JPH03247763A - Formation of film - Google Patents

Formation of film

Info

Publication number
JPH03247763A
JPH03247763A JP4626690A JP4626690A JPH03247763A JP H03247763 A JPH03247763 A JP H03247763A JP 4626690 A JP4626690 A JP 4626690A JP 4626690 A JP4626690 A JP 4626690A JP H03247763 A JPH03247763 A JP H03247763A
Authority
JP
Japan
Prior art keywords
film
substrate
annealing
forming
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4626690A
Other languages
Japanese (ja)
Inventor
Yoichi Hashimoto
陽一 橋本
Noritaka Maeyama
前山 能孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4626690A priority Critical patent/JPH03247763A/en
Publication of JPH03247763A publication Critical patent/JPH03247763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To stably form a film having desired properties at high yield, at the time of depositing a material on a substrate and forming a film, by supplying power to a film while the current and voltage properties of the film are monitored, generating heat by the electric resistance and executing annealing. CONSTITUTION:A vacuum tank 1 is exhausted into a prescribed degree of the vacuum, and an electrical conducting vapor-depositing material 3 (such as W) in a crucible 2 is heated by a heating source and is vacuum-evaporated. Next, when a shutter is opened, evaporated material atoms 20 reach a substrate 5 via the opening of a mask 8 to form a film 4 patterned into a desired shape. At this time, when the material atoms 20 gradually deposit on the substrate 5 and an electrode 6 embedded in the substrate 5 into a film thickness sufficient for forming an electric circuit, a power source 7 for power supply also provided with a monitoring capacity is operated to supply power while its current and voltage properties are monitored to generate heat on the patterned film, by which annealing is executed. In this way, film forming and annealing are simultaneously executed in a single vacuum tank 1, so that the film 4 having desired properties can stably be obtd. at high yield.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は膜形成方法、特に高温で使用される薄膜ヒー
タ等の高温動作デバイスの膜形成方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a film forming method, particularly to a film forming method for high temperature operating devices such as thin film heaters used at high temperatures.

[従来の技術] 第3図は、例えば金属表面技術第30巻5号(1979
年発刊)に示された一般的な真空蒸着装置の構成図で、
従来このような装置を用いて成膜を行っていた。図にお
いて、(1)は真空槽、(2)はるつぼ、(3)は蒸着
材料、(4)は膜、(5)は基板、(9)はシャッター
 (10)は膜厚計、(11)は基板加熱用ヒータであ
る。
[Prior art] Fig. 3 shows, for example, Metal Surface Technology Vol. 30, No. 5 (1979).
This is a configuration diagram of a general vacuum evaporation equipment shown in
Conventionally, film formation has been performed using such an apparatus. In the figure, (1) is a vacuum chamber, (2) is a crucible, (3) is a deposition material, (4) is a film, (5) is a substrate, (9) is a shutter, (10) is a film thickness meter, (11) is a ) is a heater for heating the substrate.

この装置を用いて膜形成するには、まず真空槽(1)内
を1O−6Torr程度に排気し、るつぼ(2)ニ入れ
た蒸着材料(3)を加熱し、蒸発させて基板(5)上に
堆積させて膜(4)を形成する。この際、基板(5)付
近に置かれた膜厚計(10)によって膜厚をモニタする
。また、実際の成膜にあたっては、シャッタ(9)を開
閉することは言うまでもない。なお、この発明に係わる
薄膜ヒータ等の高温動作デバイスのように膜を高温状態
で使用する場合には、基板加熱ヒータ(11)により基
板(5)を100〜500℃に加熱して成膜することが
多い。
To form a film using this device, first, the inside of the vacuum chamber (1) is evacuated to about 10-6 Torr, and the vapor deposition material (3) placed in the crucible (2) is heated and evaporated to form a substrate (5). A film (4) is formed by depositing on top. At this time, the film thickness is monitored by a film thickness meter (10) placed near the substrate (5). Furthermore, it goes without saying that the shutter (9) is opened and closed during actual film formation. In addition, when the film is used in a high temperature state as in a high temperature operating device such as a thin film heater according to the present invention, the film is formed by heating the substrate (5) to 100 to 500° C. with the substrate heater (11). There are many things.

