JPH03247933A - Air-conditioner system of refrigerant automatic circulation type - Google Patents

Air-conditioner system of refrigerant automatic circulation type

Info

Publication number
JPH03247933A
JPH03247933A JP4376390A JP4376390A JPH03247933A JP H03247933 A JPH03247933 A JP H03247933A JP 4376390 A JP4376390 A JP 4376390A JP 4376390 A JP4376390 A JP 4376390A JP H03247933 A JPH03247933 A JP H03247933A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
header
evaporator
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4376390A
Other languages
Japanese (ja)
Other versions
JP2834517B2 (en
Inventor
Yoshinori Inoue
良則 井上
Yoshitaka Sasaki
佐々木 義隆
Kensuke Tokunaga
研介 徳永
Nozomi Kusumoto
望 楠本
Shuji Sugiura
杉浦 修史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2043763A priority Critical patent/JP2834517B2/en
Publication of JPH03247933A publication Critical patent/JPH03247933A/en
Application granted granted Critical
Publication of JP2834517B2 publication Critical patent/JP2834517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To facilitate pipe connection work between a condensor and an evaporator, improve workability and prevent occurrence of trouble caused by a leakage of refrigerant by a method wherein a major liquid header and a terminal side liquid header are communicated and connected through a refrigerant liquid pipe and concurrently a major steam header and a terminal steam header are communicated and connected through a respective refrigerant steam pipe. CONSTITUTION:Each of the floors is provided with a terminal end liquid header 11 and a terminal end steam header 12. A main liquid header 8 and a terminal liquid header 11 are communicated and connected through a refrigerant liquid pipe 7a of soft copper pipe. A main steam header 10 and a terminal end steam header 12 are communicated and connected through respective refrigerant steam pipes 9a of a soft copper pipe. The terminal end liquid header 11 and evaporators 3 and 3 are communicated and connected through a refrigerant steam pipe 9b. Accordingly, it is possible to supply refrigerant liquid from a condensor 1 on the heat source side through respective refrigerant pipes to an evaporator on the utilization side to be mounted on every floor and to return the refrigerant vapor from the evaporator to the condensor through respective refrigerant vapor pipes.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、自然循環によって、冷媒を熱源側となる凝縮
器または蒸発器から各階に設置した利用側となる蒸発器
またはWE縮器に供給し、冷房や暖房といった空調を行
う冷媒自然循環式空気調和システムに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention supplies refrigerant through natural circulation from a condenser or evaporator serving as a heat source to an evaporator or WE condenser serving as a user installed on each floor. It also relates to refrigerant natural circulation air conditioning systems that perform air conditioning such as cooling and heating.

〈従来の技術〉 冷媒を自?8循環させて冷房や暖房といった空調を行う
冷媒自然循環式空気調和システムでは、例えば、冷房の
場合であれば、熱源側となる凝縮器を建物の屋上などに
設置し、また、暖房の場合であれば、熱源側となる蒸発
器を建物の地下などに設置するとともに、それらの熱源
側となる凝縮器または蒸発器に対して所定のヘッド差を
設けて各階に利用側となる蒸発器または凝縮器を設置し
、凝縮器と7発器とを冷媒液配管や冷媒蒸気配管を介し
て連通接続するとともに、それらの凝縮器と蒸発器と冷
媒液配管と冷媒蒸気配管とにわたり、凝縮器および蒸発
器それぞれでの熱交換に伴って液体と気体とに相変化す
る冷媒を密閉状態で充填して構成されている。
<Conventional technology> Use of refrigerant? In a refrigerant natural circulation air conditioning system that circulates the refrigerant for air conditioning such as cooling or heating, for example, in the case of cooling, the condenser that serves as the heat source is installed on the roof of the building, and in the case of heating, the condenser is installed on the roof of the building. If so, install the evaporator that will be the heat source in the basement of the building, and install the evaporator or condenser that will be the user side on each floor with a predetermined head difference from the condenser or evaporator that will be the heat source. The condenser and 7 generators are connected via refrigerant liquid piping and refrigerant vapor piping, and the condenser and evaporator are connected to each other via refrigerant liquid piping and refrigerant vapor piping. The refrigerant is sealed and filled with a refrigerant that changes phase between liquid and gas as heat is exchanged in each container.

〈発明が解決しようとする課題〉 しかしながら、近年のように建物が高層化する現状にあ
って、従来構成の空気調和システムでは、建物全体で設
置される利用側となる蒸発器または凝縮器の個数が極め
て多くなり、それらの利用側となる蒸発器または凝縮器
と熱源側となる蒸発器または凝縮器とにわたって循環さ
せるに必要な冷媒量も多くなる。そして、この多量の冷
媒がひとつの密閉系に充填されているため、一部の箇所
で冷媒液配管や冷媒蒸気配管に洩れを生じた場合に、多
量の冷媒がその洩れ出し箇所に集中して洩れ出し、酸素
欠乏による大事故を招いてしまう欠点があった。
<Problem to be solved by the invention> However, in the current situation where buildings are getting taller in recent years, the number of evaporators or condensers installed on the user side in the conventional air conditioning system is increasing. The amount of refrigerant required to circulate between the evaporator or condenser on the usage side and the evaporator or condenser on the heat source side also increases. Since this large amount of refrigerant is filled in one closed system, if a leak occurs in a part of the refrigerant liquid piping or refrigerant vapor piping, a large amount of refrigerant will be concentrated at the leaking point. It had the drawback that it could leak and cause a major accident due to lack of oxygen.

