JPH03248028A - Pressure sensor unit - Google Patents

Pressure sensor unit

Info

Publication number
JPH03248028A
JPH03248028A JP4664590A JP4664590A JPH03248028A JP H03248028 A JPH03248028 A JP H03248028A JP 4664590 A JP4664590 A JP 4664590A JP 4664590 A JP4664590 A JP 4664590A JP H03248028 A JPH03248028 A JP H03248028A
Authority
JP
Japan
Prior art keywords
pressure
pressure sensor
frequency
sensors
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4664590A
Other languages
Japanese (ja)
Inventor
Kazunari Iori
伊折 和成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP4664590A priority Critical patent/JPH03248028A/en
Publication of JPH03248028A publication Critical patent/JPH03248028A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate temperature compensation of the entire pressure sensor and to omit the requirement for correction due to time change by providing two sensors having approximately same constitution wherein tuning-fork type quartz resonators are sealed in pressure response container, and detecting the pressure based on the difference in resonant frequencies outputted from the output terminals of the sensors. CONSTITUTION:When pressure is applied on a pressure sensor 1a which is assembled in an oscillating circuit 31, the resonant frequency of a tuning-fork type quartz resonator which is a pressure sensor element is changed, and the frequency outputted from the oscillating circuit is changed. The frequencies corresponding to the temperature and the atmospheric pressure at every time are outputted from an oscillating circuit 33 on the side of a reference device 1b. The frequencies of both outputs are divided in frequency dividing circuits 32 and 34 and counted in a counter 41. The pressure value corresponding to the difference in counted values obtained in an operating circuit 42 is read out of a memory 43 and displayed on a display circuit 44. Since the sensors having the same constitution are used for the pressure sensor 1a and the reference device 1b, the correction of the temperature characteristics are automatically performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はXYカット水晶板からなる音叉型水晶振動子を
圧力センサ素子として用いる圧力センサユニ・ントに関
するものであり、さらに詳しくはこの音叉型水晶振動子
がこの音叉型水晶振動子を収納する圧力応動型容器に機
械的に非接触の状態で気密封止され、外部圧力の変動に
よりこの圧力応動型容器の容積が変動し、この容積変動
に伴う内部気圧変動を音叉型水晶振動子の共振周波数の
変化により外部圧力を検出する方式の圧力センサユニッ
トに関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a pressure sensor unit that uses a tuning fork type crystal resonator made of an XY cut crystal plate as a pressure sensor element, and more specifically relates to this tuning fork type crystal unit. The vibrator is hermetically sealed in a pressure-responsive container that houses this tuning-fork crystal resonator in a non-mechanical contact state, and the volume of this pressure-responsive container fluctuates due to fluctuations in external pressure. The present invention relates to a pressure sensor unit that detects external pressure based on changes in the resonance frequency of a tuning fork crystal resonator due to internal pressure fluctuations.

尚、本発明でいう「応動」という語は、外からの働きか
けに対して作動することを意味している。
Note that the term "response" used in the present invention means acting in response to an external action.

(従来技術) 音叉型水晶振動子の共振周波数は周囲雰囲気の圧力変化
により略直線的に変化する特性を有しており、この特性
を利用して圧力の測定を行う。−船釣には水晶振動子表
面の電極膜の保護等のため、この圧力センサ素子として
機能する水晶振動子を直接被測定気圧下に置かず、ベロ
ーズ等の圧力応動型容器内に設置し、この容器内の内部
気圧変動を検出する。
(Prior Art) The resonant frequency of a tuning fork crystal resonator has a characteristic that changes approximately linearly with changes in pressure in the surrounding atmosphere, and this characteristic is used to measure pressure. - For boat fishing, in order to protect the electrode film on the surface of the crystal oscillator, the crystal oscillator that functions as a pressure sensor element is not placed directly under the measured atmospheric pressure, but is placed inside a pressure-responsive container such as a bellows. Internal pressure fluctuations within this container are detected.

