cylinder 1 while maintaining airtightness; a, lb are air chambers 4 divided by the piston 2; compressed air a; 5 is the piston 2 and the load Rods 3a and 3b connect the air chambers 1a and 1b, respectively, and control valves have the function of changing the opening area of the valve portion according to a command value in order to allow air to flow in and out of the air chambers 1a and 1b, respectively.7 is a control valve that controls the position of the load 6. position sensor to detect, 8
a and 8b are pressure sensors that detect the internal pressure of the air chambers 1a and lb, respectively; 9 is a position sensor 7; a pressure sensor 8a;
Take in the signal of 8b and the target position signal Control valve 3a,
control ability to output the opening amount command signal 12a of 3b;
12b is an opening amount sensor that detects the opening amount of the control valves 3a and 3b; 10 and 11 are control valves 3a and 3b from the control section;
These are first and second valve control drive units that manually input the opening amount command signal to the valves and the opening amount signals of the opening amount sensors 12a and 12b, and output drive signals to the control valves 3a and 3b.

以上のように構成された空気圧駆動装置について以下第
1@ 第2図を用いてその動作を説明する。
The operation of the pneumatic drive device configured as described above will be explained below using FIG. 1@FIG. 2.

まず第2図は第1図における制御部9の内部構成を示す
詳細説明図である。第2図において9aは位置制御部で
あり入力した目標位置信号xdと位置センサ7によって
検出したピストン位置X、圧力センサ8a、8bによっ
て検出した空気室1a、lb内の圧力p1、p2を用い
て制御弁3a、 3bへの開口量指令信号sal、sb
lを次式によって求める。
First, FIG. 2 is a detailed explanatory diagram showing the internal configuration of the control section 9 in FIG. 1. As shown in FIG. In FIG. 2, 9a is a position control unit that uses the input target position signal xd, the piston position X detected by the position sensor 7, and the pressures p1 and p2 in the air chambers 1a and lb detected by the pressure sensors 8a and 8b. Opening amount command signals sal and sb to control valves 3a and 3b
Find l using the following formula.

5a1=   (k 1 (Xd−X) −k2・ X
) /2− k3  (pi −pO)       
(3)sbl=−(kl (xd−x)  −に2・ 
x)/2− k3 (p 1−po) ここでに1、k2.に3はシリンダ1、 ピストン2、
ロッド5、負荷6、制御弁3a、3bを含む空気圧駆動
系の動特性方程式に基づいて決定された状態フィードバ
ックゲインであり、 pOは平衡圧力である。 (3)
式に基づくフィードバック制御は空気圧駆動系の状態フ
ィードバック制御系を構成しており、これにより空気の
圧縮性が位置決め動作に及ぼす影響を抑制して動作部の
任意の位置での位置決め動作を実現している。
5a1= (k 1 (Xd-X) -k2・X
) /2-k3 (pi-pO)
(3) sbl=-(kl (xd-x) -2・
x)/2-k3 (p 1-po) where 1, k2. 3 is cylinder 1, piston 2,
It is the state feedback gain determined based on the dynamic characteristic equation of the pneumatic drive system including the rod 5, the load 6, and the control valves 3a and 3b, and pO is the equilibrium pressure. (3)
Feedback control based on the equation constitutes a state feedback control system for the pneumatic drive system, which suppresses the influence of air compressibility on positioning operation and realizes positioning operation at any position of the operating part. There is.

