JPH03247805A - Construction method of diagonal hollow floor slab bridge - Google Patents

Construction method of diagonal hollow floor slab bridge

Info

Publication number
JPH03247805A
JPH03247805A JP4290690A JP4290690A JPH03247805A JP H03247805 A JPH03247805 A JP H03247805A JP 4290690 A JP4290690 A JP 4290690A JP 4290690 A JP4290690 A JP 4290690A JP H03247805 A JPH03247805 A JP H03247805A
Authority
JP
Japan
Prior art keywords
concrete
bridge
diagonal
bearing
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4290690A
Other languages
Japanese (ja)
Inventor
Masakatsu Sato
政勝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4290690A priority Critical patent/JPH03247805A/en
Publication of JPH03247805A publication Critical patent/JPH03247805A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make unnecessary a rigid connection method of bearings by arranging a specific number of T-shape steels on the bottom steel plate of a composite floor slab bridge, and placing concrete between the upper part of the T-shape steels and web element to form a hollow section between the bottom steel plate and concrete. CONSTITUTION:Four T-shape steels 2 are arranged on the bottom steel plate 1 of a composite floor slab bridge, an upper distribution bar 3 is placed to a position slightly higher than an upper flange 2a of each of the T-shape steels 2, and a lower distribution bar 4 is placed to the approximate 1/2 element of the height of a web. Concrete 5 is placed between the upper distribution bar 3 and lower distribution bar 4, and a hollow section 6 is formed between the bottom steel plate 1 and concrete 5, or the hollow section 6 is filled with foamable resin plate 7. According to the constitution, uplifts generated in acute angle sections of the floor slab bridge can be eliminated by substituting the concrete 5 for concrete having weight heavier than that commensurate with the uplifts generated in bearings in the acute angle sections thereof.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、斜め中空床版橋の構築方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of constructing a diagonal hollow deck bridge.

「従来の技術」 近年、道路線形を優先した橋梁が計画されることが多い
ため、直橋に比較して、第1図に示す如く、河川の幅方
向に対し斜めに架設した橋梁(斜橋)が多い。
``Conventional technology'' In recent years, bridges are often planned that give priority to road alignment. Therefore, compared to straight bridges, bridges constructed diagonally to the width of the river (slanted bridges), as shown in Fig. ) are common.

一般に、斜橋では、車輌重量等の載積荷重により、橋梁
部材に発生する応力が複雑となる。
Generally, in a slanted bridge, stress generated in bridge members becomes complex due to live loads such as the weight of vehicles.

特に、合成桁では、主桁端部付近の床版が破損し易かっ
たり、鋭角部(第111JのA点とD点)の支承に負の
反力(アップリフト)が生じ易い等の理由から、第1図
における斜角θは60’よりも小さくならないことが望
ましいとされている(昭和54年2月(昭和55年8月
改訂)社団法人日本道路協会 鋼道路橋設針便覧)。
In particular, with composite girders, the deck slab near the end of the main girder is likely to be damaged, and negative reaction force (uplift) is likely to occur in the support at the acute angle part (points A and D of No. 111J). It is said that it is desirable that the oblique angle θ in FIG. 1 is not smaller than 60' (Japan Road Association Steel Road Bridge Construction Guidelines Handbook, February 1973 (revised August 1980)).

またブレテンシ5ン方式pc@純中空床版橋の建設省制
定土木構造物標準設計率19・20巻の手引き(昭和5
4年度改訂版)では、斜角は60゛以上に限定されてい
る。
In addition, the Ministry of Construction's standard design rate for civil engineering structures, volumes 19 and 20, for Bretency 5-inch PC @ pure hollow deck bridges (1930)
In the 4th year revised edition), the bevel angle is limited to 60° or more.

さらに、鉄筋コンクリート床版橋は、その自重が大きく
、通用できる斜め支間長(第1図のLs)は15m程度
に限定されている。
Furthermore, reinforced concrete slab bridges have a large self-weight, and the usable diagonal span length (Ls in Figure 1) is limited to about 15 m.