音叉型水晶振動子は負の2次曲線で衷わされる周波数温
度特性を有しており、これは圧力を測定するうえで補正
しなければならない事項であった。
Tuning fork crystal resonators have frequency-temperature characteristics that follow a negative quadratic curve, and this has to be corrected when measuring pressure.

従来技術を圧力センサの一般的構造を示す第1図とこの
圧力センサを用いた圧力計の構成をプロ・ンク図で示す
第3図とともに説明する。第1図において、圧力センサ
1aは、圧力応動型容器であるベローズ11と、このベ
ローズ11と接合される基台12と、この基台12内に
設置される圧力センサ素子である音叉型水晶振動子13
と、この音叉型水晶振動子を保持するベース14とリー
ド端子15とからなる。
The prior art will be explained with reference to FIG. 1, which shows the general structure of a pressure sensor, and FIG. 3, which shows the structure of a pressure gauge using this pressure sensor in a Pronk diagram. In FIG. 1, the pressure sensor 1a includes a bellows 11 that is a pressure-responsive container, a base 12 that is joined to the bellows 11, and a tuning fork-type crystal vibrator that is a pressure sensor element installed in the base 12. Child 13
It consists of a base 14 that holds this tuning fork type crystal resonator, and lead terminals 15.

圧力計は圧力センサ1aと、これを駆動する発振回路5
1と、分周回路52と、カウンタ53と、・クロック5
日と、周波数圧力データと周波数温度データを保管した
メモリ55と、圧力センサ1aからの圧力データと温度
センサ54からの温度データから圧力値を計算する演算
回路56と、表示回路57とからなる。
The pressure gauge includes a pressure sensor 1a and an oscillation circuit 5 that drives it.
1, the frequency dividing circuit 52, the counter 53, and the clock 5.
It consists of a memory 55 that stores date, frequency pressure data, and frequency temperature data, an arithmetic circuit 56 that calculates a pressure value from the pressure data from the pressure sensor 1a and the temperature data from the temperature sensor 54, and a display circuit 57.

(発明が解決しようとする課題) しかしながら、音叉型水晶振動子は負の2次曲線で表わ
される周波数温度特性を有しており、これは圧力を測定
するうえで補正しなければならない事項であった。また
、圧力センサ素子である音叉型水晶振動子を取り囲む気
体(SFs)やベローズも温度変化に対して膨張収縮し
ており、これらが音叉型水晶振動子の周波数変化に影響
を与えるため、音叉型水晶振動子に対する温度補償のみ
の圧力値では実際の圧力値を表わしていない場合があっ
た。
(Problem to be Solved by the Invention) However, the tuning fork type crystal resonator has a frequency temperature characteristic expressed by a negative quadratic curve, and this is a matter that must be corrected when measuring pressure. Ta. In addition, the gas (SFs) and bellows surrounding the tuning fork crystal resonator, which is the pressure sensor element, expand and contract in response to temperature changes, and these affect the frequency changes of the tuning fork crystal resonator. In some cases, the pressure value obtained only by temperature compensation for the crystal resonator does not represent the actual pressure value.

また、上記構成では高精度で圧力を検出したい場合、温
度パラメーターを加味する必要があることと相俟って、
温度センサの高精度なものの選択の必要性、メモリの容
量の大型化が要求されていた。
In addition, with the above configuration, if you want to detect pressure with high accuracy, it is necessary to take temperature parameters into consideration.
There was a need to select a highly accurate temperature sensor and a larger memory capacity.