この明細書においては薄膜ヒータを形成する場合を例に
説明する。
In this specification, the case of forming a thin film heater will be explained as an example.

第4図は従来の薄膜ヒータの製作工程を示す工程図であ
る。上述のように成膜しくA)、成膜されたものをバタ
ーニングにより所望のヒータ形状とする(B)。この後
アニールによって膜質を安定させる(C)。例えばW膜
の場合電気抵抗率は、成膜直後ではおおよそ20μΩc
m程度の高い値となるが、1000℃程度でアニールす
ることによりバルク値に近い数μΩcmにまで調質する
ことができる。安定したヒータ特性を得るためとこはア
ニールが極めて重要な工程となる。最後に適当な配線を
施して薄膜ヒータが完成する(D)。
FIG. 4 is a process diagram showing the manufacturing process of a conventional thin film heater. The film is formed as described above (A), and the formed film is patterned into a desired heater shape (B). After that, the film quality is stabilized by annealing (C). For example, in the case of a W film, the electrical resistivity is approximately 20 μΩc immediately after film formation.
Although the value is as high as about m, it can be refined to several μΩcm, which is close to the bulk value, by annealing at about 1000°C. Annealing is an extremely important process in order to obtain stable heater characteristics. Finally, appropriate wiring is applied to complete the thin film heater (D).

[発明が解決しようとする課題] しかしながら、上述したような従来の膜形成方法では、
最終目的である膜の特性(この薄膜ヒータでは膜の電気
抵抗)が成膜後のアニール工程により大きく左右されて
しまう。即ち、アニール温度と保持時間が変動した場合
、膜の電気抵抗にバラツキを生ずることになる。また、
薄膜であるが故に、膜厚とバターニング時の寸法のバラ
ツキのため、パターン化された膜の全体の体積がかなり
大きく変動する。この結果、たとえアニール条件の精度
を厳しくして、膜の抵抗率のバラツキを小さくしても、
 (抵抗率)×(パターン化された膜の全長)÷(パタ
ーン化された膜の断面積)で定められるヒータとしての
1・−タルの抵抗値がばらつき、結局ヒータの特性にバ
ラツキを生しるという問題点がある。そして、これらの
ヒータ特性は、アセンブリか終了して通電・発熱テスト
をして初めて明らかとなるもので、成膜、バターニング
、アニールといった工程にフィードバックをかけること
ができず、歩留まりが極めて悪い状況にあった。
[Problems to be solved by the invention] However, in the conventional film forming method as described above,
The final objective of the film properties (the electrical resistance of the film in this thin film heater) is greatly influenced by the annealing process after film formation. That is, if the annealing temperature and holding time vary, the electrical resistance of the film will vary. Also,
Because it is a thin film, the overall volume of the patterned film varies considerably due to variations in film thickness and dimensions during patterning. As a result, even if the annealing conditions are made more precise and the variation in film resistivity is reduced,
The resistance value of 1-tal as a heater, which is determined by (resistivity) × (total length of patterned film) ÷ (cross-sectional area of patterned film), varies, resulting in variations in the characteristics of the heater. There is a problem that These heater characteristics are only revealed after the assembly is completed and a power supply/heat generation test is performed, making it impossible to provide feedback to processes such as film formation, buttering, and annealing, resulting in extremely poor yields. It was there.

この発明は上記のような問題点を解消するためになされ
たもので、膜特性改善のアニールを要する薄膜を安定し
た特性で歩留まりよく形成することを目的とする。
The present invention has been made to solve the above-mentioned problems, and its object is to form a thin film with stable characteristics and high yield, which requires annealing to improve the film characteristics.

[課題を解決するための手段] この発明の膜形成方法は、導電性蒸着材料を蒸発堆積さ
せて成膜し、上記膜にその特性を改善するアニールを施
し膜を形成する方法において、上記基板に上記材料を堆
積させ成膜するとともに、上記成膜中または成膜後の膜
の電流・電圧特性をモニタしながら上記膜に通電し、そ
の電気抵抗により発熱させアニールを施すようにしたも
のである。
[Means for Solving the Problems] A film forming method of the present invention is a method of forming a film by evaporating and depositing a conductive vapor deposition material, and forming a film by subjecting the film to annealing to improve its properties. The above material is deposited to form a film, and the film is energized while monitoring the current/voltage characteristics of the film during or after the film formation, and heat is generated by the electrical resistance to perform annealing. be.