またさらに、鋼床版は、その自重が軽すぎ、斜橋の鋭角
部(第1図のA点とD点)に大きなアップリフトが生し
るため、道路面が隆起しないよう、支承を橋台に剛結す
る工法を必要とし、従って多大な費用および施工期間が
かかる。
Furthermore, steel deck slabs are too light in their own weight and cause a large uplift at the acute angles of the slanted bridge (points A and D in Figure 1). This requires a rigid construction method, which requires a large amount of cost and construction time.

以上述べたこれら従来の橋梁に比較して、本発明者が先
きに堤案じた合成床版f1(特開昭60−195205
号公報参照)、すなわち、床版部に中空部を有する合成
床版橋あるいは前記中空部に比重の軽い材料(発泡樹脂
板)を充填した合成床版橋が、斜橋に最も良好に適合す
ることが種々研究の結果判明した。
Compared to these conventional bridges mentioned above, the composite deck slab f1 (Japanese Patent Application Laid-open No. 60-195205
In other words, synthetic deck bridges that have a hollow section in the deck section or synthetic deck bridges that have the hollow section filled with a material with a light specific gravity (foamed resin board) are most suitable for diagonal bridges. This has been revealed as a result of various studies.

「発明が解決しようとする課題」 しかしながら、前記公開特許公報に記載されている合成
床版橋にあっても、斜角θが60゛よりも小さい場合や
、斜め支間長Lsに対する幅員Wの比が大きい場合には
、鋭角部A点、D点に生じるアップリフトを防止するこ
とは困難であり、前記鋼床版と同様に、支承を橋台に剛
結させる工法を必要とする問題がある。
"Problem to be Solved by the Invention" However, even in the synthetic deck bridge described in the above-mentioned published patent publication, there are cases where the oblique angle θ is smaller than 60 degrees, and the ratio of the width W to the diagonal span length Ls. If the angle is large, it is difficult to prevent uplift occurring at the acute angle points A and D, and as with the steel deck slab, there is a problem that requires a method of rigidly connecting the bearing to the abutment.

「課題を解決するための手段」 本発明は、前記の如き問題を解決すべく開発したもので
あって、その第1の要旨とするところは、床版部に中空
部を有する斜め床版橋あるいは前記中空部に比重の軽い
材料が充填されている斜め床版橋において、その鋭角部
の支承に生しるアップリフトに見合う重量以上のコンク
リートを、当該支承上周辺に位置する前記中空部に充填
するか、あるいは当該支承上周辺に位置する前記比重の
軽い材料を、前記コンクリートにて置き換えることにあ
る。
"Means for Solving the Problems" The present invention has been developed to solve the above-mentioned problems, and its first gist is to provide a diagonal slab bridge having a hollow part in the slab part. Alternatively, in a diagonal deck bridge in which the hollow part is filled with a material with a light specific gravity, concrete with a weight equal to or more than the uplift that occurs on the bearing at the acute angle part is poured into the hollow part located around the bearing. The purpose is to fill the concrete or replace the material with a light specific gravity located around the support with the concrete.

また本発明の第2の要旨とするところは、床版部に中空
部を有する斜め床版橋あるいは前記中空部に比重の軽い
材料が充填されている斜め床版橋において、その鋭角部
の支承に生じるアップリフトに見合う重量以上のコンク
リートを、当該支承上周辺に位置する前記中空部に充填
するか、あるいは当該支承上周辺に位置する前記比重の
軽い材料を、前記コンクリートにて置き換え、かつ鈍角
部の支承反力に対応すべく、直橋よりも厚さを2倍程度
にしたゴム支承を用いることにある。
A second aspect of the present invention is that in a diagonal deck bridge having a hollow portion in the deck portion or a diagonal deck bridge in which the hollow portion is filled with a material with a light specific gravity, the support of the acute angle portion is provided. Either fill the hollow space located around the bearing with concrete of a weight equal to or more than the uplift that occurs, or replace the light material located around the bearing with the concrete, and form an obtuse angle. In order to cope with the bearing reaction force of the bridge, a rubber bearing that is approximately twice as thick as a straight bridge is used.