また、冷媒量が多いため、冷房の場合であれば下部階側
の利用側となる蒸発器に接続される冷媒液配管に、そし
て、暖房の場合であれば熱源側となる蒸発器に接続され
る冷媒液配管それぞれに大きな圧力がかかることになり
、その大きな圧力に耐えるだけの強度を持った配管が必
要で、単位長さが短い多数の配管を接続しなければなら
ず、それらの多数の接続箇所それぞれにおいて高精度の
シール構造が必要になり、配管接続作業に手間を要して
施工性が悪く、そのうえ、工期が長くなって工費が増大
するとともに、構成が複雑化して高価で不経済になる欠
点があった。
In addition, since the amount of refrigerant is large, in the case of cooling, it is connected to the refrigerant liquid piping connected to the evaporator on the lower floor side, and in the case of heating, it is connected to the evaporator, which is the heat source side. A large amount of pressure is applied to each refrigerant liquid pipe, which requires piping with enough strength to withstand that large pressure.Many pipes with short unit lengths must be connected. A high-precision seal structure is required at each connection point, making the pipe connection work labor-intensive and difficult to construct.In addition, the construction period becomes longer and construction costs increase, and the configuration becomes complicated, making it expensive and uneconomical. It had some drawbacks.

上述のような圧力を減少するものとして、特開平1−1
31836号公報に記載されたものがある。この従来例
によれば、例えば、3階分づつなどの複数階分づつの蒸
発器と、凝縮器に接続された受液器とを個別の冷媒液配
管を介して連通接続するとともに凝縮器と蒸発器とを冷
媒蒸気配管を介して連通接続し、各冷媒液配管の受液器
に近い箇所に弁を設けるとともに、各冷媒液配管それぞ
れに、所定量の冷媒液が溜まりたことを検出するセンサ
を設け、各冷媒液配管内に、常に所定量の冷媒液を溜め
、凝縮器にかかる圧力を減少するように構成している。
As a method for reducing the above-mentioned pressure, JP-A-1-1
There is one described in Publication No. 31836. According to this conventional example, for example, the evaporators for each of multiple floors, such as three floors each, and the liquid receiver connected to the condenser are connected through separate refrigerant liquid pipes, and the condenser and The system is connected to the evaporator via refrigerant vapor piping, and a valve is provided in each refrigerant liquid piping near the liquid receiver, and it is detected that a predetermined amount of refrigerant liquid has accumulated in each refrigerant liquid piping. A sensor is provided so that a predetermined amount of refrigerant liquid is always stored in each refrigerant liquid pipe to reduce the pressure applied to the condenser.

ところが、蒸発器どうしが冷媒蒸気配管によって互いに
連通接続されているために、冷媒の洩れを生した場合に
は大事故に波及する問題があり、また、センサとパルプ
による制御構成が必要で高価になる欠点があった。
However, since the evaporators are connected to each other by refrigerant vapor piping, there is a problem that if refrigerant leaks, it could lead to a major accident, and a control configuration using sensors and pulp is required, which is expensive. There was a drawback.

本発明は、このような事情に鑑みてなされたものであっ
て、凝縮器と蒸発器との配管接続作業を容易に行うこと
ができるようにして施工性を向上するとともに、冷媒の
洩れ発生に起因する大事故への波及を防止できるように
することを目的とする。
The present invention was made in view of the above circumstances, and it improves workability by making it easier to connect the condenser and evaporator, and also prevents refrigerant leakage. The purpose is to prevent the spread of such accidents into major accidents.

〈課題を解決するための手段〉 請求項第(1)項の発明に係る冷媒自然循環式空気調和
システムは、上述のような目的を達成するために、各階
それぞれに利用側となる蒸発器を設け、熱源側となる凝
縮器と前記蒸発器とを冷媒液配管および冷媒蒸気配管を
介して連通接続するとともに、前記凝縮器と前記蒸発器
と前記冷媒液配管および冷媒蒸気配管とにわたって密閉
状態で冷媒を循環流動するように構成し、かつ、前記冷
媒として、前記凝縮器および蒸発器それぞれでの熱交換
に伴って液体と蒸気とに相変化する冷媒を使用するとと
もに、前記凝縮器と前記蒸発器との間に、冷媒を自然循
環するに足るヘッド差を備えた空気調和システムにおい
て、凝縮器の近くに主液ヘッダーと主蒸気ヘッダーとを
設けるとともに、各階それぞれに、1発器に連通接続さ
れた端末側液ヘッダーと端末側薫気ヘッダーとを設け、
主液ヘッダーと端末側液ヘッダーそれぞれとを個別の冷
媒液配管を介して連通接続するとともに主蒸気ヘッダー
と端末側蒸気ヘッダーそれぞれとを個別の冷媒蒸気配管
を介して連通接続して構成する。
<Means for Solving the Problem> In order to achieve the above-mentioned object, the refrigerant natural circulation air conditioning system according to the invention of claim (1) has an evaporator that is used on each floor. A condenser serving as a heat source side and the evaporator are connected in communication via a refrigerant liquid pipe and a refrigerant vapor pipe, and the condenser, the evaporator, and the refrigerant liquid pipe and the refrigerant vapor pipe are sealed in a sealed state. The refrigerant is configured to circulate and flow, and the refrigerant is a refrigerant that changes phase into liquid and vapor as heat is exchanged in the condenser and the evaporator. In an air conditioning system that has a head difference sufficient to naturally circulate the refrigerant between the condenser and the condenser, a main liquid header and a main steam header are installed near the condenser, and each floor is connected to one generator. A terminal side liquid header and a terminal side fume header are provided,
The main liquid header and the terminal liquid header are connected to each other via separate refrigerant liquid pipes, and the main steam header and the terminal side vapor header are connected to each other via separate refrigerant vapor pipes.