また、周波数圧力特性等をROM等のメモリしこ書き込
む際、所定の気圧下(例えは1気圧)での特性を書き込
むが、実際の使用時には上記所定の気圧とは異なった大
気圧である可能性が高い。このような場合、相対的な所
定の圧力測定の精度が低下する可能性がある。例えは、
浴槽の湯量を測定するような相対的な圧力値を求めたい
時、大気圧が高低により検出される圧力値が異なり、測
定誤差が生じていた。
Also, when writing frequency pressure characteristics, etc. to a memory such as ROM, the characteristics are written under a predetermined atmospheric pressure (for example, 1 atm), but in actual use, the atmospheric pressure may be different from the above predetermined atmospheric pressure. Highly sexual. In such cases, the accuracy of the relative predetermined pressure measurement may be reduced. For example,
When you want to find a relative pressure value, such as measuring the amount of hot water in a bathtub, the detected pressure value differs depending on the atmospheric pressure, resulting in measurement errors.

さらに、圧力センサ、温度センサの祁時変化に対する補
正を行う必要があり、使用性に問題があった。
Furthermore, it is necessary to correct changes in the pressure sensor and temperature sensor during treatment, which poses a problem in usability.

本発明は上記問題点を解決するためしこなされたもので
、高性能な温度センサを用いなくても、またメモリ容量
も大きくしなくても、圧力センサ全体の温度補償を容易
におこない、また経時変化による補正も必要ない圧力セ
ンサユニットを提供することを目的とするものである。
The present invention has been developed to solve the above problems, and it is possible to easily perform temperature compensation for the entire pressure sensor without using a high-performance temperature sensor or increasing the memory capacity. It is an object of the present invention to provide a pressure sensor unit that does not require correction due to changes over time.

(i!題を解決する手段) 本発明による圧力センサユニ・ントは、音叉型水晶振動
子を圧力応動容器内に封入した略同一構成の2つのセン
サからなり、一方のセンサを被測定圧力下に、他方のセ
ンサを基準器として用いるべく大気あるいは所望の基準
とする気圧下にそれぞれ設置し、各々のセンサの出力端
子から出力される共振周波数差により圧力を検出するこ
とを特徴とするものである。
(Means for Solving the i! Problem) The pressure sensor unit according to the present invention consists of two sensors having substantially the same configuration in which a tuning fork-type crystal oscillator is enclosed in a pressure-responsive container, and one sensor is placed under the pressure to be measured. , the other sensor is installed in the atmosphere or a desired standard atmospheric pressure to be used as a reference device, and the pressure is detected by the resonance frequency difference output from the output terminals of each sensor. .

(作用) 同一構成のセンサの一方を圧力センサとして他方を圧力
あるいは温度の基準器として用いているので、圧力セン
サから出力される周波数と圧力基準器から出力される周
波数の差を求めることにより、圧力センサユニットの温
度特性の補正が自動的に行われる。すなわち、非加圧時
には圧力センサ、圧力基準器に対して温度による音叉型
水晶振動子の周波数を変化させる影響(音叉型水晶振動
子自体の熱による周波数変化、ベローズの熱膨張、セン
サ内部のガスの01ij張等によるもの)のみが両者と
も同じくしてかかっており、両者から出力される周波数
に変わりはない。そして、加圧時には圧力センサにかか
った圧力に対する周波数変化がこのセンサから検出され
る。この周波数変化分は温度等の他の要因によるものを
排除した純粋な圧力に対応するものである。
(Function) Since one of the sensors with the same configuration is used as a pressure sensor and the other as a pressure or temperature reference device, by finding the difference between the frequency output from the pressure sensor and the frequency output from the pressure reference device, Correction of the temperature characteristics of the pressure sensor unit is automatically performed. In other words, when no pressure is applied, the effect of changing the frequency of the tuning fork crystal resonator due to temperature on the pressure sensor and pressure reference device (frequency change due to heat of the tuning fork crystal resonator itself, thermal expansion of the bellows, gas inside the sensor) 01ij extension, etc.) is applied in the same way to both, and there is no difference in the frequency output from both. When pressurizing, the sensor detects a frequency change with respect to the pressure applied to the pressure sensor. This frequency change corresponds to pure pressure excluding effects caused by other factors such as temperature.

