JPH03247503A - Production of sulfuric acid - Google Patents

Production of sulfuric acid

Info

Publication number
JPH03247503A
JPH03247503A JP4444490A JP4444490A JPH03247503A JP H03247503 A JPH03247503 A JP H03247503A JP 4444490 A JP4444490 A JP 4444490A JP 4444490 A JP4444490 A JP 4444490A JP H03247503 A JPH03247503 A JP H03247503A
Authority
JP
Japan
Prior art keywords
catalyst
sulfuric acid
converter
gas
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4444490A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujita
浩 藤田
Kozo Iida
耕三 飯田
Naohiko Ugawa
直彦 鵜川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4444490A priority Critical patent/JPH03247503A/en
Publication of JPH03247503A publication Critical patent/JPH03247503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To reduce an air pressure drop and to prevent the damage to catalyst in the catalytic production of sulfuric acid by using a converter in which a granular or annular catalyst is arranged in the preceding stage and a grid- shaped or honeycomb parallel gas flow-type catalyst in the succeeding stage. CONSTITUTION:A granular or annular catalyst is packed on the preceding tray of a converter 1 to form a catalyst bed (a). A grid-shaped or honeycomb parallel gas flow-type catalyst is packed on the succeeding trays to form catalyst beds (b), (c) and (d). The raw gas contg. SO2 and O2 is refined, then introduced into the converter 1 from a line 2 and passed successively through the beds (a), (b), (c) and (d) to convert So2 to SO3, and the SO3 is absorbed in aq. sulfuric acid to produce sulfuric acid. Since the dust in the raw gas is collected by the bed (a), the inflow of dust to the beds (b), (c) and (d) is reduced, hence the gas passage hole is not clogged, and the product sulfuric acid is not deteriorated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は硫酸を製造する方法の改良に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in the method for producing sulfuric acid.

〔従来の技術〕[Conventional technology]

従来の硫酸製造法は、二酸化硫黄(以下SO2と略す)
と酸素(以下0□と略す)を含有する高温ガスより廃熱
ボイラーで熱回収をする熱回収工程と、ダスト及び砒素
、水銀等の不純物を除去するガス精製工程と、バナジウ
ム系触媒を多段に充填した転化器でSO□を二酸化硫黄
(以下S03と略す)に酸化する転化工程と、SO8を
硫酸水溶液に吸収して製品硫酸を製造する吸収工程から
構成されている。SO□を含有するガス源としては銅、
亜鉛、鉛、ニッケル等の各種精錬ガスあるいは純硫黄を
硫黄燃焼炉で燃焼させて得られる燃焼ガスが使用される
。前者にはガス中にシリカ、アルミニウム、鉄等の酸化
物やナトリウム、マグネシウム、カルシウム等の硫酸塩
を主体とするダストが含まれているため、サイクロン、
電気集塵器、スクラバー等からなるガス精製工程でこれ
らが除去される。またガス中には砒素等の酸化工程の触
媒毒となる成分も含まれる場合があり、これらも精製工
程でとり除かれる。しかしながら精製工程での除去効率
は100%ではないた約後段の転化器には相当量のダス
トが同伴される。一方、純硫黄を燃焼する場合には、通
常ガス中のダスト含有量が少ないためガス精製工程は設
置されない。しかし純硫黄燃焼の場合でも原料硫黄中に
僅かながら存在する灰分よりダストが発生しやはり後段
の転化器に同伴される。
The conventional sulfuric acid production method uses sulfur dioxide (hereinafter abbreviated as SO2).
A heat recovery process in which heat is recovered from high-temperature gas containing oxygen and oxygen (abbreviated as 0□ below) using a waste heat boiler, a gas purification process in which dust and impurities such as arsenic and mercury are removed, and a vanadium-based catalyst is used in multiple stages. It consists of a conversion step in which SO□ is oxidized to sulfur dioxide (hereinafter abbreviated as S03) in a packed converter, and an absorption step in which SO8 is absorbed into an aqueous sulfuric acid solution to produce product sulfuric acid. As a gas source containing SO□, copper,
Various refined gases such as zinc, lead, and nickel, or combustion gas obtained by burning pure sulfur in a sulfur combustion furnace are used. The former gas contains dust mainly composed of oxides of silica, aluminum, iron, etc., and sulfates of sodium, magnesium, calcium, etc., so cyclones,
These are removed in a gas purification process that includes electrostatic precipitators, scrubbers, etc. The gas may also contain components such as arsenic that poison the catalyst in the oxidation process, and these are also removed in the purification process. However, the removal efficiency in the purification process is not 100%, and a considerable amount of dust is entrained in the converter at the later stage. On the other hand, when pure sulfur is burned, a gas purification process is not required because the dust content in the gas is usually small. However, even in the case of pure sulfur combustion, dust is generated from the small amount of ash present in the raw sulfur and is entrained in the subsequent converter.