また、請求項第(2)項の発明に係る冷媒自然循環式空
気調和システムは、上述のような目的を達成するために
、各階それぞれに利用側となる凝縮器を設け、熱源側と
なる蒸発器と前記凝縮器とを冷媒液配管および冷媒蒸気
配管を介して連通接続するとともに、前記蒸発器と前記
凝縮器と前記冷媒液配管および冷媒蒸気配管とにわたっ
て密閉状態で冷媒を循環流動するように構成し、かつ、
前記冷媒として、前記蒸発器および凝縮器それぞれでの
熱交換に伴って液体と蒸気とに相変化する冷媒を使用す
るとともに、前記凝縮器と前記蒸発器との間に、冷媒を
自然循環するに足るヘッド差を備えた空気調和システム
において、蒸発器の近くに主液ヘッダーと主蒸気ヘッダ
ーとを設けるとともに、各階それぞれに、凝縮器に連通
接続された端末側液ヘッダーと端末側蒸気ヘッダーとを
設け、主液ヘッダーと端末側液ヘツダーそれぞれとを個
別の冷媒液配管を介して連通接続するとともに主蒸気ヘ
ッダーと端末側蒸気ヘッダーそれぞれとを個別の冷媒蒸
気配管を介して連通接続して構成する。
In addition, in order to achieve the above-mentioned purpose, the refrigerant natural circulation air conditioning system according to the invention of claim (2) is provided with a condenser on the user side on each floor, and an evaporator on the heat source side. The evaporator and the condenser are connected in communication via a refrigerant liquid pipe and a refrigerant vapor pipe, and the refrigerant is circulated and flowed in a sealed state across the evaporator, the condenser, and the refrigerant liquid pipe and the refrigerant vapor pipe. constitute, and
As the refrigerant, a refrigerant whose phase changes into liquid and vapor is used as a result of heat exchange in the evaporator and condenser, and the refrigerant is naturally circulated between the condenser and the evaporator. In an air conditioning system equipped with a sufficient head difference, a main liquid header and a main steam header are installed near the evaporator, and a terminal side liquid header and a terminal side steam header are installed on each floor, which are connected in communication with the condenser. The main liquid header and the terminal side liquid header are connected through separate refrigerant liquid piping, and the main steam header and the terminal side steam header are connected through separate refrigerant vapor piping. .

〈作用〉 請求項第(1)項の発明に係る冷媒自然循環式空気調和
システムの構成によれば、各階ごとに設置される利用側
となる蒸発器に対し、個別の冷媒液配管によって熱源側
となる凝縮器から冷媒液を供給し、蒸発器からの冷媒蒸
気を個別の冷媒蒸気配管によって凝縮器に戻すことがで
きる。
<Operation> According to the configuration of the refrigerant natural circulation air conditioning system according to the invention of claim (1), the heat source side is connected to the user side evaporator installed on each floor by means of individual refrigerant liquid piping. The refrigerant liquid can be supplied from the condenser and the refrigerant vapor from the evaporator can be returned to the condenser by a separate refrigerant vapor piping.

請求項第0)項の発明に係る冷媒自然循環式空気調和シ
ステムの構成によれば、各階ごとに設置される利用側と
なる凝縮器に対し、個別の冷媒蒸気配管によって熱源側
となる蒸発器から冷媒蒸気を供給し、凝縮器からの冷媒
液を個別の冷媒液配管によって蒸発器に戻すことができ
る。
According to the configuration of the refrigerant natural circulation air conditioning system according to the invention of claim 0, the evaporator, which is the heat source side, is connected to the condenser, which is the user side, and is installed on each floor by separate refrigerant vapor piping. refrigerant vapor from the condenser and refrigerant liquid from the condenser can be returned to the evaporator by separate refrigerant liquid piping.

〈実施例〉 次に、本発明の実施例を図面に基づいて詳細に説明する
<Example> Next, an example of the present invention will be described in detail based on the drawings.

第1図は、冷媒自然?!環式空気調和システムの一例で
ある冷媒自然循環式冷房システムの実施例を示す全体シ
ステム構成図であり、1は、ビルの屋上などに設置され
る冷房用の熱源側となる凝縮器を示し、この凝縮器1に
氷蓄熱槽などの熱源からの冷水を供給するようになって
いる。
Figure 1 shows whether the refrigerant is natural? ! 1 is an overall system configuration diagram showing an example of a refrigerant natural circulation cooling system, which is an example of a ring air conditioning system; 1 indicates a condenser that is installed on the roof of a building and serves as a heat source for cooling; This condenser 1 is supplied with cold water from a heat source such as an ice heat storage tank.

ビルの各階の各部屋それぞれなどに、送風ファン2と冷
房用の利用側となる蒸発器3を備えた個別空気調和機4
が設けられている。
An individual air conditioner 4 equipped with a blower fan 2 and an evaporator 3 on the user side for cooling is installed in each room on each floor of the building.
is provided.

前記凝縮器1に受液器5が連通接続されるとともに、そ
の受液器5にアキュムレータ6が連通接続され、そのア
キュムレータ6に冷媒液配管7が連通接続されるととも
に、アキュムレータ6の直下において冷媒液配管7に主
液ヘッダー8が設けられている。
A liquid receiver 5 is connected in communication with the condenser 1, an accumulator 6 is connected in communication with the liquid receiver 5, a refrigerant liquid pipe 7 is connected in communication with the accumulator 6, and a refrigerant is connected directly below the accumulator 6. A main liquid header 8 is provided in the liquid pipe 7.

凝縮器1に冷媒蒸気配管9が連通接続されるとともに、
凝縮器】に近い同レベルの箇所において、冷媒蒸気配管
9に主蒸気ヘッダー10が設けられている。
A refrigerant vapor pipe 9 is connected to the condenser 1, and
A main steam header 10 is provided in the refrigerant steam pipe 9 at the same level near the condenser.