[作用] この発明の膜形成方法においては、アニール中に膜の電
流・電圧特性をモニタすることにより、例えは膜の電気
特性(抵抗値、発熱特性)、ざらに膜厚を知ることがで
き、所望の特性の膜を安定して歩留まりよく得ることが
できる。
[Function] In the film forming method of the present invention, by monitoring the current/voltage characteristics of the film during annealing, it is possible to know, for example, the electrical properties (resistance value, heat generation properties) and rough film thickness of the film. , it is possible to stably obtain a film with desired characteristics at a high yield.

[実施例] 以下、この発明の一実施例の膜形成方法を薄膜ヒータの
W膜形成を例にとって説明する。第1図はこの発明の一
実施例の膜形成方法の原理を示す説明図である。図にお
いて、(1)は真空槽、(2)はるつぼ、(3)は導電
性蒸着材料で、この場合W、(4)はバタン化されたW
膜、(5)は絶縁性基板、(6)は電極、(7)はモニ
タ機能をも備えた通電用電源、(8)はバタン化のため
のマスク、(9)はシャッタである。
[Example] Hereinafter, a film forming method according to an example of the present invention will be described by taking the formation of a W film of a thin film heater as an example. FIG. 1 is an explanatory diagram showing the principle of a film forming method according to an embodiment of the present invention. In the figure, (1) is a vacuum chamber, (2) a crucible, (3) is a conductive vapor deposition material, in this case W, and (4) is a battened W.
(5) is an insulating substrate, (6) is an electrode, (7) is a power source for energization that also has a monitoring function, (8) is a mask for batting, and (9) is a shutter.

基本的な成膜の工程は従来法と同様である。即ち、真空
槽(1)を 10−”Torr程度まで排気した後、る
つぼ(2)ζこ入れた蒸着材料であるW(3)を電子ビ
ーム(図示せず)等の適当な加熱源で真空蒸着が可能な
温度(Wの場合約400℃で、この時蒸気圧はおおよそ
l Torr程度となる)にまで昇温する。
The basic film formation process is the same as the conventional method. That is, after the vacuum chamber (1) is evacuated to about 10-'' Torr, the vapor deposition material W (3) placed in the crucible (2) is evacuated using an appropriate heating source such as an electron beam (not shown). The temperature is raised to a temperature at which vapor deposition is possible (approximately 400° C. in the case of W, at which time the vapor pressure is approximately 1 Torr).

シャッタ(9)を開けることにより蒸発したW原子がマ
スク(8)の開口部を通して基板(4)に到達し、所望
の形状にバタン化されたW膜が成膜される。
By opening the shutter (9), the evaporated W atoms reach the substrate (4) through the opening of the mask (8), forming a W film shaped into a desired shape.

第2図はこの一実施例に係わるW膜成膜の様子を模式的
に示した説明図で、この発明の要件を示すものである。
FIG. 2 is an explanatory diagram schematically showing the state of W film formation according to this embodiment, and shows the requirements of the present invention.