転化器には初期には粒状触媒が充填されていたが、最近
はリング状あるいは花弁状の触媒が主として充填される
。触媒形状は触媒層の初期圧損を低減するとともに、前
述のとおり、原料ガス中に同伴されるダストによる閉塞
を防止するために各種のものが探索されてきた。
Initially, converters were filled with granular catalysts, but recently they are mainly filled with ring-shaped or petal-shaped catalysts. Various catalyst shapes have been explored in order to reduce the initial pressure drop in the catalyst layer and, as mentioned above, to prevent clogging due to dust entrained in the raw material gas.

触媒層は3〜5層の複層よりなり、前段の触媒層出口よ
り反応後のガスが一旦転化器外に抜き出され、熱交換器
により温度調整後、再び後段の触媒層人口に戻される。
The catalyst bed is made up of 3 to 5 layers, and the gas after the reaction is extracted from the converter through the outlet of the catalyst bed in the first stage, and after temperature adjustment by a heat exchanger, it is returned to the catalyst bed in the second stage. .

これはS03生成時の発熱によるガス温度の過度の上昇
を避けて高い転化率を得るための方策である。また転化
器の中間で反応ガス中の803を吸収塔で除去し再度ガ
スを転化器にもどす二段接触(ダブルコンタクト)法が
主流となっており、これも高転化率を得るだめの工夫の
一つである。
This is a measure to avoid an excessive rise in gas temperature due to heat generation during S03 generation and to obtain a high conversion rate. In addition, the mainstream method is the double contact method, in which 803 in the reaction gas is removed by an absorption tower in the middle of the converter, and the gas is returned to the converter again. There is one.

最後に、硫酸製造のための803の吸収工程では高温の
反応ガスを硫酸水溶液と接触させて所定濃度の製品硫酸
が得られる。
Finally, in the absorption step 803 for producing sulfuric acid, the hot reaction gas is brought into contact with an aqueous sulfuric acid solution to obtain product sulfuric acid of a predetermined concentration.

〔発明が解決しようとする課題〕 前述したとおり、転化器には原料ガスに同伴された相当
量のダストが入る。このダストは大部分が触媒層に付着
するため、運転時間の経過と共に通気圧損が上昇してし
まう。そのため通気圧損に見合ったブロワ−の設置を余
儀なくされ、ブロワ−の運転動力費用もかさむのが欠点
であった。通気圧損が大幅に上昇すると定格ガス流量で
の操業が困難となるので従来は定期的に転化器より触媒
を抜きだし、ふるい分けによるダストの分離除去を行な
う必要があり、そのためダスト除去作業中は運転を停止
するため稼働率の低下を招く欠点があった。そこで触媒
の形状を粒状よりリング状あるいは花弁状に変更する等
触媒層での初期通気圧損を低減すると共にダストによる
閉塞を防止して経時的通気圧損の上昇速度を下げるため
の試みが従来より種々なされ、ある程度改善はされてき
たが根本的な解決にはいたらず、前述の欠点が以前とし
て残っているのが現状である。
[Problems to be Solved by the Invention] As described above, a considerable amount of dust entrained in the raw material gas enters the converter. Since most of this dust adheres to the catalyst layer, the ventilation pressure loss increases with the passage of operating time. Therefore, it is necessary to install a blower corresponding to the ventilation pressure loss, and the disadvantage is that the operating power cost of the blower increases. If the ventilation pressure drop increases significantly, it becomes difficult to operate at the rated gas flow rate, so conventionally it was necessary to periodically extract the catalyst from the converter and separate and remove the dust by sieving. This had the disadvantage of reducing operating rates due to the suspension of operations. Therefore, various attempts have been made to reduce the initial ventilation pressure loss in the catalyst layer, such as changing the shape of the catalyst from granular to ring-shaped or petal-shaped, as well as to prevent clogging by dust and reduce the rate of increase in ventilation pressure loss over time. Although improvements have been made to some extent, no fundamental solution has been reached, and the current situation is that the above-mentioned drawbacks remain.