次に第2図における外乱力補償部9bについて説明する
。外乱力補償部9bはまず検出した空気室1a、lbの
圧力差を人力とし 圧力差から負荷6の位置までのピス
トン2の運動に関する動特性モデルと、 ピストン2に
加わる摩擦力を一定であると仮定した摩擦力の動特性モ
デルを用°いた外乱推定オブザーバによって、位置セン
サ7の出力と推定したピストン2の位置の差を外乱推定
オブザーバ内でフィードバックすることにより摩擦力を
高速に推定する。次に推定した摩擦力の値を用いて実際
にピストン2に加わっている摩擦力を打ち消すために必
要な制御弁3a、 3bへの開口量指令信号sad、s
b2を出力するものであり、これによりピストン2に加
わる摩擦力を高速に補償することができる。
Next, the disturbance force compensator 9b in FIG. 2 will be explained. The disturbance force compensator 9b first uses the detected pressure difference between the air chambers 1a and lb as human power, and creates a dynamic characteristic model for the movement of the piston 2 from the pressure difference to the position of the load 6, and assumes that the frictional force applied to the piston 2 is constant. The frictional force is estimated at high speed by feeding back the difference between the output of the position sensor 7 and the estimated position of the piston 2 within the disturbance estimation observer using the assumed dynamic characteristic model of the frictional force. Next, using the estimated frictional force value, the opening amount command signals sad and s to the control valves 3a and 3b necessary to cancel the frictional force actually applied to the piston 2 are sent.
b2, thereby making it possible to compensate for the frictional force applied to the piston 2 at high speed.

また第2図において90は駆動信号加算部であり、位置
制御部9aと外乱力補償部9bからの制御弁3a、3b
への開口量指令信号を入力し 制御弁3a13bへの駆
動信号sar、sbrをs ar= s al+ s 
a2           (4)s br= s b
l+s b2 により求へ 制御弁3a、 3bへの開口量指令信号と
して出力するものである。
Further, in FIG. 2, 90 is a drive signal adder, and control valves 3a, 3b from the position controller 9a and the disturbance force compensator 9b.
Input the opening amount command signal to the control valve 3a13b, and input the drive signals sar and sbr to the control valve 3a13b as sar=s al+s
a2 (4) s br= s b
It is determined by l+s b2 and is output as an opening amount command signal to the control valves 3a and 3b.

次に第1図における第1、第2の弁制御駆動部10、1
1は制御部9からの制御弁3a、3bへの開口量指令信
号と実際の開口量信号を入力しこの差に基づいて制御弁
3a、 3bへの駆動信号を出力するもので以下その詳
細について第1図を用いて説明する。
Next, the first and second valve control drive sections 10 and 1 in FIG.
1 inputs an opening amount command signal and an actual opening amount signal from the control unit 9 to the control valves 3a and 3b, and outputs a drive signal to the control valves 3a and 3b based on the difference.The details will be explained below. This will be explained using FIG.

第1図における10a、 llaは弁制御部であり、開
口量センサ12a、12bにより検出された制御弁3a
、 3bの開口量sa、sbと制御部9からの制御弁3
a、 3bへの開口量指令信号sar、sbrからまず
開口量誤差、 e a= s ar −s a           
 (5)e b= s br −s b を演算する。次にこれの時間微分ea、ebを求めそれ
らの線形結合祖 Ca−ea十ha1 ea cb=eb+hb−eb を求める。ここでha、  hbは制御弁の開口量指令
値に対する開口量の応答性を決める正の定数である。こ
こで弁制御部10a、 10bはca、  cbの符号
に応じて駆動信号uar、ubrをで出力する。ここで
fal、fblは制御弁3a、 3bの開口量を増加さ
せる方向の弁体への駆動力の最大(ifaλ fb2は
制御弁3a、 3bの開口量を減少させる方向の弁体へ
の駆動力の最大値であり、α、βは制御弁3a、 3b
への駆動信号とそれによって弁体に加わる駆動力との間
の変換特性によって定まる1または−1のどちらかの値
をとる係数である。これにより制御弁3a、 3bの弁
体に加わる駆動力の特性にヒステリシスがあっても駆動
力の正 負の方向の最大値のみを用いるのでその影響を
抑えることができる。
10a and lla in FIG. 1 are valve control parts, and the control valve 3a detected by the opening amount sensors 12a and 12b
, 3b opening amounts sa, sb and the control valve 3 from the control section 9
From the aperture command signals sar and sbr to a and 3b, the aperture error is calculated, e a = s ar - s a
(5) Calculate e b = s br - s b . Next, the time differentials ea and eb of this are obtained, and their linear combination coefficient Ca-ea+ha1 ea cb=eb+hb-eb is obtained. Here, ha and hb are positive constants that determine the responsiveness of the opening amount to the opening amount command value of the control valve. Here, the valve control units 10a and 10b output drive signals uar and ubr according to the signs of ca and cb. Here, fal and fbl are the maximum driving force to the valve body in the direction of increasing the opening amount of the control valves 3a and 3b (ifaλ fb2 is the driving force to the valve body in the direction of decreasing the opening amount of the control valves 3a and 3b. is the maximum value of the control valves 3a and 3b, α and β are the maximum values of the control valves 3a and 3b.
This is a coefficient that takes a value of either 1 or -1 determined by the conversion characteristics between the drive signal applied to the valve body and the drive force applied thereby to the valve body. Thereby, even if there is hysteresis in the characteristics of the driving force applied to the valve bodies of the control valves 3a, 3b, the influence can be suppressed because only the maximum value of the driving force in the positive and negative directions is used.