「作用」 前記第1の要旨の如く、床版部に中空部を存する斜め床
版橋あるいは前記中空部に比重の軽い材料が充填されて
いる斜め床版橋において、その鋭角部の支承に生しるア
ップリフトに見合う重量以上のコンクリートを、当該支
承上周辺に位1する前記中空部に充填するか、あるいは
当該支承上周辺に位置する前記比重の軽い材料を、前記
コンクリートにて置き換えることにより、鋭角部に生じ
るアップリフトを消去することができ、従って当該支承
の橋台への剛結工法を不用にすることができる。
"Function" As mentioned in the first gist, in a diagonal deck bridge where the deck section has a hollow section or where the hollow section is filled with a material with a light specific gravity, there is a problem in the support of the acute corner. By filling the hollow part located around the bearing with concrete of a weight equal to or more than the weight required for the uplift, or by replacing the material with a lighter specific gravity located around the bearing with the concrete. , it is possible to eliminate the uplift that occurs at the acute angle portion, and therefore it is possible to eliminate the need for a method of rigidly connecting the bearing to the abutment.

また前記第2の要旨の如く、床版部に中空部を有する斜
め床版橋あるいは前記中空部に比重の軽い材料が充填さ
れている斜め床版橋において、その鋭角部の支承に生じ
るアップリフトに見合う重量以上のコンクリートを、当
該支承上周辺に位置する前記中空部に充填するか、ある
いは当該支承上周辺に位1する前記比重の軽い材料を、
前記コンクリートにて置き換え、かつ鈍角部の支承反力
に対応すべく、l1LJ!よりも工さを2倍程度にした
ゴム支承を用いることにより、鋭角部に生じるアップリ
フトを消去することができ、従って当該支承の橋台への
剛結工法を不用にすることができ、かつゴム支承の弾性
変形によって、支承線上の反力分布の変動幅を小さくす
ることができる。
Also, as mentioned in the second gist, in a diagonal deck bridge that has a hollow part in the deck section or a diagonal deck bridge in which the hollow part is filled with a material with a light specific gravity, uplift occurs in the support of the acute angle part. Filling the hollow space located around the bearing with concrete of a weight equal to or more than the weight of concrete, or filling the hollow part located around the bearing with a material having a lighter specific gravity,
In order to replace it with the concrete mentioned above and to cope with the bearing reaction force of the obtuse angle part, l1LJ! By using a rubber bearing that is approximately twice as hard as the rubber bearing, it is possible to eliminate the uplift that occurs at acute angles, and therefore it is possible to eliminate the need for the rigid connection method of the bearing to the abutment. The elastic deformation of the bearing can reduce the fluctuation range of the reaction force distribution on the bearing line.

「実施例」 次に本発明に係る斜め中空床版橋の構築方法の実施例を
第2図乃至第6図に基づき以下に説明する。
"Example" Next, an example of the method for constructing a diagonal hollow deck bridge according to the present invention will be described below with reference to FIGS. 2 to 6.