〔課題を解決するための手段〕[Means to solve the problem]

上記技術水準に鑑み、本発明者らは従来法のような不具
合のない硫酸の製造方法について鋭意検討を重ね、この
結果、先に通気圧損の低い格子状又はハニカム状構造を
有するガス平行流型触媒の製造方法ならびにこの触媒を
用いた硫酸の製造装置及び方法についての提案をした。
In view of the above-mentioned state of the art, the present inventors have made extensive studies on a method for producing sulfuric acid that does not have the problems of conventional methods, and as a result, we have developed a method for producing sulfuric acid using a gas parallel flow type that has a lattice-like or honeycomb-like structure with low ventilation pressure loss. We proposed a method for producing a catalyst, as well as an apparatus and method for producing sulfuric acid using this catalyst.

(特願昭62−028951.特願昭63−07821
2、特願昭63−08415.特願昭63−28254
9) 本発明は既に提案を更に発展させ、格子状又はハニカム
状構造を有するガス平行流型触媒の機能をより安定化す
るため、この触媒の前段に触媒作用を示す従来のベレッ
ト状又はリング状触媒を充填した転化器を使用するもの
である。
(Patent application 1986-028951.Patent application 1983-07821
2. Patent application No. 63-08415. Patent application 1986-28254
9) The present invention has further developed the previous proposal, and in order to further stabilize the function of a gas parallel flow type catalyst having a lattice-like or honeycomb-like structure, a conventional pellet-like or ring-like structure having a catalytic effect is added to the front stage of this catalyst. It uses a converter filled with catalyst.

即ち、本発明は接触式硫酸製造法において、粒状又はリ
ング状触媒を前段に配置し、その触媒の後段に、格子状
又はハニカム状の構造を有するガス平行流型触媒を単層
又は複層充填した転化器を使用することを特徴とする硫
酸製造方法である。
That is, in the catalytic sulfuric acid production method, the present invention disposes a granular or ring-shaped catalyst in the first stage, and a single-layer or multi-layer packing of a gas parallel flow type catalyst having a lattice-like or honeycomb-like structure in the rear stage of the catalyst. This is a method for producing sulfuric acid, which is characterized by using a converter.

〔作用〕[Effect]

本発明では転化器内の前段触媒層にベレット状又はリン
グ状の従来型触媒を充填することによって以下のような
メリットがある。
The present invention provides the following advantages by filling the front stage catalyst layer in the converter with a pellet-shaped or ring-shaped conventional catalyst.

その一つは原料ガス中に同伴されるダストがこの触媒層
で捕集され後段の格子状触媒への流入が軽減できるため
ガス貫通孔の閉塞及びS03吸収工程でのダスト混入に
よる製品硫酸の品質低下がなくなる。
One of these is the quality of the product sulfuric acid due to the clogging of gas through holes and dust contamination during the S03 absorption process, as the dust entrained in the raw material gas is collected in this catalyst layer and can be prevented from flowing into the lattice catalyst in the subsequent stage. No more decline.