次に10b、 llbは弁制御部の出力信号である駆動
信号を補正する駆動信号補正部で、実際に弁体に加わっ
ている駆動力ua、  ubを10b、11bの出力信
号である駆動信号を用いて検出し弁制御部10a、10
bの出力uar、ubrとの差、差の微分値を用いて、
駆動信号uac、ubcをuac=kual−eua 
 −kua2・ ua    (8)ubc=kub1
・ eub −kub2・ lb但し eua  =   uar  −ua eub  =  ubr  −ub により演算し出力する。ここでkual、k ua2゜
k ubl、k ub2はフィードバックゲインで、制
御弁3a、 3bへの駆動信号によって弁体に加わる駆
動力が変化する時定数力丈 駆動力の変化によって制御
弁3a、 3bの開口量が変化する時定数より小さくな
るように決定する。これにより弁制御部10a、 ll
aが出力する切り替えによる不連続な駆動信号により制
御弁3a、 3bの開口量が振動的に変化する(ヂャタ
リング)ことなしに 高速に開口量を開口量指令値に一
致させることができる。
Next, 10b and llb are drive signal correction units that correct the drive signals that are the output signals of the valve control unit, and convert the drive forces ua and ub actually applied to the valve body into the drive signals that are the output signals of 10b and 11b. The valve control units 10a, 10 are detected using
Using the difference between the outputs uar and ubr of b, and the differential value of the difference,
Drive signals uac and ubc as uac=kual-eua
-kua2・ua (8) ubc=kub1
- eub - kub2 - lb However, eua = uar - ua eub = ubr - ub is calculated and output. Here, kual, kua2゜kubl, kub2 is a feedback gain, which is a time constant force length at which the driving force applied to the valve body changes depending on the drive signal to the control valves 3a, 3b. The opening amount is determined to be smaller than the changing time constant. As a result, the valve control section 10a, ll
The opening amount of the control valves 3a, 3b can be made to match the opening amount command value at high speed without vibrationally changing (juttering) the opening amount of the control valves 3a, 3b due to the discontinuous drive signal outputted by the switch.

以上のように本実施例によれは 弁制御駆動部により、
制御部から出力した動作部に加わる外乱力である摩擦力
と空気の圧縮性による影響を抑制する開口量指令値に実
際の制御弁3a、 3bの開口量を、制御弁3a、 3
bの弁体に加わる駆動力の特性にヒステリシス等の非線
形性があっても速やかにかつ正確に一致させることがで
き、従って任意の目標位置における位置決め等の動作を
高速・高精度に行なうことができる。
As described above, according to this embodiment, the valve control drive section
The actual opening amount of the control valves 3a, 3b is set to the opening amount command value that suppresses the influence of the frictional force, which is a disturbance force applied to the operating part, and the compressibility of air, which is output from the control unit.
Even if there is non-linearity such as hysteresis in the characteristics of the driving force applied to the valve body b, it can be matched quickly and accurately, and therefore operations such as positioning at an arbitrary target position can be performed at high speed and with high precision. can.