飛来したW原子(20)は基板(5)及び基板(5)に
埋め込まれた電極(6)上に堆積してゆく。成膜の極初
期には膜厚が薄く、膜自身の抵抗が大きく、また電極と
の電気的な接続も十分てないことにより、実用的な電気
回路とはなり得ないが、実際に例えは薄膜ヒータしての
使用が考えられるμmオーダの膜厚となると電気回路と
して十分機能するようになる。(一般に100Å以下で
は蒸着膜は島状構造をとり、電気抵抗も極めて高いが1
000人以北の膜厚では電気伝導体となることが知られ
ている。)電気回路を形成するに十分な膜厚となった時
点て、モニタ機能をも備えた通電用電源(7)を動作さ
せ電流を流す。バタン化されたW膜(4)の部分は回路
を構成する他の部分に比べると十分抵抗が大きく発熱す
る。例えは、バタン幅2007Jm、膜厚3μm、総延
長6mmのW膜をサファイア基板上に形成した場合、印
加電圧15Vて約1000℃に発熱する。アニールによ
りWの電気抵抗は前述の如く20μΩcm→数μΩcm
にまで調質することが可能である。この際、電流・電圧
をモニタすることてオームの法則により膜の抵抗値が得
られるので、目標とする値に正確に、しかも原理的には
歩留まり 100%で調質することが可能となる。
The flying W atoms (20) are deposited on the substrate (5) and the electrode (6) embedded in the substrate (5). At the very early stage of film formation, the film is thin, its own resistance is high, and the electrical connection with the electrode is insufficient, so it cannot be used as a practical electrical circuit. When the film thickness reaches the μm order, which makes it possible to use it as a thin film heater, it functions sufficiently as an electric circuit. (Generally, below 100 Å, the deposited film takes on an island-like structure and the electrical resistance is extremely high.
It is known that the film becomes an electrical conductor at a film thickness of 0.000 μm or more. ) When the film thickness is sufficient to form an electric circuit, the current supply power source (7), which also has a monitoring function, is activated to flow current. The battened W film (4) has a sufficiently large resistance and generates heat compared to other parts of the circuit. For example, when a W film with a batten width of 2007 Jm, a film thickness of 3 μm, and a total length of 6 mm is formed on a sapphire substrate, heat is generated to about 1000° C. with an applied voltage of 15 V. As mentioned above, the electrical resistance of W changes from 20μΩcm to several μΩcm due to annealing.
It is possible to refine the material up to. At this time, since the resistance value of the film can be obtained by monitoring the current and voltage according to Ohm's law, it is possible to refine the film accurately to the target value and, in principle, with a yield of 100%.

また、従来、アニールを成膜工程後に実施していたが、
この実施例では逆バタンのマスクを通して形成される蒸
着膜自体の抵抗を利用して成膜中にアニールしており、
成膜とアニールを一つの真空槽で同時に行うことができ
る。
Additionally, in the past, annealing was performed after the film formation process, but
In this example, annealing is performed during film formation using the resistance of the deposited film itself, which is formed through a reverse-bump mask.
Film formation and annealing can be performed simultaneously in one vacuum chamber.

なお、上記実施例では、電極(6)上に新たに配線を行
う例を示したが、電極と配線を一体とじても上記実施例
と同様の効果を奏する。
In addition, in the above embodiment, an example was shown in which a new wiring is provided on the electrode (6), but even if the electrode and the wiring are integrated, the same effect as in the above embodiment can be obtained.

また、この発明の2次的な効果として、膜の抵抗値から
逆算して膜厚を見積ることも可能である。
Further, as a secondary effect of the present invention, it is also possible to estimate the film thickness by back calculating from the resistance value of the film.

さらに、この発明に係わる導電性蒸着材料として上記実
施例ではWについて示したが、Ta、Re等の高融点金
属、またはTiC,TiN等の導電性セラミックスが用
いられ、上記実施例と同様の効果を奏する。
Furthermore, although W is shown in the above embodiment as a conductive vapor deposition material according to the present invention, high melting point metals such as Ta and Re, or conductive ceramics such as TiC and TiN can be used, and the same effects as in the above embodiments can be obtained. play.

また、基板材料としては5i02、A9203等の絶縁
性のセラミックスが用いられる。
Insulating ceramics such as 5i02 and A9203 are used as the substrate material.