また、触媒層は3〜5層の複層からなるがSO7の酸化
反応は第1層目の触媒層で60〜70%進行する。この
反応は発熱反応のため、触媒層の温度は550〜600
℃近迄上昇する。このように第1層目では温度的に極め
て厳しい条件が課せられる。特に転化器に導入される原
料ガスの組成及びガス量等に変動がある場合には更に厳
しい条件となるが本発明ではこの第1層目に従来型触媒
を使用し、ある程度緩和された条件下において格子状触
媒を用いるため温度変化等によって格子状触媒が痛むこ
となく性能が長期に維持できる。
Further, although the catalyst layer is composed of three to five layers, the oxidation reaction of SO7 proceeds by 60 to 70% in the first catalyst layer. Since this reaction is exothermic, the temperature of the catalyst layer is between 550 and 600.
The temperature rises to near ℃. As described above, extremely severe temperature conditions are imposed on the first layer. In particular, when there are fluctuations in the composition and amount of raw material gas introduced into the converter, the conditions become even more severe, but in the present invention, a conventional catalyst is used in this first layer, and the conditions are relaxed to a certain extent. Since a lattice-shaped catalyst is used in the process, performance can be maintained for a long period of time without damaging the lattice-shaped catalyst due to temperature changes.

また初期の圧損は第1層目のみが従来型触媒で、後段に
は圧損の低い格子状触媒を使用するため、前者従来型触
媒を全層使用していた従来の転化器に比べ可成り低くな
る。
In addition, the initial pressure drop is considerably lower than that of a conventional converter that uses conventional catalysts in all layers, as only the first layer uses a conventional catalyst and the latter stage uses a lattice catalyst with low pressure drop. Become.

本発明では前段のペレット状又はリング状触媒にダスト
が溜り運転中通気圧損が上昇することにもなるが、この
場合前段の従来型触媒を充填した触媒層を並列に設置し
、原料ガス流路の切換えが可能な配置にしておけば運転
を停止することなくダストの分離除去作業ができる。
In the present invention, dust accumulates on the pellet-shaped or ring-shaped catalyst in the front stage, which increases the ventilation pressure loss during operation.In this case, catalyst layers filled with the conventional catalyst in the front stage are installed in parallel, and If the arrangement is such that switching is possible, dust can be separated and removed without stopping operation.

後段に充填する格子状の貫通孔をもつガス平行流型触媒
では相当直径、開孔率を選定することにより低圧損が高
効率でSO7を転化することができる。
In a gas parallel flow type catalyst having lattice-like through holes filled in the latter stage, SO7 can be converted with low pressure drop and high efficiency by selecting the equivalent diameter and porosity.

すなわち、貫通孔の相当直径が好ましくは3mm以上1
5祁未満開孔率が好ましくは40%以上70%以下とす
れば従来のペレット状又はリング状触媒と同等もしくは
それ以上の転化効率をもち、かつ通気圧損が低い触媒層
を持つ転化器を提供できる。
That is, the equivalent diameter of the through hole is preferably 3 mm or more.
If the porosity is preferably 40% or more and 70% or less, it provides a converter having a catalyst layer that has a conversion efficiency equal to or higher than that of conventional pellet-shaped or ring-shaped catalysts and has a low ventilation pressure loss. can.

貫通孔の相当直径が3証未満であれば通気圧損が大きく
なり、又僅かに流入するダストや熱交換器、配管等から
飛散する異物による閉塞が起り、従来方法の欠点解消に
は結びつかない。
If the equivalent diameter of the through hole is less than 3 mm, the ventilation pressure loss will be large, and blockage will occur due to a small amount of inflowing dust or foreign matter flying from the heat exchanger, piping, etc., and the drawbacks of the conventional method cannot be solved.

逆に貫通孔の相当直径が15mmを越えると単位体積当
りの触媒表面積が小さくなるため大容量の触媒が必要と
なり実用上得策ではない。
On the other hand, if the equivalent diameter of the through-hole exceeds 15 mm, the surface area of the catalyst per unit volume becomes small, requiring a large capacity catalyst, which is not a practical idea.