なお本実施例において、外乱力補償部の内部構成として
外乱力推定・補償方式で構成した力(必ずしもこの構成
に限るものではなく、例えば位置偏差の積分方式による
構成でもよい。また駆動部号補正部において比例・微分
方式による構成としたが必ずしもこの構成に限るもので
はなく比仇微分、積分等を組み合わせた構成でもよい。
In this embodiment, the internal configuration of the disturbance force compensator is configured using a disturbance force estimation/compensation method (it is not necessarily limited to this configuration; for example, a configuration using a position deviation integral method may be used. In the section, the configuration is based on a proportional/differential system, but the configuration is not necessarily limited to this, and a configuration that combines relative differentiation, integration, etc. may also be used.

発明の効果 以上のように本発明の空気圧駆動装置法 空気が流入あ
るいは流出し 圧力が変化する第1、第2の空気室と、
前記第1及び第2の空気室の境界をなし 気密性を保ち
ながら前記第1の空気室と第2の空気室の圧力差で駆動
され移動可能な動作部とを有する空気圧アクチュエータ
と、前記第1、第2の空気室のそれぞれの流体力を検出
する第1、第2の流体力検出部と、前記動作部の動作状
態を検出する動作状態検出部と、前記第1、第2の空気
室のそれぞれに入力信号に応じて開口量が変化すること
により空気を流入あるいは流出させることのできる第1
、第2の制御弁と、前記第1、第2の制御弁のそれぞれ
の前記開口量を検出する第1、第2の開口量検出部と、
前記動作状態検出部の出力信号と前記第1、第2の流体
力検出部の出力信号と目標動作状態信号を人力し前記動
作部が一旬一 前記目標状態信号に従って移動するために必要な制御量
である前記第1、第2の制御弁の開口量を演算し前記第
1、第2の制御弁を駆動させる開口量指令信号を出力す
る動作制御部と、前記第1、第2の制御弁への前記開口
量指令信号と前記第1、第2の開口量検出部の出力信号
をそれぞれ入力し前記第1、第2の開口量検出部の出力
信号がそれぞれ前記第1、第2の制御弁への開口量指令
信号に一致するために必要な駆動信号を演算し それぞ
れ前記第1、第2の制御弁に出力する第1、第2の弁制
御駆動部とを有L 前記第1、第2の弁制御駆動部は人
力した前記第1、第2の制御弁への開口量指令信号と前
記第1、第2の開口量検出部の出力信号のそれぞれの差
とそのn階微分値(n: 正の整数)までのそれぞれの
線形結合和を求へ それぞれの前記線形結合和の符号に
応じて前記開口量を増加させる方向の一定の駆動信号と
前記開口量を減少させる方向の一定の駆動信号とを切り
換えて出力する弁制御部を備えたものであって、前記第
1、第2の制御弁の弁体に加わる駆動力の変化によって
開口量が変化する時定数よりも、出力した駆動信号によ
って前記第1、第2の制御弁の弁体に加わる駆動力が変
化する時定数が小さくなるように前記駆動信号を補正し
て前記第1、第2の制御弁へ出力する駆動信号補正部と
を備えることによって、任意の目標位置への位置決め等
の動作を高速・高精度に実現することができる。
Effects of the Invention As described above, the pneumatic drive device method of the present invention has first and second air chambers into which air flows in or out and whose pressure changes;
a pneumatic actuator forming a boundary between the first and second air chambers and having a movable operating section driven by a pressure difference between the first air chamber and the second air chamber while maintaining airtightness; 1. first and second fluid force detection sections that detect the fluid force of each of the second air chambers, an operating state detection section that detects the operating state of the operating section, and the first and second air chambers. A first chamber that allows air to flow in or out by changing the opening amount depending on the input signal to each chamber.
, a second control valve, and first and second opening amount detection units that detect the opening amount of each of the first and second control valves;
Control necessary for manually controlling the output signal of the operating state detection section, the output signal of the first and second fluid force detection sections, and the target operating state signal so that the operating section moves in accordance with the target state signal. an operation control unit that calculates opening amounts of the first and second control valves and outputs an opening amount command signal that drives the first and second control valves; The opening amount command signal to the valve and the output signals of the first and second opening amount detection sections are respectively inputted, and the output signals of the first and second opening amount detection sections are respectively input to the first and second opening amount detection sections. and first and second valve control drive units that calculate a drive signal necessary to match the opening amount command signal to the control valve and output it to the first and second control valves, respectively. , a second valve control drive section calculates the difference between the manually-powered opening amount command signal to the first and second control valves and the output signals of the first and second opening amount detection sections, and the n-th order differential thereof. Find each linear combination sum up to a value (n: a positive integer). Depending on the sign of each linear combination sum, a constant drive signal in the direction of increasing the aperture amount and a constant drive signal in the direction of decreasing the aperture amount. The control valve is equipped with a valve control unit that switches between and outputs a constant drive signal, and has a time constant in which the opening amount changes due to a change in the driving force applied to the valve bodies of the first and second control valves. Correcting the drive signal so that a time constant for changing the drive force applied to the valve bodies of the first and second control valves by the output drive signal becomes smaller, and outputting the corrected drive signal to the first and second control valves. By including the drive signal correction section, operations such as positioning to an arbitrary target position can be realized at high speed and with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における空気圧駆動装置の全体
は 第2図は同空気圧駆動装置における制御部の詳細図
 第3図はさきに提案した空気圧駆動装置の全体@ 第
4図は同空気圧駆動装置における制御部の詳細説明図で
ある。 1・ ・空気圧シリンダ 2・・・ピストン、3a、3
b・・・制御弁、 7・・・位置センサ、8a、8b・
・・圧力セン惧 9・・・制御部10、11・・・弁制
御駆動部 12a、  12b・・・開口量検出部
Figure 1 shows the entire pneumatic drive device according to the embodiment of the present invention. Figure 2 is a detailed view of the control section of the same pneumatic drive device. Figure 3 shows the entire pneumatic drive device proposed earlier. Figure 4 shows the same pneumatic drive device. FIG. 3 is a detailed explanatory diagram of a control section in the drive device. 1. ・Pneumatic cylinder 2...Piston, 3a, 3
b... Control valve, 7... Position sensor, 8a, 8b.
...Pressure sensor 9...Control section 10, 11...Valve control drive section 12a, 12b...Opening amount detection section