各階それぞれには、端末側液ヘツダー11と端末側蒸気
ヘッダー12とが設けられ、前記主液ヘッダー8と端末
側液ヘツダー11・・・それぞれとが、軟鋼管による個
別の冷媒液配管7aを介して連通接続され、前記主蒸気
へラダ−10と端末側蒸気ヘッダー12とが、軟鋼管に
よる個別の冷媒蒸気配管9aを介して連通接続されてい
る。
Each floor is provided with a terminal side liquid header 11 and a terminal side steam header 12, and the main liquid header 8 and the terminal side liquid header 11 are connected to each other through individual refrigerant liquid piping 7a made of mild steel pipes. The main steam ladder 10 and the terminal side steam header 12 are connected to each other via individual refrigerant steam piping 9a made of mild steel pipes.

端末側液ヘツダー11と蒸発器3.3とが冷媒液配管7
bを介して連通接続され、端末側蒸気ヘッダー12と蒸
発器3.3とが冷媒蒸気配管9bを介して連通接続され
ている。
The terminal side liquid header 11 and the evaporator 3.3 are connected to the refrigerant liquid pipe 7.
The terminal side steam header 12 and the evaporator 3.3 are connected through a refrigerant vapor pipe 9b.

凝縮器1、蒸発器3・・・、冷媒液配管7,7a・・・
7b・・・および冷媒蒸気配管9,9a・・・、9b・
・・にわたり、蒸発器3での熱交換に伴って液体から蒸
気に相変化するとともに、凝縮器1での凝縮により蒸気
から液体に相変化する冷媒が密閉状態で封入されている
Condenser 1, evaporator 3..., refrigerant liquid piping 7, 7a...
7b... and refrigerant vapor piping 9, 9a..., 9b...
..., a refrigerant whose phase changes from liquid to vapor due to heat exchange in the evaporator 3 and from vapor to liquid due to condensation in the condenser 1 is sealed in a sealed state.

受液器5は、蒸発器3・・・それぞれよりも高い位置に
設置され、凝縮器1での凝縮により蒸気から液体に相変
化された冷媒が蒸発器3に流下供給されるとともに、蒸
発器3での熱交換に伴って液体から1気に相変化された
冷媒が上昇して凝縮器1に戻されるに足るヘッド差が備
えられ、冷房運転に際して、蒸気と液体との相変化によ
り、冷媒が凝縮器lと蒸発器3との間で自然的に循環流
動するように構成されている。
The liquid receiver 5 is installed at a higher position than each of the evaporators 3, and the refrigerant whose phase has been changed from vapor to liquid by condensation in the condenser 1 is supplied to the evaporator 3, and The head difference is sufficient for the refrigerant whose phase has changed from liquid to gas due to the heat exchange in step 3 to rise and return to the condenser 1. is configured to naturally circulate and flow between the condenser 1 and the evaporator 3.

前記冷媒としてはフロンガスR−22が用いられる。こ
れは、水素、塩素を含んでいて対流圏で分解するために
、オゾン層を破壊する戊の無い利点を有している。
Freon gas R-22 is used as the refrigerant. This has the advantage of not destroying the ozone layer because it contains hydrogen and chlorine and decomposes in the troposphere.

冷媒液配管7b・・・それぞれの蒸発器3への入口箇所
には、冷媒液流入量を調節する流量tA節弁13と、冷
媒液流入を阻止する電磁開閉弁14とが設けられている
At the entrance to each of the refrigerant liquid pipes 7b . . . the evaporator 3, a flow rate tA regulating valve 13 for adjusting the amount of refrigerant liquid inflow and an electromagnetic on-off valve 14 for blocking the refrigerant liquid inflow are provided.

個別空気調和機4に対応する室内には、その室内の温度
を測定する室温センサ14aが設けられ、室温センサ1
4aに室温制御装置14bが接続されるとともに、室温
制御装置1[14bに電磁開閉弁14が接続され、室温
センサ14aによって測定される室内温度を設定範囲内
に維持するように電磁開閉弁14を開閉作動するように
構成されている。
A room corresponding to the individual air conditioner 4 is provided with a room temperature sensor 14a for measuring the temperature in the room.
A room temperature control device 14b is connected to the room temperature control device 1 [14b, and an electromagnetic on-off valve 14 is connected to the room temperature control device 1 [14b. It is configured to open and close.

冷媒蒸気配管9b・・・それぞれの蒸発器3からの出口
箇所に、冷媒蒸気の温度を感知する感温筒15が設けら
れ、その感温筒15での圧力差により機械的に作動し、
その圧力差が一定に維持されるように、流量調節弁13
の開度を自動的に調整できるように構成されている。こ
の流量wR節弁13は、冷凍装置に使用される自動膨張
弁と同様の構造のものであって、その均圧側は、内部均
圧式または外部均圧式のいずれであっても良い、また、
このような冷媒液の供給量を制御する構成としては、冷
媒の飽和相当温度を感知するサーミスタとその感知温度
に応じて開度を調整する電動操作型の流量!lit!?
j弁とによって行うものでも良い。
Refrigerant vapor piping 9b...A temperature sensing tube 15 for sensing the temperature of the refrigerant vapor is provided at the outlet point from each evaporator 3, and is mechanically activated by the pressure difference in the temperature sensing tube 15.
The flow rate control valve 13 is configured so that the pressure difference is maintained constant.
It is configured so that the opening degree can be adjusted automatically. This flow rate wR regulating valve 13 has a structure similar to an automatic expansion valve used in a refrigeration system, and its pressure equalization side may be either an internal pressure equalization type or an external pressure equalization type.
The configuration for controlling the supply amount of refrigerant liquid includes a thermistor that detects the saturation temperature of the refrigerant and an electrically operated flow rate that adjusts the degree of opening according to the sensed temperature. lit! ?
It is also possible to use a J valve.

図中16は、アキュムレータ6側から受液器5側に冷媒
液が逆流することを防止するチャツキ弁を示している。
In the figure, 16 indicates a check valve that prevents the refrigerant liquid from flowing back from the accumulator 6 side to the receiver 5 side.