また格子状触媒の貫通孔の開孔率が40%未満では圧力
損失が大きく、端面におけるダストの閉塞も起きやすく
通気圧損の経時的上昇も大となる。一方間孔率が70%
を越えると格子状触媒の隔壁が薄くなり必要な強度が得
られないので実用上好ましくない。
Furthermore, if the porosity of the through-holes of the lattice catalyst is less than 40%, the pressure loss will be large, and the end faces will likely be clogged with dust, resulting in a large increase in the ventilation pressure loss over time. On the other hand, the porosity is 70%
If it exceeds this value, the partition walls of the lattice-shaped catalyst will become thinner and the necessary strength will not be obtained, which is undesirable from a practical standpoint.

〔実施例〕〔Example〕

本発明の一実施例を第1図〜第3図によって説明する。 An embodiment of the present invention will be described with reference to FIGS. 1 to 3.

この実施例は転化器中実1層目(前段)の触媒棚に従来
型のリング状触媒を充填し、後段の触媒棚に格子状のガ
ス平行流型触媒を3層充填した例である。第1図におい
て図示しない硫黄燃焼炉及び廃熱ボイラを経たS02及
び0.を含むガスはライン2より転化器1内に充填され
た第1層目の触媒層aより順次第4層目の触媒層dに供
給される。触媒層aには第3図に示すようなリング状の
触媒が充填され、触媒層b−dには第2図にその断面を
示すような複数個からなる格子状のガス平行流型触媒が
充填されている。
This embodiment is an example in which a conventional ring-shaped catalyst is packed in the first layer (front stage) catalyst shelf of the solid converter, and three layers of lattice-shaped gas parallel flow type catalysts are packed in the latter stage catalyst shelf. In FIG. 1, S02 and 0.02 are passed through a sulfur combustion furnace and a waste heat boiler (not shown). The gas containing the gas is sequentially supplied from the first catalyst layer a filled in the converter 1 through the line 2 to the fourth catalyst layer d. Catalyst layer a is filled with a ring-shaped catalyst as shown in FIG. 3, and catalyst layer b-d is filled with a lattice-shaped gas parallel flow type catalyst consisting of a plurality of pieces, the cross section of which is shown in FIG. Filled.

触媒層を出たガスはダクト3,5又は7を通って図示し
ない熱交換器に入り、冷却された上でダク)4.6.又
は8を通って転化器1に戻され、後流側の触媒層に導入
される。又触媒層を通過する際ガス中のSO2はSO,
に転化された最後にライン9よりS03吸収工程に送ら
れる。
The gas leaving the catalyst layer passes through the ducts 3, 5, or 7 and enters a heat exchanger (not shown), where it is cooled and then passed through the duct)4.6. or 8, it is returned to the converter 1, and introduced into the catalyst bed on the downstream side. Also, when passing through the catalyst layer, SO2 in the gas becomes SO,
Finally, it is sent to the S03 absorption process via line 9.

1個の格子状平行流型触媒は第2図に詳しく示すように
隔壁21によって仕切られた複数の矩形の貫通孔22を
もつ格子状のガス平行流型の硫酸用触媒20であり、ガ
ス貫通孔22の相当直径は3肛以上15IllIIl以
下、開孔率は40%以上70%以下となるよう選定され
全体の太きさは製造法の制約から300 mm角〜75
mm角が使用される。
As shown in detail in FIG. 2, one lattice-like parallel flow type catalyst is a sulfuric acid catalyst 20 of a lattice-like gas parallel flow type having a plurality of rectangular through holes 22 partitioned by partition walls 21. The equivalent diameter of the hole 22 is selected to be 3 or more and 15IllIIl or less, the pore size is 40% or more and 70% or less, and the overall thickness is 300 mm square to 75 mm due to manufacturing method constraints.
mm square is used.