また、基準器側を大気圧開放した場合し乙は相対的な圧
力測定が行え、例えば浴槽の湯量の測定時等には測定誤
差を極小にできる。さらに、両センサの経時変化もほぼ
等しいと考えられるので、校正期間が長くなる。
Furthermore, when the reference device side is opened to atmospheric pressure, relative pressure measurement can be performed, and measurement errors can be minimized, for example, when measuring the amount of hot water in a bathtub. Furthermore, since the changes over time of both sensors are considered to be approximately equal, the calibration period becomes longer.

なお先に述べたように、音叉型水晶振動子の周波Wl温
度特性は負の2次曲線で表わされるが、実用する際は2
次曲線の左側部分を実用温度範囲に入るようこの2次曲
線が高温側にシフトさせるため、X軸まわりに半時計方
向に数度回転させた切断角のものを用いている。
As mentioned earlier, the frequency Wl temperature characteristic of a tuning fork crystal resonator is expressed by a negative quadratic curve, but in practical use it is
In order to shift this quadratic curve to the high temperature side so that the left side of the quadratic curve falls within the practical temperature range, a cutting angle that is rotated several degrees counterclockwise around the X axis is used.

(発明の実施例) 本発明による実施例を図面とともに説明する。(Example of the invention) Embodiments according to the present invention will be described with reference to the drawings.

なお、従来技術の項で説明したのと同一の構成部分につ
いては同図面、同番号で説明する。第1図は圧力センサ
の構造を示す断面図、第2図は圧力測定システムを示す
ブロック図である。
Note that the same components as those described in the prior art section will be described using the same drawings and the same numbers. FIG. 1 is a sectional view showing the structure of the pressure sensor, and FIG. 2 is a block diagram showing the pressure measurement system.

圧力センサ1aは全体として円柱形状であり、圧力応動
型容器である一端が開口した金属製のベローズ11と、
このベローズ11の開口部と接続される金属製の基台1
2と、この基台12に設置される音叉型水晶振動子13
と、ベース14と、リード端子15とからなる。圧力セ
ンサ素子として機能する音叉型水晶振動子13はXYカ
ット板をX軸廻りで反時計方向に±10°回転させた水
晶板からなり、屈曲振動を行なわしめるよう電極配置さ
れている(図面では電極配置は省略している)。ベース
14はこの音叉型水晶振動子13を固定し、ベースに一
体化されたリード端子15で後述の発振回路とつながっ
ている。ベローズ内部はSFsガス16が充填されてい
る。
The pressure sensor 1a has a cylindrical shape as a whole, and includes a metal bellows 11 with one end open, which is a pressure-responsive container;
A metal base 1 connected to the opening of this bellows 11
2, and a tuning fork type crystal resonator 13 installed on this base 12.
, a base 14 , and a lead terminal 15 . The tuning fork crystal oscillator 13, which functions as a pressure sensor element, consists of an XY cut plate rotated by ±10° counterclockwise around the (The electrode arrangement is omitted.) A base 14 fixes this tuning fork type crystal resonator 13, and is connected to an oscillation circuit to be described later through a lead terminal 15 integrated with the base. The inside of the bellows is filled with SFs gas 16.

基準器1bも同一に構成し、これら同一構成の両センサ
を第2図に示すようにケース2にそれぞれ収納する。ケ
ース2には被測定圧力導入口21と大気圧導入口22が
設けられている。
The reference device 1b also has the same configuration, and both sensors having the same configuration are housed in a case 2, respectively, as shown in FIG. The case 2 is provided with a pressure to be measured inlet 21 and an atmospheric pressure inlet 22.

なお、これら両センサは音叉型水晶振動子の外形寸法、
共振周波数、電極構成、あるいはベローズの材質、バネ
常数等構成部品を同じもので構成する必要がある。さら
に、製造条件についても同一のものを用いるのが好まし
い。
In addition, both of these sensors have the external dimensions of the tuning fork type crystal oscillator,
It is necessary to configure the components with the same resonance frequency, electrode configuration, bellows material, spring constant, etc. Furthermore, it is preferable to use the same manufacturing conditions.