アキエムレータ6の上部空間と凝縮器lとが第1の配管
17を介して連通接続され、夜間などの運転停止状態で
外気温度が高温の時に、アキュムレータ6、および、そ
れより下方の冷媒液配管7゜7a・・・中で冷媒液が蒸
発して冷媒蒸気が発生した場合に、その冷媒蒸気を凝縮
器1に戻すように構成されている。
The upper space of the accumulator 6 and the condenser 1 are connected via the first pipe 17, and when the outside air temperature is high in a stopped state such as at night, the accumulator 6 and the refrigerant liquid pipe 7 below it are connected to each other through the first pipe 17. 7a... When the refrigerant liquid evaporates and refrigerant vapor is generated, the refrigerant vapor is returned to the condenser 1.

また、受液器5の上部空間と凝縮器lとが第2の配管1
8を介して連通接続され、凝縮器1で凝縮液化した冷媒
液を受液器5に円滑に流下できるように構成されている
Further, the upper space of the liquid receiver 5 and the condenser l are connected to the second pipe 1.
The refrigerant liquid condensed and liquefied in the condenser 1 can smoothly flow down to the liquid receiver 5.

第2図は、冷媒自然循環式空気調和システムの一例であ
る冷媒自然循環式暖房システムの実施例を示す全体シス
テム構成図であり、21は、ビルの地下室などに設置さ
れる暖房用の熱源側となる蒸発器を示し、この蒸発器2
1に、冷房システムと併用した場合における冷凍システ
ムからの排熱利用によって得られる温水とか地域冷暖房
システムからの温水などを熱源として供給するようにな
っている。
FIG. 2 is an overall system configuration diagram showing an example of a refrigerant natural circulation type heating system, which is an example of a refrigerant natural circulation type air conditioning system, and 21 is a heating heat source side installed in a basement of a building or the like. This evaporator 2 is shown as
First, when used in conjunction with an air conditioning system, hot water obtained by utilizing exhaust heat from a refrigeration system or hot water from a district heating and cooling system is supplied as a heat source.

ビルの各階の各部屋それぞれなどに、送風ファン22と
暖房用の利用側となる凝縮器23を備えた個別空気調和
機24が設けられている。
Each room on each floor of a building is provided with an individual air conditioner 24 equipped with a blower fan 22 and a condenser 23 on the user side for heating.

前記蒸発器21に受液器25が連通接続されるとともに
、その受液器25にアキュムレータ26が連通接続され
、そのアキュムレータ26に冷媒蒸気配管27が連通接
続されるとともに、アキエムレータ26の直上方におい
て、冷媒薄気配管27に主1気へ7ダー28が設けられ
ている。
A liquid receiver 25 is connected to the evaporator 21, an accumulator 26 is connected to the liquid receiver 25, a refrigerant vapor pipe 27 is connected to the accumulator 26, and a liquid receiver 25 is connected to the liquid receiver 25. , a 7der 28 to the main 1 air is provided in the refrigerant thin air pipe 27.

蒸発器21に冷媒液配管29が連通接続されるとともに
、蒸発器21に近い箇所において、冷媒液配管29に主
液ヘッダー30が設けられている。
A refrigerant liquid pipe 29 is communicatively connected to the evaporator 21 , and a main liquid header 30 is provided on the refrigerant liquid pipe 29 at a location near the evaporator 21 .

各階それぞれには、端末側液ヘツダー31と端末側蒸気
ヘッダー32とが設けられ、前記主液ヘッダー30と端
末側液ヘツダー31・・・それぞれとが、軟鋼管による
個別の冷媒液配管29aを介して連通接続され、前記主
蒸気ヘッダー28と端末側蒸気ヘッダー32とが、軟鋼
管による個別の冷媒蒸気配管27aを介して連通接続さ
れている。
Each floor is provided with a terminal side liquid header 31 and a terminal side steam header 32, and the main liquid header 30 and the terminal side liquid header 31 are connected to each other through individual refrigerant liquid piping 29a made of mild steel pipes. The main steam header 28 and the terminal side steam header 32 are connected to each other via individual refrigerant steam piping 27a made of mild steel pipes.

端末側液ヘッダ−31と凝縮器23.23とが冷媒液配
管29bを介して連通接続され、端末側蒸気ヘッダー3
2と凝縮器23.23とが冷媒蒸気配管27bを介して
連通接続されている。
The terminal side liquid header 31 and the condenser 23.23 are connected to each other via the refrigerant liquid pipe 29b, and the terminal side liquid header 3
2 and the condenser 23.23 are connected to each other via a refrigerant vapor pipe 27b.

蒸発器21、凝縮器23・・・、冷媒液配管29゜29
a・・・、29b・・・および冷媒蒸気配管27.27
a・・・、27b・・・にわたり、蒸発器21での熱交
換に伴って液体から蒸気に相変化するとともに、凝縮器
23での凝縮により蒸気から液体に相変化する冷媒が密
閉状態で封入されている。
Evaporator 21, condenser 23..., refrigerant liquid piping 29°29
a..., 29b... and refrigerant vapor piping 27.27
a..., 27b..., a refrigerant whose phase changes from liquid to vapor due to heat exchange in the evaporator 21 and from vapor to liquid due to condensation in the condenser 23 is sealed in a sealed state. has been done.