Claims (5)

【特許請求の範囲】[Claims] (1)空気が流入あるいは流出し、圧力が変化する第1
、第2の空気室と、前記第1及び第2の空気室の境界を
なし、気密性を保ちながら前記第1の空気室と第2の空
気室の圧力差で駆動され移動可能な動作部とを有する空
気圧アクチュエータと、前記第1、第2の空気室のそれ
ぞれの流体力を検出する第1、第2の流体力検出部と、
前記動作部の動作状態を検出する動作状態検出部と、前
記第1、第2の空気室のそれぞれに入力信号に応じて開
口量が変化することにより空気を流入あるいは流出させ
ることのできる第1、第2の制御弁と、前記第1、第2
の制御弁のそれぞれの前記開口量を検出する第1、第2
の開口量検出部と、前記動作状態検出部の出力信号と前
記第1、第2の流体力検出部の出力信号と目標動作状態
信号を入力し前記動作部が前記目標状態信号に従って移
動するために必要な制御量である前記第1、第2の制御
弁の開口量を演算し前記第1、第2の制御弁を駆動させ
る前記開口量指令信号を出力する動作制御部と、前記第
1、第2の制御弁への開口量指令信号と前記第1、第2
の開口量検出部の出力信号をそれぞれ入力し、前記第1
、第2の開口量検出部の出力信号がそれぞれ前記第1、
第2の制御弁への開口量指令信号に一致するために必要
な駆動信号を演算し、それぞれ前記第1、第2の制御弁
に出力する第1、第2の弁制御駆動部とを有し、前記第
1、第2の弁制御駆動部は入力した前記第1、第2の制
御弁への開口量指令信号と前記第1、第2の開口量検出
部の出力信号のそれぞれの差とそのn階微分値(n:正
の整数)までのそれぞれの線形結合和を求め、それぞれ
の前記線形結合和の符号に応じて前記開口量を増加させ
る方向の一定の駆動信号と前記開口量を減少させる方向
の一定の駆動信号とを切り換えて出力する弁制御部を備
えたものであって、前記第1、第2の制御弁の弁体に加
わる駆動力の変化によって開口量が変化する時定数より
も、出力した駆動信号によって前記第1、第2の制御弁
の弁体に加わる駆動力が変化する時定数が小さくなるよ
うに前記駆動信号を補正して前記第1、第2の制御弁へ
出力する駆動信号補正部とを備えたことを特徴とする空
気圧駆動装置。
(1) The first stage where air flows in or out and the pressure changes.
, a second air chamber forms a boundary between the first and second air chambers, and is movable by being driven by the pressure difference between the first and second air chambers while maintaining airtightness. a pneumatic actuator having a pneumatic actuator, and first and second fluid force detection units that detect the fluid forces of the first and second air chambers, respectively;
an operating state detection unit that detects the operating state of the operating unit; and a first air chamber that allows air to flow in or out by changing the opening amount in accordance with an input signal to each of the first and second air chambers. , a second control valve, and the first and second control valves.
a first and a second control valve for detecting the opening amount of each of the control valves;
an opening amount detection section, an output signal of the operation state detection section, an output signal of the first and second fluid force detection sections, and a target operation state signal are input, and the operation section moves according to the target state signal. an operation control unit that calculates the opening amount of the first and second control valves, which is a control amount necessary for the operation, and outputs the opening amount command signal that drives the first and second control valves; , an opening amount command signal to the second control valve and the first and second control valves.
The output signals of the aperture amount detectors are respectively inputted, and the first
, the output signal of the second aperture detection section is the first,
It includes first and second valve control drive units that calculate drive signals necessary to match the opening amount command signal to the second control valve and output them to the first and second control valves, respectively. The first and second valve control drive sections detect the difference between the input opening amount command signals to the first and second control valves and the output signals of the first and second opening amount detection sections. and