この実施例は前段にリング状触媒を充填しているため通
気圧損に関して初期圧損が低くダスト閉塞のしにくい特
徴を有するガス平行流型触媒を100%(全層)使用す
る場合よりも圧損は若干大きくなるが、後段に充填した
格子状触媒にはダストの流入が少なく、又反応条件も緩
やかであるため、触媒自体の痛みが少なく、長時間安定
した性能が維持できる。
In this example, since the ring-shaped catalyst is filled in the front stage, the pressure drop is slightly lower than when using 100% (all layers) of a gas parallel flow type catalyst, which has a low initial pressure drop and is less likely to be clogged with dust. Although the size of the lattice-shaped catalyst packed in the latter stage is small, since less dust enters the catalyst and the reaction conditions are gentle, the catalyst itself suffers less damage and can maintain stable performance for a long time.

〔実験例〕[Experiment example]

硫黄燃焼式硫酸製造プラントにおいて、転化器入口から
流量150 Nm’/hのガスを200×200mm角
の転化器に供給し、転化器前後で通気圧損と酸化率を測
定し第1表の結果を得た。
In a sulfur-burning sulfuric acid production plant, gas at a flow rate of 150 Nm'/h was supplied from the converter inlet to a 200 x 200 mm square converter, and the ventilation pressure loss and oxidation rate were measured before and after the converter, and the results in Table 1 were obtained. Obtained.

転化器内の第1層目の触媒棚には従来型のリング状触媒
(外径10φm[I+×内径4φ闘×11L mm )
を1 mmの高さに充填し、後段の触媒棚には相当直径
4.2化、開孔率64%の格子状触媒を各1mで3層充
填した。各層入口のガス温度は熱交換器により制御した
。又格子状触媒の主触媒物質はv205とし助触媒とし
てKを使用して調製した。
The first layer of catalyst shelves in the converter is equipped with a conventional ring-shaped catalyst (outer diameter 10φm [I+×inner diameter 4φ×11L mm)
was packed to a height of 1 mm, and the latter catalyst shelf was filled with three layers of 1 m each of grid-shaped catalysts each having an equivalent diameter of 4.2 mm and a porosity of 64%. The gas temperature at the inlet of each layer was controlled by a heat exchanger. The lattice catalyst was prepared using v205 as the main catalyst material and K as a co-catalyst.

〔比較例〕[Comparative example]

実験例と同一の転化器中に従来型のリング状触媒を全層
(全触媒層高;4m)充填し実験例と同様に通気圧損と
酸化率を測定した。人口ガス条件及び触媒層人口温度は
実験例と同じように制御した。得られた結果を第2表に
示す。
A conventional ring-shaped catalyst was filled in the entire layer (total catalyst layer height: 4 m) in the same converter as in the experimental example, and the ventilation pressure drop and oxidation rate were measured in the same manner as in the experimental example. The artificial gas conditions and the catalyst layer artificial temperature were controlled in the same manner as in the experimental example. The results obtained are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

実験例と比較例を比べると802転化率は両者はぼ同一
ながら本発明におけるような転化器を使用した場合、通
気圧損が約173に低減できる効果があることが*認さ
れた。
Comparing the experimental example and the comparative example, it was found that although the conversion rates of both were almost the same, the use of a converter like the one in the present invention was effective in reducing the ventilation pressure loss to about 173.

又数ケ月の連続運転を行い格子状触媒へのダストの付着
を調べたところ、殆ど見られなく、しかも触媒の損傷は
皆無であった。
Furthermore, after several months of continuous operation, we examined the adhesion of dust to the lattice-shaped catalyst, and found that there was hardly any dust attached, and there was no damage to the catalyst.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を模式的に示す断面図。第2
図は格子状触媒の断面図。第3図は従来のリング状触媒
の説明図である。
FIG. 1 is a sectional view schematically showing an embodiment of the present invention. Second
The figure is a cross-sectional view of a lattice-shaped catalyst. FIG. 3 is an explanatory diagram of a conventional ring-shaped catalyst.