蒸発器21は、凝縮器23・・・それぞれよりも低い位
置に設置され、凝縮器23・・・それぞれでの凝縮によ
り蒸気から液体に相変化された冷媒が蒸発器21に流下
して戻されるとともに、蒸発器21での熱交換に伴って
液体から蒸気に相変化された冷媒が上昇して凝縮器23
・・・それぞれに供給されるに足るヘッド差が備えられ
、暖房運転に際して、蒸気と液体との相変化により、冷
媒が蒸発器21と凝縮器23・・・との間で自然的に循
環流動するように構成されている。
The evaporator 21 is installed at a lower position than each of the condensers 23, and the refrigerant whose phase has been changed from vapor to liquid by condensation in each of the condensers 23 flows down and returns to the evaporator 21. At the same time, the refrigerant whose phase has changed from liquid to vapor due to heat exchange in the evaporator 21 rises and flows into the condenser 23.
... A head difference sufficient to supply each is provided, and during heating operation, the refrigerant is naturally circulated between the evaporator 21 and the condenser 23 due to the phase change between vapor and liquid. is configured to do so.

前記冷媒としてはフロンガスR−22が用いられる。こ
れは、水素、塩素を含んでいて対流圏で分解するために
、オゾン層を破壊する震の無い利点を有している。
Freon gas R-22 is used as the refrigerant. This has the advantage of not causing earthquakes that deplete the ozone layer because it contains hydrogen and chlorine and decomposes in the troposphere.

受液器25の下部とアキエムレータ26とが第1の配管
33を介して連通接続されるとともに、アキエムレータ
26の下部と冷媒液配管29の蒸発器21への冷媒液入
口側とが第2の配管34を介して連通接続され、外気温
度が低下して、夜間の運転停止時に冷媒蒸気配管27.
27a・・・が極度に冷却され、運転開始時に冷媒蒸気
配管27゜27a・・・内での凝縮液化による冷媒液発
注量が多くても、その冷媒液を受液器25からアキュム
レータ26に流し、アキュムレータ26内で冷媒液と冷
媒蒸気とを分離し、冷媒液が蒸発器21に流下すること
をより確実に回避し、外気温度が低い場合でも、冷媒蒸
気を円滑に凝縮器23・・・に供給し、個別空気調和機
24・・・による暖房の立ち上がりを早くして快適な暖
房を行うことができるように構成されている。
The lower part of the liquid receiver 25 and the Akie emulator 26 are connected via the first pipe 33, and the lower part of the Akie emulator 26 and the refrigerant liquid inlet side of the refrigerant liquid pipe 29 to the evaporator 21 are connected to the second pipe. The refrigerant vapor pipe 27. is connected in communication through the refrigerant vapor pipe 27.
27a... is extremely cooled, and even if a large amount of refrigerant liquid is ordered due to condensation and liquefaction in the refrigerant vapor piping 27 and 27a... at the start of operation, the refrigerant liquid will not flow from the liquid receiver 25 to the accumulator 26. , the refrigerant liquid and refrigerant vapor are separated in the accumulator 26 to more reliably prevent the refrigerant liquid from flowing down to the evaporator 21, and even when the outside air temperature is low, the refrigerant vapor is smoothly transferred to the condenser 23... It is configured so that the individual air conditioners 24... can quickly start up heating to provide comfortable heating.

冷媒液配管29bの凝縮器23・・・それぞれからの出
口箇所には、冷媒液の流出を停止する1を磁開閉弁35
が設けられている。
At the exit point from each of the condensers 23 of the refrigerant liquid piping 29b, a magnetic on-off valve 35 is installed to stop the outflow of the refrigerant liquid.
is provided.

個別空気調和機24に対応する室内には、その室内の温
度を測定する室温センサ35aが設けられ、室温センサ
35aに室温制御装置35bが接続されるとともに、室
温制御装置35bに電磁開閉弁35が接続され、室温セ
ンサ35aによって測定される室内温度を設定範囲内に
維持するように電磁開閉弁35を自動的に開閉作動する
ように構成されている。
A room corresponding to the individual air conditioner 24 is provided with a room temperature sensor 35a for measuring the temperature in the room, a room temperature control device 35b is connected to the room temperature sensor 35a, and an electromagnetic on-off valve 35 is connected to the room temperature control device 35b. The electromagnetic on-off valve 35 is connected to the room temperature sensor 35a and is configured to automatically open and close so as to maintain the indoor temperature measured by the room temperature sensor 35a within a set range.

〈発明の効果〉 請求項第(1)項の発明に係る冷媒自然循環式空気調和
システムによれば、個別の冷媒液配管および冷媒蒸気配
管それぞれ内を流れる冷媒の量が少なく、また、冷媒の
洩れを発生したとしても、洩れを発生した個別の冷媒液
配管および冷媒蒸気配管それぞれ内の冷媒は即座に洩れ
出すが、他の系統からの冷媒が回り込もうとしても主液
ヘッダーや主蒸気ヘッダーで気化することになり、その
全体としての洩れ量が少なくなって酸素欠乏といった大
事故に波及することを確実に回避できる。
<Effects of the Invention> According to the refrigerant natural circulation air conditioning system according to the invention of claim (1), the amount of refrigerant flowing in each of the individual refrigerant liquid pipes and refrigerant vapor pipes is small, and the amount of refrigerant is small. Even if a leak occurs, the refrigerant in the individual leaked refrigerant liquid piping and refrigerant vapor piping will immediately leak out, but even if refrigerant from other systems tries to bypass the main liquid header or main steam header. As a result, the overall amount of leakage is reduced, making it possible to reliably avoid major accidents such as oxygen deficiency.