先ず第2図に示すものは、耘4橋に最も良好に適合する
合成床版橋の基本形であって、例えば板厚6鶴、橋軸長
さ5200 vs、斜め支間長4800m5、支承幅3
200 fi、幅員1600龍、斜角30’の底網板1
上の横軸方向に沿い、上部フランジ2aの上面に突起2
bを有するT形IN 2  (100ws X 100
 w x5.5 wm×8鶴)を400 n間隔で4本
並列配置すると共に、各突起付きT形鋼2のウェブ下端
を底網板1上に溶接し、各突起付きT形鋼2の上部フラ
ンジ2aよりも若干上部位置に、各突起付きT形鋼2と
直交して直径13WMの上配力鉄筋3を所要間隔(20
0fi)で配設し、かつ各突起付きT形1lI2のウェ
ブ部の高さのほぼ各部位に直交貫通して直径13目の下
配力鉄筋4を所要間隔(200fi)で配設し、下配力
鉄筋4の若干下方位置から前記上配力鉄筋3の若干上方
位置までコンクリート5を打設して、底網F1)の上面
とコンクリート5の下面との間に中空部6を有する斜め
合成床版橋を構築する。
First of all, what is shown in Fig. 2 is the basic form of a synthetic deck bridge that is most suitable for Yo4 Bridge, for example, plate thickness 6 Tsuru, bridge axis length 5200 vs. diagonal span length 4800 m5, and bearing width 3.
200 fi, width 1600 long, bevel 30' bottom net board 1
A protrusion 2 is formed on the upper surface of the upper flange 2a along the upper horizontal axis direction.
T type IN 2 (100ws x 100
4 w Slightly above the flange 2a, an upper force distribution reinforcing bar 3 with a diameter of 13WM is installed at a required interval (20
0fi), and lower force distribution reinforcing bars 4 with a diameter of 13 are placed at required intervals (200fi), penetrating orthogonally to almost each part of the height of the web portion of each T-shaped 1lI2 with protrusions, and Concrete 5 is cast from a position slightly below the reinforcing bars 4 to a position slightly above the upper distribution reinforcing bars 3 to create a diagonal composite floor slab having a hollow portion 6 between the top surface of the bottom mesh F1) and the bottom surface of the concrete 5. Build a bridge.

また第3図に示すものは、斜橋に最も良好に適合する合
成床版橋の変形例であって、前記中空部6内に、比重が
0.06以下の非常に軽い発泡樹脂板7を充填して、斜
め合成床版橋を構築する。
The one shown in FIG. 3 is a modified example of a synthetic deck bridge that is most suitable for diagonal bridges, in which a very light foamed resin board 7 with a specific gravity of 0.06 or less is installed in the hollow part 6. Fill it and construct a diagonal composite deck bridge.

しかして、上記斜め合成床版橋の鋭角部の支承に生じる
アップリフトに見合う重量以上のコンクリート8を、当
該支承上周辺に位置する前記中空部6内に、第4図ある
いは第5図もしくは第6図に示す如く充填するか、ある
いは当該支承上周辺に位置する前記発泡樹脂板7を、コ
ンクリート8にて置き換え、さらに、第4図、第5図、
第6図に示す如く、上記斜め合成床版橋の鈍角部の支承
反力に対応すべく、1橋よりも厚さを2倍程度にしたゴ
ム支承9 (厚さ23鶴)を支承線上に介装する。
Therefore, concrete 8 of a weight greater than that corresponding to the uplift occurring in the bearings of the acute angle portions of the diagonal composite deck bridge is poured into the hollow portions 6 located around the bearings as shown in Fig. 4 or 5 or 5. 6, or replace the foamed resin plate 7 located around the support with concrete 8, and then fill it as shown in FIGS. 4, 5,
As shown in Fig. 6, in order to cope with the bearing reaction force at the obtuse angle part of the diagonal composite deck bridge, a rubber bearing 9 (thickness 23 mm), which is approximately twice as thick as that of the first bridge, is installed on the bearing line. intervene.

「発明の効果」 以上述べた本発明の第1の要旨の如(、床版部に中空部
を有する斜め床版橋あるいは前記中空部に比重の軽い材
料が充填されている斜め床版橋において、その鋭角部の
支承に生じるアップリフトに見合う重量以上のコンクリ
ートを、当該支承上周辺に位置する前記中空部に充填す
るか、あるいは当該支承上周辺に位置する前記比重の軽
い材料を、前記コンクリートにて置き換えることにより
、鋭角部に生じるアンプリフトを消去することができ、
従って当該支承の橋台への剛結工法を不用にすることが
できるので、工費および工期を著しく低減することがで
きる。
"Effects of the Invention" As described above, the first gist of the present invention (in a diagonal deck bridge having a hollow section in the deck section or a diagonal deck bridge in which the hollow section is filled with a material with a light specific gravity) , Fill the hollow part located around the bearing with a concrete weight equal to or more than the uplift that occurs in the bearing at the acute corner, or fill the hollow part located around the bearing with a material with a light specific gravity located around the bearing, or fill the concrete By replacing it with
Therefore, the method of rigidly connecting the bearing to the bridge abutment can be made unnecessary, and the construction cost and construction period can be significantly reduced.