[発明の効果コ 以上のように、この発明によれは、導電性蒸着材料を蒸
発堆積させて成膜し、上記膜にその特性を改善するアニ
ールを施し膜を形成する方法において、基板に上記材料
を堆積させ成膜するとともに、上記成膜中または成膜後
の膜の電流・電圧特性をモニタしながら上記膜に通電し
、その電気抵抗により発熱させアニールを施すようにし
たので、膜の電気特性(抵抗値、発熱特性)、ざらに膜
厚を制御することができ、所望の特性の膜を安定して歩
留まりよく得ることができる。
[Effects of the Invention] As described above, the present invention provides a method for forming a film by evaporating and depositing a conductive vapor deposition material, and then annealing the film to improve its characteristics. At the same time as depositing the material and forming the film, the current and voltage characteristics of the film are monitored during and after the film formation, and the film is energized to generate heat due to its electrical resistance and annealed. Electrical properties (resistance value, heat generation properties) and film thickness can be roughly controlled, and a film with desired properties can be stably obtained at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の膜形成方法の原理を示す
説明図、第2図は同、成膜の様子を模式的に示す説明図
、第3図は一般的な真空蒸着装置の構成図、第4図は従
来の膜形成方法を示す工程図である。 図において、(3)は導電性蒸着材料、(4)は膜、(
5)は絶縁性基板、(6)は電極、(7)はモニタ機能
をも備えた通電用電源である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is an explanatory diagram showing the principle of a film forming method according to an embodiment of the present invention, FIG. 2 is an explanatory diagram schematically showing the state of film formation, and FIG. The configuration diagram and FIG. 4 are process diagrams showing a conventional film forming method. In the figure, (3) is a conductive vapor deposition material, (4) is a film, (
5) is an insulating substrate, (6) is an electrode, and (7) is an energizing power source that also has a monitoring function. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 真空雰囲気中で導電性蒸着材料を蒸発させ、絶縁性基板
上に上記材料を堆積させて成膜し、上記膜にその特性を
改善するアニールを施し膜を形成する方法において、上
記基板に上記材料を堆積させ成膜するとともに、上記成
膜中または成膜後の膜の電流・電圧特性をモニタしなが
ら上記膜に通電し、その電気抵抗により発熱させアニー
ルを施すようにしたことを特徴とする膜形成方法。
A method in which a conductive vapor deposition material is evaporated in a vacuum atmosphere, the material is deposited on an insulating substrate to form a film, and the film is annealed to improve its characteristics to form a film. is deposited to form a film, and current is applied to the film while monitoring the current/voltage characteristics of the film during or after the film formation, and heat is generated by the electrical resistance to perform annealing. Film formation method.
JP4626690A 1990-02-26 1990-02-26 Formation of film Pending JPH03247763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4626690A JPH03247763A (en) 1990-02-26 1990-02-26 Formation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4626690A JPH03247763A (en) 1990-02-26 1990-02-26 Formation of film

Publications (1)

Publication Number Publication Date
JPH03247763A true JPH03247763A (en) 1991-11-05

Family

ID=12742416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4626690A Pending JPH03247763A (en) 1990-02-26 1990-02-26 Formation of film

Country Status (1)

Country Link
JP (1) JPH03247763A (en)

Similar Documents

Publication Publication Date Title
US2724663A (en) Plural metal vapor coating
JP2000282219A (en) Method for reproducing mask for organic film vacuum deposition and device therefor
US3058842A (en) Evaporation method
US3401055A (en) Vapor depositing solder
JPH03148131A (en) Semiconductor element and its manufacture
JPH0610118A (en) Vapor deposition method and evaporation device
JPH03247763A (en) Formation of film
JP2007224390A (en) Apparatus for producing thin film of vanadium dioxide, method for producing thin film of vanadium dioxide, method for manufacturing switching element, and switching element
US4214018A (en) Method for making adherent pinhole free aluminum films on pyroelectric and/or piezoelectric substrates
JPH04219301A (en) Production of oxide superconductor thin film
JPH03101033A (en) Manufacture of thin film
US3382100A (en) Rhenium thin film resistors
JPH029450B2 (en)
JP3162423B2 (en) Vacuum thin film deposition equipment
JPS6476736A (en) Manufacture of semiconductor device
JP3079765B2 (en) Materials for electrical contacts
JPS6210298B2 (en)
JPH026052A (en) Electric heating member
US20050129848A1 (en) Patterned deposition source unit and method of depositing thin film using the same
JPH0241165Y2 (en)
JPS58121A (en) Manufacture of semiconductor device
JPS6026293B2 (en) Method for forming aluminum alloy thin film on semiconductor substrate
JPS63307271A (en) Sputtering device
JPH0598429A (en) Method for manufacturing transparent electrically conductive film and apparatus for manufacturing transparent electrically conductive film
JPS6016087B2 (en) Manufacturing method of particulate resistive film element