そのうえ、配管内を流れる冷媒の量が少なくて済むとと
もに蒸発器にかかる圧力を減少できるから、個別の冷媒
液配管および冷媒蒸気配管それぞれとして、一般になま
し鋼管と称される軟鋼管を使用できるようになり、20
mにも及んで継手が不用になり、継手部のシール構成の
耐圧強度が低くて済むとともに、継手の数が少なくて継
手箇所がらの洩れが発生しにくくなって安全性をより一
層向上できるとともに配管の接続作業を安価にがっ容易
に行うことができて施工性を向上できるようになった。
Furthermore, since the amount of refrigerant flowing through the pipes is small and the pressure applied to the evaporator can be reduced, mild steel pipes, commonly called tempered steel pipes, can be used for the individual refrigerant liquid pipes and refrigerant vapor pipes. becomes 20
The joints are no longer required, and the pressure resistance of the seal structure of the joints is low, and the number of joints is small, making it difficult for leaks to occur at the joints, further improving safety. Piping connection work can now be done easily and inexpensively, improving workability.

また、請求項第(2)項に発明に係る冷媒自然循環式空
気調和システムによれば、前述請求項(+)項の発明に
係る冷媒自然循環式空気調和システムの場合と同様に、
個別の冷媒液配管および冷媒蒸気配管それぞれ内を流れ
る冷媒の量が少なく、また、冷媒の洩れを発生したとし
ても、全体としての洩れ量が少なくなって酸素欠乏とい
った大事故に波及することを確実に回避できる。
Further, according to the refrigerant natural circulation air conditioning system according to the invention in claim (2), as in the case of the refrigerant natural circulation air conditioning system according to the invention in claim (+),
The amount of refrigerant flowing through each individual refrigerant liquid piping and refrigerant vapor piping is small, and even if a refrigerant leak occurs, the overall leakage amount will be small, ensuring that it will not lead to major accidents such as oxygen deficiency. can be avoided.

そのうえ、個別の冷媒液配管および冷媒蒸気配管それぞ
れとして、一般になまし銅管と称される軟鋼管を使用で
きるようになり、継手の数が少なくて継手箇所からの洩
れが発生しに(くなって安全性をより一層向上できると
ともに配管の接続作業を安価にかつ容易に行うことがで
きて施工性を向上できるようになった。
In addition, it has become possible to use mild steel pipes, generally known as annealed copper pipes, for individual refrigerant liquid piping and refrigerant vapor piping, which reduces the number of joints and reduces leakage from joints. This not only makes it possible to further improve safety, but also makes it possible to connect piping at low cost and easily, improving workability.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明に係る冷媒自然循環式空気調和システム
の実施例を示し、第1図は、冷媒自然循環式冷房システ
ムの実施例を示す全体システム構成図、第2図は、冷媒
自然循環式暖房システムの実施例を示す全体システム構
成図である。 1・・・熱源側となる凝縮器 3・・・利用側となる1発器 7・・・冷媒液配管 7a・・・個別の冷媒液配管 8・・・主液ヘッダー 9・・・冷媒蒸気配管 9a・・・個別の冷媒蒸気配管 10・・・主蒸気ヘッダー 11・・・端末側液ヘッダー 12・・・端末側蒸気ヘッダー 21・・・熱源側となる蒸発器 23・・・利用側となる凝縮器 27・・・冷媒蒸気配管 27a・・・個別の冷媒蒸気配管 2日・・・主蒸気ヘッダー 29・・・冷媒液配管 29a・・・個別の冷媒液配管 30・・・主液ヘンダー 31・・・端末側液ヘツダー 32・・・端末側蒸気ヘンダー
The drawings show an embodiment of a refrigerant natural circulation type air conditioning system according to the present invention, FIG. 1 is an overall system configuration diagram showing an embodiment of a refrigerant natural circulation type cooling system, and FIG. 2 shows a refrigerant natural circulation type air conditioning system. FIG. 1 is an overall system configuration diagram showing an example of a heating system. 1...Condenser 3 serving as the heat source side...1 generator 7 serving as the user side...Refrigerant liquid piping 7a...Individual refrigerant liquid piping 8...Main liquid header 9...Refrigerant vapor Piping 9a...Individual refrigerant vapor piping 10...Main steam header 11...Terminal side liquid header 12...Terminal side steam header 21...Evaporator 23 serving as the heat source side...Using side Condenser 27...Refrigerant vapor piping 27a...Individual refrigerant vapor piping 2 days...Main steam header 29...Refrigerant liquid piping 29a...Individual refrigerant liquid piping 30...Main liquid hender 31...Terminal side liquid header 32...Terminal side steam header

Claims (2)