次に圧力測定処理について説明する。Next, the pressure measurement process will be explained.

発振回路31に組み込まれた圧力センサlaに圧力が加
わると圧力センサ素子である音叉型水晶振動子の共振周
波数が変化し、発振回路から出力される周波数は変化す
る。一方、基準器1b側の発振回路33からはその時々
の温度、大気圧に対応した周波数が出力される。なお、
選択により基準器側のケース内を所定の圧力に固定して
もよい。
When pressure is applied to the pressure sensor la incorporated in the oscillation circuit 31, the resonance frequency of the tuning fork crystal resonator, which is the pressure sensor element, changes, and the frequency output from the oscillation circuit changes. On the other hand, the oscillation circuit 33 on the side of the reference device 1b outputs a frequency corresponding to the current temperature and atmospheric pressure. In addition,
Depending on selection, the inside of the case on the reference device side may be fixed at a predetermined pressure.

上記両出力の周波数は分周回路32.34でそれぞれ分
周され、それをカウンター41でカウントされる。45
は基準となるクロックである。これらカウント数差を演
算回路42により求め、このカウント数差に対応する圧
力値をメモリ43から読みだし、これを表示回路44に
送られ圧力値が表示される。
The frequencies of both outputs are divided by frequency dividing circuits 32 and 34, respectively, and counted by a counter 41. 45
is a reference clock. The difference between these counts is determined by the arithmetic circuit 42, the pressure value corresponding to this difference between counts is read out from the memory 43, and this is sent to the display circuit 44, where the pressure value is displayed.

なお、上記圧力処理システムにおいて、圧力センサ1a
と基準器1bからの出力について、いずれか一方を分周
し、他方を逓倍することにより、いずれかの周波数出力
を基準にしてカウントすることも可能である。この場合
、クロ・ンク45は不要になる。
In addition, in the above pressure processing system, the pressure sensor 1a
By frequency-dividing one of the outputs from the reference device 1b and multiplying the other, it is also possible to count using one of the frequency outputs as a reference. In this case, the clock 45 becomes unnecessary.

本発明は圧力応動型容器としてベローズを取り上げたが
、これに限定されるものではなく例えばダイヤプラムな
どを用いてもよい。
Although the present invention uses a bellows as the pressure-responsive container, the present invention is not limited to this, and for example, a diaphragm or the like may be used.

(発明の効果) 本発明によれは、圧力センサと基準器に同一構成のセン
サを用いているので、圧力センサ全体の温度特性の補正
が自動的に行われ、複雑な温度補償回路を設ける必要を
しなくても、極めて高精度で圧力を測定できる。これに
関連して、温度に関するデータをあらかじめ保管してお
く必要もないのでメモリ容量も少なくてすむ。また、基
準器側を大気圧開放した場合にはその時々の大気圧に対
する相対的な圧力測定が行え、測定誤差を極小にできる
。また、同一構成のセンサを2つ用いているので経時変
化もほぼ等しいと考えられ、メモリの校正を行う必要が
なくなる。
(Effects of the Invention) According to the present invention, since a sensor with the same configuration is used as the pressure sensor and the reference device, the temperature characteristics of the entire pressure sensor are automatically corrected, and there is no need to provide a complicated temperature compensation circuit. Pressure can be measured with extremely high accuracy without the need for In connection with this, there is no need to store temperature-related data in advance, so the memory capacity can be reduced. Further, when the reference device side is opened to atmospheric pressure, pressure measurement relative to the current atmospheric pressure can be performed, and measurement errors can be minimized. Furthermore, since two sensors with the same configuration are used, it is considered that the changes over time are approximately the same, and there is no need to calibrate the memory.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は音叉型水晶振動子を用いた圧力センサを示す図
、第2図は本発明による圧力センサユニントを用いた圧
力測定システムを示すブロック図、第3図は従来の圧力
測定システムを示す図である。 1a・・・圧力センサ 1b・・・基準器 13・・・音叉型水晶振動子 図 面 第1図 第2図
Fig. 1 is a diagram showing a pressure sensor using a tuning fork type crystal resonator, Fig. 2 is a block diagram showing a pressure measurement system using the pressure sensor unit according to the present invention, and Fig. 3 is a diagram showing a conventional pressure measurement system. It is. 1a...Pressure sensor 1b...Reference device 13...Tuning fork type crystal oscillator Drawing Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 音叉型水晶振動子を圧力応動容器内に封入した略同一構
成の2つのセンサからなり、一方のセンサを被測定圧力
下に、他方のセンサを基準器として用いるべく大気ある
いは所望の基準とする気圧下にそれぞれ設置し、各々の
センサの出力端子から出力される共振周波数差により圧
力を検出することを特徴とする圧力センサユニット。
It consists of two sensors with almost the same configuration, each with a tuning fork-type crystal oscillator sealed in a pressure-responsive container.One sensor is used under the pressure to be measured, and the other sensor is used as a reference device under atmospheric pressure or a desired reference pressure. A pressure sensor unit, which is installed at the bottom of each sensor, and detects pressure based on a resonance frequency difference output from an output terminal of each sensor.
JP4664590A 1990-02-26 1990-02-26 Pressure sensor unit Pending JPH03248028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4664590A JPH03248028A (en) 1990-02-26 1990-02-26 Pressure sensor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4664590A JPH03248028A (en) 1990-02-26 1990-02-26 Pressure sensor unit