Claims (1)

【特許請求の範囲】[Claims] 接触式硫酸製造法において粒状又はリング状触媒を前段
に配置し、その触媒の後段に格子状又はハニカム状の構
造を有するガス平行流型触媒を単層又は複層充填した転
化器を使用することを特徴とする硫酸製造方法。
In the catalytic sulfuric acid production method, a converter is used in which a granular or ring-shaped catalyst is placed in the first stage and a single layer or multiple layers of gas parallel flow type catalyst having a lattice-like or honeycomb-like structure are packed in the rear stage of the catalyst. A method for producing sulfuric acid, characterized by:
JP4444490A 1990-02-27 1990-02-27 Production of sulfuric acid Pending JPH03247503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4444490A JPH03247503A (en) 1990-02-27 1990-02-27 Production of sulfuric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4444490A JPH03247503A (en) 1990-02-27 1990-02-27 Production of sulfuric acid

Publications (1)

Publication Number Publication Date
JPH03247503A true JPH03247503A (en) 1991-11-05

Family

ID=12691664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4444490A Pending JPH03247503A (en) 1990-02-27 1990-02-27 Production of sulfuric acid

Country Status (1)

Country Link
JP (1) JPH03247503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062015A (en) * 2012-09-21 2014-04-10 Sumitomo Metal Mining Co Ltd Method for sieving solid catalyst
JP2014512264A (en) * 2011-04-06 2014-05-22 ハルドール・トプサー・アクチエゼルスカベット Method for producing sulfuric acid
CN105271146A (en) * 2015-10-15 2016-01-27 武汉钢铁(集团)公司 Purification device and preparation method of high-purity krypton/xenon gas and getter preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512264A (en) * 2011-04-06 2014-05-22 ハルドール・トプサー・アクチエゼルスカベット Method for producing sulfuric acid
JP2014062015A (en) * 2012-09-21 2014-04-10 Sumitomo Metal Mining Co Ltd Method for sieving solid catalyst
CN105271146A (en) * 2015-10-15 2016-01-27 武汉钢铁(集团)公司 Purification device and preparation method of high-purity krypton/xenon gas and getter preparation method

Similar Documents

Publication Publication Date Title
US5030428A (en) Process of purifying flue gases
US3788043A (en) Absorber for sulfur trioxide
EP3194051A1 (en) A process for the oxidation of hydrogen sulfide to sulfur trioxide with subsequent sulfur trioxide removal and a plant for carrying out the process
US4309402A (en) Process and apparatus for production of elemental sulfur
EA001297B1 (en) Selective removal and recovery of sulfur dioxide from effluent gases using organic phosphorous solvents
JPH11500403A (en) Method and catalyst for oxidizing H2S present at low concentration in gas to sulfur by contact route
WO2016198369A1 (en) Hydrogen sulfide abatement via removal of sulfur trioxide
CN111495106B (en) Temperature control system and temperature control method for active coke adsorption tower
JPH03247503A (en) Production of sulfuric acid
CN102371136A (en) Production of enriched CH4Reactor system for gases with coaxial closed sandwich structure and method for using the same
JPH02180614A (en) Process for refining high temperature reducing gas
US3475120A (en) Production of sulfuric acid
CN216711600U (en) Containing H2S synthetic gas low-temperature chemical-looping desulfurization and sulfuric acid co-production system
JPH01257110A (en) Apparatus for producing sulfuric acid by contact process
CN114031039A (en) Containing H2System and method for S synthesis gas low-temperature chemical-looping desulfurization and sulfuric acid co-production
JPS60200810A (en) Method and apparatus for manufacturing sulfuric acid from sulfur dioxide
EP0514941A1 (en) Process for the separation of sulphur oxides from offgases
JPH02133306A (en) Production of sulfuric acid
JPH01160809A (en) Production of sulfuric acid
EP3371101B1 (en) Method and plant design for reduction of start-up sulfur oxide emissions in sulfuric acid production
WO2008031535A1 (en) Process for the production of sulphuric acid
CA1179826A (en) Oxidation of so.sub.2 and h.sub.2so.sub.4 manufacture
WO2023234318A1 (en) Sulfuric acid production apparatus, and sulfuric acid production method
CN203333297U (en) Claus reactor suitable for raw material gas with high concentration
CN220143408U (en) Improved low-temperature Claus catalyst regenerating device