【特許請求の範囲】[Claims] (1)各階それぞれに利用側となる蒸発器を設け、熱源
側となる凝縮器と前記蒸発器とを冷媒液配管および冷媒
蒸気配管を介して連通接続するとともに、前記凝縮器と
前記蒸発器と前記冷媒液配管および冷媒蒸気配管とにわ
たって密閉状態で冷媒を循環流動するように構成し、か
つ、前記冷媒として、前記凝縮器および蒸発器それぞれ
での熱交換に伴って液体と蒸気とに相変化する冷媒を使
用するとともに、前記凝縮器と前記蒸発器との間に、冷
媒を自然循環するに足るヘッド差を備えた空気調和シス
テムにおいて、 前記凝縮器の近くに主液ヘッダーと主蒸気ヘッダーとを
設けるとともに、各階それぞれに、蒸発器に連通接続さ
れた端末側液ヘッダーと端末側蒸気ヘッダーとを設け、
前記主液ヘッダーと端末側液ヘッダーそれぞれとを個別
の冷媒液配管を介して連通接続するとともに前記主蒸気
ヘッダーと端末側蒸気ヘッダーそれぞれとを個別の冷媒
蒸気配管を介して連通接続したことを特徴とする冷媒自
然循環式空気調和システム。
(1) Each floor is provided with an evaporator that serves as the user side, and the condenser that serves as the heat source and the evaporator are connected in communication via refrigerant liquid piping and refrigerant vapor piping, and the condenser and evaporator are connected to each other via refrigerant liquid piping and refrigerant vapor piping. The refrigerant is configured to circulate and flow in a sealed state across the refrigerant liquid piping and the refrigerant vapor piping, and the refrigerant changes phase into liquid and vapor as heat is exchanged in the condenser and evaporator, respectively. In an air conditioning system that uses a refrigerant and has a head difference sufficient to naturally circulate the refrigerant between the condenser and the evaporator, a main liquid header and a main steam header are installed near the condenser. At the same time, each floor is equipped with a terminal side liquid header and a terminal side steam header that are connected to the evaporator.
The main liquid header and the terminal-side liquid header are each connected to each other via separate refrigerant liquid piping, and the main steam header and each of the terminal-side steam header are connected to each other through separate refrigerant vapor piping. A refrigerant natural circulation air conditioning system.
(2)各階それぞれに利用側となる凝縮器を設け、熱源
側となる蒸発器と前記凝縮器とを冷媒液配管および冷媒
蒸気配管を介して連通接続するとともに、前記蒸発器と
前記凝縮器と前記冷媒液配管および冷媒蒸気配管とにわ
たって密閉状態で冷媒を循環流動するように構成し、か
つ、前記冷媒として、前記蒸発器および凝縮器それぞれ
での熱交換に伴って液体と蒸気とに相変化する冷媒を使
用するとともに、前記凝縮器と前記蒸発器との間に、冷
媒を自然循環するに足るヘッド差を備えた空気調和シス
テムにおいて、 前記蒸発器の近くに主液ヘッダーと主蒸気ヘッダーとを
設けるとともに、各階それぞれに、凝縮器に連通接続さ
れた端末側液ヘッダーと端末側蒸気ヘッダーとを設け、
前記主液ヘッダーと端末側液ヘッダーそれぞれとを個別
の冷媒液配管を介して連通接続するとともに前記主蒸気
ヘッダーと端末側蒸気ヘッダーそれぞれとを個別の冷媒
蒸気配管を介して連通接続したことを特徴とする冷媒自
然循環式空気調和システム。
(2) Each floor is provided with a condenser that serves as the user side, and the evaporator that serves as the heat source and the condenser are connected in communication via refrigerant liquid piping and refrigerant vapor piping, and the evaporator and condenser are The refrigerant is configured to circulate and flow in a sealed state across the refrigerant liquid piping and the refrigerant vapor piping, and the refrigerant changes phase into liquid and vapor as heat is exchanged in the evaporator and condenser, respectively. In an air conditioning system that uses a refrigerant and has a head difference sufficient to naturally circulate the refrigerant between the condenser and the evaporator, a main liquid header and a main steam header are installed near the evaporator. In addition, each floor is equipped with a terminal side liquid header and a terminal side steam header that are connected to the condenser.
The main liquid header and the terminal-side liquid header are each connected to each other via separate refrigerant liquid piping, and the main steam header and each of the terminal-side steam header are connected to each other through separate refrigerant vapor piping. A refrigerant natural circulation air conditioning system.
JP2043763A 1990-02-23 1990-02-23 Refrigerant natural circulation air conditioning system Expired - Lifetime JP2834517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2043763A JP2834517B2 (en) 1990-02-23 1990-02-23 Refrigerant natural circulation air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2043763A JP2834517B2 (en) 1990-02-23 1990-02-23 Refrigerant natural circulation air conditioning system

Publications (2)

Publication Number Publication Date
JPH03247933A true JPH03247933A (en) 1991-11-06
JP2834517B2 JP2834517B2 (en) 1998-12-09

Family

ID=12672798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2043763A Expired - Lifetime JP2834517B2 (en) 1990-02-23 1990-02-23 Refrigerant natural circulation air conditioning system

Country Status (1)

Country Link
JP (1) JP2834517B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6796374B2 (en) 2002-04-10 2004-09-28 Dana Canada Corporation Heat exchanger inlet tube with flow distributing turbulizer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846027U (en) * 1981-09-22 1983-03-28 株式会社竹中工務店 air conditioner
JPH01256741A (en) * 1988-04-06 1989-10-13 Takenaka Komuten Co Ltd Air conditioning system for building

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846027U (en) * 1981-09-22 1983-03-28 株式会社竹中工務店 air conditioner
JPH01256741A (en) * 1988-04-06 1989-10-13 Takenaka Komuten Co Ltd Air conditioning system for building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6796374B2 (en) 2002-04-10 2004-09-28 Dana Canada Corporation Heat exchanger inlet tube with flow distributing turbulizer

Also Published As

Publication number Publication date
JP2834517B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
US4843832A (en) Air conditioning system for buildings
US4441901A (en) Heat pump type airconditioner
US20080197206A1 (en) Refrigerant System With Water Heating
CA1145576A (en) Refrigerant condensing system
KR100502283B1 (en) Air conditioning system
US6122923A (en) Charge control for a fresh air refrigeration system
JPH03247933A (en) Air-conditioner system of refrigerant automatic circulation type
JP2524817B2 (en) Air conditioning system
JP2801711B2 (en) Refrigerant natural circulation cooling system
JP2761062B2 (en) Refrigerant natural circulation air conditioning system
JP2744497B2 (en) Refrigerant natural circulation air conditioning system
JP2530487B2 (en) Refrigerant natural circulation type cooling system
JP2875310B2 (en) Refrigerant natural circulation heating system
JP3594426B2 (en) Air conditioner
JPH081373Y2 (en) Refrigerant natural circulation heating system
JPH0117007Y2 (en)
JP3142897B2 (en) Cooling and heating system with heat storage function
JPH029342Y2 (en)
JPH0733059Y2 (en) Refrigerant natural circulation type cooling system
JP2861554B2 (en) Heat transfer device
JPH081372Y2 (en) Refrigerant natural circulation heating system
JPH10170027A (en) Air conditioner
JP2530490B2 (en) Air conditioning system
JPH01256741A (en) Air conditioning system for building
JP3663028B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12