the respective linear combination sums up to their nth derivatives (n: positive integer), and calculate a constant drive signal and the aperture amount in the direction of increasing the aperture amount according to the sign of each of the linear combination sums. The valve controller is equipped with a valve control unit that outputs a constant drive signal in a direction that reduces the amount of the valve, and the opening amount changes according to a change in the driving force applied to the valve bodies of the first and second control valves. The drive signal is corrected so that the time constant at which the drive force applied to the valve bodies of the first and second control valves changes due to the output drive signal is smaller than the time constant. A pneumatic drive device comprising: a drive signal correction section that outputs a drive signal to a control valve.
(2)第1、第2の弁制御駆動部の開口量を増加させる
方向の一定の駆動信号は前記第1、第2の制御弁の開口
量を増加させる方向の弁体に加わる最大駆動力に対応す
る駆動信号であり、開口量を減少させる方向の一定の駆
動信号は前記第1、第2の制御弁の開口量を減少させる
方向の弁体に加わる最大駆動力に対応する駆動信号であ
ることを特徴とする請求項1記載の空気圧駆動装置。
(2) The constant drive signal in the direction of increasing the opening amount of the first and second valve control drive units is the maximum driving force applied to the valve body in the direction of increasing the opening amount of the first and second control valves. The constant drive signal in the direction of decreasing the opening amount is a driving signal corresponding to the maximum driving force applied to the valve body in the direction of decreasing the opening amount of the first and second control valves. The pneumatic drive device according to claim 1, characterized in that:
(3)第1、第2の制御弁は弁体を駆動する駆動力特性
が開口量を増加させる方向の弁体に加わる最大駆動力と
開口量を減少させる方向の弁体に加わる最大駆動力との
間でヒステリシス特性を有することを特徴とする請求項
2記載の空気圧駆動装置。
(3) The first and second control valves have driving force characteristics that drive the valve body, such as the maximum driving force applied to the valve body in the direction of increasing the opening amount and the maximum driving force applied to the valve body in the direction of decreasing the opening amount. 3. The pneumatic drive device according to claim 2, wherein the pneumatic drive device has a hysteresis characteristic between.
(4)流体力検出部が空気室群のそれぞれの圧力を検出
する圧力検出装置群によって構成されている請求項1、
2または3記載の空気圧駆動装置。
(4) Claim 1, wherein the fluid force detection section is constituted by a pressure detection device group that detects the pressure of each of the air chamber groups.
3. The pneumatic drive device according to 2 or 3.
(5)動作状態検出部が位置、速度、加速度を検出する
手段のいずれか、あるいはその組合せにより構成されて
いる請求項1、2または3記載の空気圧駆動装置。
(5) The pneumatic drive device according to claim 1, 2 or 3, wherein the operating state detection section is constituted by any one of means for detecting position, velocity, and acceleration, or a combination thereof.
JP10193990A 1990-04-18 1990-04-18 Air pressure driving device Pending JPH044301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10193990A JPH044301A (en) 1990-04-18 1990-04-18 Air pressure driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10193990A JPH044301A (en) 1990-04-18 1990-04-18 Air pressure driving device