また本発明の第2の要旨の如く、床版部に中空部を有す
る斜め床版橋あるいは前記中空部に比重の軽い材料が充
填されている斜め床版橋において、その鋭角部の支承に
生じるアンプリフトに見合う重量以上のコンクリートを
、当該支承上周辺に位置する前記中空部に充填するか、
あるいは当該支承上周辺に位置する前記比重の軽い材料
を、前記コンクリートにて置き換え、かつ鈍角部の支承
反力に対応すべく、1橋よりも厚さを2倍程度にしたゴ
ム支承を用いることにより、第1の要旨の効果の外に、
ゴム支承の弾性変形によって、支承線上の反力分布の変
動幅を小さくする効果を有する。
In addition, as in the second aspect of the present invention, in a diagonal deck bridge having a hollow portion in the deck portion or in which the hollow portion is filled with a material with a light specific gravity, problems occur in the support of the acute angle portion. Either filling the hollow part located around the support with concrete with a weight equal to or more than the weight of the amplifier lift, or
Alternatively, the light material located around the bearing may be replaced with the concrete, and a rubber bearing approximately twice as thick as that of the first bridge may be used in order to cope with the bearing reaction force at the obtuse angle part. Therefore, in addition to the effect of the first gist,
The elastic deformation of the rubber bearing has the effect of reducing the fluctuation width of the reaction force distribution on the bearing line.

かくの如きことから、実際に、橋長30m、幅員10m
の斜橋(斜角40°)の構築が可能となる。
As a result, the bridge is actually 30m long and 10m wide.
It becomes possible to construct a diagonal bridge (40° diagonal angle).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は斜橋の概念図、第2図は斜橋に最も良好に適合
する合成床版橋の基本形を示す説明図、第3図は同上の
変形例を示す説明図、第4図乃至第6図は本発明方法の
各実施例を示す概略平面図である。 l・・・底網板      2・・・突起付きT形鋼2
a・・・上部フランジ  2b・・・突起3・・・上配
力鉄筋    4・・・下配力鉄筋5・・・コンクリー
ト   6・・・中空部7・・・発泡樹脂板    8
・・・コンクリート9・・・ゴム支承
Fig. 1 is a conceptual diagram of a diagonal bridge, Fig. 2 is an explanatory diagram showing the basic form of a synthetic deck bridge that is most suitable for a diagonal bridge, Fig. 3 is an explanatory diagram showing a modification of the same, and Figs. FIG. 6 is a schematic plan view showing each embodiment of the method of the present invention. l...Bottom mesh plate 2...T-shaped steel with protrusion 2
a... Upper flange 2b... Protrusion 3... Upper load reinforcing bar 4... Lower load reinforcing bar 5... Concrete 6... Hollow part 7... Foamed resin board 8
...Concrete 9...Rubber bearing

Claims (2)