Publications (1)

Publication Number Publication Date
JPH03248028A true JPH03248028A (en) 1991-11-06

Family

ID=12753049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4664590A Pending JPH03248028A (en) 1990-02-26 1990-02-26 Pressure sensor unit

Country Status (1)

Country Link
JP (1) JPH03248028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546810A (en) * 1993-07-06 1996-08-20 Seiko Epson Corporation Pressure measuring device and method using quartz resonators
JP2010169550A (en) * 2009-01-23 2010-08-05 Epson Toyocom Corp Stress-detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546810A (en) * 1993-07-06 1996-08-20 Seiko Epson Corporation Pressure measuring device and method using quartz resonators
JP2010169550A (en) * 2009-01-23 2010-08-05 Epson Toyocom Corp Stress-detecting device

Similar Documents

Publication Publication Date Title
US4479070A (en) Vibrating quartz diaphragm pressure sensor
US4741213A (en) Quartz-type gas pressure gauge
US4644804A (en) Quartz resonating force and pressure transducer
US8381595B2 (en) Pressure detecting device
US5546810A (en) Pressure measuring device and method using quartz resonators
US4507970A (en) Pressure sensitive element and a sensor comprising such an element
GB2251143A (en) Temperature compensated oscillator and temperature detector therefor
US20100186515A1 (en) Pressure detection unit and pressure sensor
US5719782A (en) Frequency measuring apparatus and frequency measuring method
JP2001292030A (en) Crystal oscillation circuit and crystal resonator
US20050206277A1 (en) Tuning-fork-type vibrating reed, piezoelectric vibrator, angular-rate sensor, and electronic device
JPH03248028A (en) Pressure sensor unit
EP0609616A1 (en) Crystalline resonator for temperature measurement
JP5293413B2 (en) Pressure sensor and manufacturing method thereof
JPS6222041A (en) Resonator pressure transducer
US4472655A (en) Tuning fork flexural quartz resonator
JPS6129652B2 (en)
JPH0515975B2 (en)
JPH03252537A (en) Manometer
JPS5967437A (en) Quartz vibrator pressure sensor
JP2008017261A (en) Tuning fork type piezoelectric vibrating chip, and sensor oscillation circuit and manufacturing method thereof
JPH035876Y2 (en)
JP2003224425A (en) Temperature compensated piezoelectric oscillator
JPH03252204A (en) Temperature compensated crystal oscillator
JPS63316509A (en) Oscillating circuit