Publications (1)

Publication Number Publication Date
JPH044301A true JPH044301A (en) 1992-01-08

Family

ID=14313876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10193990A Pending JPH044301A (en) 1990-04-18 1990-04-18 Air pressure driving device

Country Status (1)

Country Link
JP (1) JPH044301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515409A (en) * 2003-01-24 2006-05-25 バイキング テクノロジィーズ エル.シー. Position control system for fluid operated cylinders
KR20150052114A (en) 2012-10-23 2015-05-13 도요타 지도샤(주) Rare-earth-magnet production method
KR20150052271A (en) 2012-10-18 2015-05-13 도요타 지도샤(주) Manufacturing method for rare-earth magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515409A (en) * 2003-01-24 2006-05-25 バイキング テクノロジィーズ エル.シー. Position control system for fluid operated cylinders
KR20150052271A (en) 2012-10-18 2015-05-13 도요타 지도샤(주) Manufacturing method for rare-earth magnet
KR20150052114A (en) 2012-10-23 2015-05-13 도요타 지도샤(주) Rare-earth-magnet production method

Similar Documents

Publication Publication Date Title
US7210394B2 (en) Method and apparatus for controlling air cylinder
US8375842B2 (en) Electro-pneumatic system for controlling a double-acting pneumatic actuator
US5615593A (en) Method and apparatus for controllably positioning a hydraulic actuator
CN110941181B (en) Rigid-flexible coupling motion platform control method for piezoelectric ceramic connection
JPH044301A (en) Air pressure driving device
US4967124A (en) Servo control apparatus
JP4629257B2 (en) Gas pressure actuator and control method thereof
JPH01247802A (en) Electro-oil servo actuator having rigidity adjustment function
JPH02229902A (en) Pneumatic driving unit
JPH044302A (en) Air pressure driving device
JPH04205113A (en) Sample table driving device
TWI823192B (en) Control method and control computing device of pneumatic actuator
SU636423A1 (en) Follow-up drive
JPH0475113A (en) Controller
JPH11141696A (en) Spool type direction selective valve system
JPH05221315A (en) Active suspension device for rolling stock
JPH02304202A (en) Pneumatic driving device
JP2001221201A (en) Electric-pneumatic positioner
JPH04145201A (en) Pneumatic drive unit
JPH0351501A (en) Pneumatic driving device
JPH03249402A (en) Pneumatic driving device
CN109623866B (en) Air bag U-shaped air muscle antisymmetric parallel type robot manual joint
SU1280206A1 (en) Hydraulic servomechanism
US4924754A (en) Circuit arrangement for a hydraulic drive in a position control circuit
Aschemann et al. Nonlinear trajectory control of a high-speed linear axis driven by pneumatic muscle actuators