【特許請求の範囲】[Claims] (1)床版部に中空部を有する斜め床版橋あるいは前記
中空部に比重の軽い材料が充填されている斜め床版橋に
おいて、その鋭角部の支承に生じるアップリフトに見合
う重量以上のコンクリートを、当該支承上周辺に位置す
る前記中空部に充填するか、あるいは当該支承上周辺に
位置する前記比重の軽い材料を、前記コンクリートにて
置き換えることを特徴とする斜め中空床版橋の構築方法
(1) In a diagonal slab bridge that has a hollow section in the deck section or a diagonal slab bridge in which the hollow section is filled with a material with a light specific gravity, the weight of concrete is greater than the weight that corresponds to the uplift that occurs in the support of the acute corner section. A method for constructing a diagonal hollow deck bridge, characterized by filling the hollow portion located around the bearing, or replacing the material with a light specific gravity located around the bearing with the concrete. .
(2)床版部に中空部を有する斜め床版橋あるいは前記
中空部に比重の軽い材料が充填されている斜め床版橋に
おいて、その鋭角部の支承に生じるアップリフトに見合
う重量以上のコンクリートを、当該支承上周辺に位置す
る前記中空部に充填するか、あるいは当該支承上周辺に
位置する前記比重の軽い材料を、前記コンクリートにて
置き換え、かつ鈍角部の支承反力に対応すべく、直橋よ
りも厚さを2倍程度にしたゴム支承を用いることを特徴
とする斜め中空床版橋の構築方法。
(2) In a diagonal slab bridge that has a hollow section in the deck section or a diagonal slab bridge in which the hollow section is filled with a material with a light specific gravity, the weight of concrete is greater than the weight that corresponds to the uplift that occurs in the support of the acute corner section. In order to fill the hollow part located around the bearing, or replace the material with a light specific gravity located around the bearing with the concrete, and to cope with the bearing reaction force of the obtuse angle part, A method for constructing a diagonal hollow deck bridge characterized by using rubber bearings that are approximately twice as thick as a straight bridge.
JP4290690A 1990-02-23 1990-02-23 Construction method of diagonal hollow floor slab bridge Pending JPH03247805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290690A JPH03247805A (en) 1990-02-23 1990-02-23 Construction method of diagonal hollow floor slab bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290690A JPH03247805A (en) 1990-02-23 1990-02-23 Construction method of diagonal hollow floor slab bridge

Publications (1)

Publication Number Publication Date
JPH03247805A true JPH03247805A (en) 1991-11-06

Family

ID=12649076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290690A Pending JPH03247805A (en) 1990-02-23 1990-02-23 Construction method of diagonal hollow floor slab bridge

Country Status (1)

Country Link
JP (1) JPH03247805A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792638B2 (en) * 2002-03-26 2004-09-21 Asahi Engineering Co., Ltd. Structure of floor slab bridge
KR100590441B1 (en) * 2003-11-07 2006-06-19 한국건설기술연구원 Structure for Connecting between Composite Deck having Frame and Concrete

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792638B2 (en) * 2002-03-26 2004-09-21 Asahi Engineering Co., Ltd. Structure of floor slab bridge
USRE40064E1 (en) 2002-03-26 2008-02-19 Asahi Engineering Co., Ltd. Structure of floor slab bridge
KR100590441B1 (en) * 2003-11-07 2006-06-19 한국건설기술연구원 Structure for Connecting between Composite Deck having Frame and Concrete

Similar Documents

Publication Publication Date Title
US5339475A (en) Load supporting structure
JPH03247805A (en) Construction method of diagonal hollow floor slab bridge
CN2185289Y (en) Tenon-shaped double rib slab of prefabricated concrete
JPH04228710A (en) Road slab for bridge
JP2963879B2 (en) Bridge girder
KR102132338B1 (en) Steel Composite PSC Girder Including Arched Reinforcement
JPS6282147A (en) Novel prestressed synthetic beam and its construction
JPS6361443B2 (en)
JP4437064B2 (en) Construction method and formwork structure of concrete floor slab for composite floor slab bridge
JP3788310B2 (en) Composite main tower and its construction method
JP2836441B2 (en) Flat slab construction without shoring
JP2771317B2 (en) Post tension concrete foundation plate
JPH10131119A (en) Reinforcing structure of bridge
JPH04368528A (en) Frame construction using void beam
JP2001172916A (en) Corrugated synthetic floor slab
JP2674470B2 (en) Floor frame structure by combining precast members
KR200294560Y1 (en) Framed Precast Concrete Bridge without Slab Placed in-situ
JPH11222817A (en) Continuous composite bridge
KR100946277B1 (en) A arch bridge and method for constructing it
CN201343810Y (en) Reinforced concrete hollow beam slab with staggered truss
JP2005097856A (en) Double-deck bridge using double large-eccentricity exterior cable
JPS63134731A (en) Building having pillar moving on flat slab
KR100197760B1 (en) A conjunctive construction part for joining a concrete column and iron beam of a building
JP3031991U (en) 2 main girder steel deck slab underpass for railing combined use
JP2853528B2 (en) Construction method of composite floorboard